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ABSTRACT 
 
Background: Atorvastatin, a commonly prescribed drug for the management of hyperlipidemia, acts 
as competitive inhibitors of HMG-CoA reductase—a rate-limiting enzyme in cholesterol synthesis. 
On the other hand, riboflavin is also a well-studied micronutrient known for its anti-proliferative, anti-
metastatic and antioxidant properties. However, the synergistic or antagonistic effect of both drugs 
when administered together is not studied yet.  
Method: This study was an attempt to evaluate the toxicity/efficacy of atorvastatin (30 mg/kg) in 
combination with riboflavin in hepatocarcinogenic rats when challenged by a single 
diethylnitrosamine DENA (160 mg/kg; I.P). Serum ALT, AST, creatine kinase, urea, uric acid, 
creatinine, bilirubin, albumin, LDL, FT3, FT4, calcium, phosphorus, and triglyceride levels were 
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estimated. Histopathology was also performed to study the alterations in the cellular architecture of 
cardiac and hepatic cells.  
Results: Result revealed that DENA significantly plummeted (P < 0.001) most of the parameters 
when compared with normal control. Atorvastatin+Riboflavin group significantly managed to restore 
the altered parameters like LDH, cholesterol, triglycerides and LDL-C. Nonetheless, this drug 
combination also caused mild hepatic damage by increasing the ALT, AST, total bilirubin and 
creatine kinase. The histopathology revealed that liver sample of DENA+ATS+B2 group exhibited 
severe necrosis with substantial fat depositions and binucleated cells, whereas the heart sample 
revealed partial detachment of cells with increased intracellular gaps. 
Conclusion: It is suggested from current results that this combination therapy was not only 
unsupportive to hepatocellular carcinoma treatment but damaging to the hepatic and cardiac cells. 

 
 
Keywords: Atorvastatin; riboflavin; DENA; hepatocellular carcinoma; toxicity. 
 

1. INTRODUCTION 
 
Hepatocellular carcinoma (HCC) is widely spread 
across the globe. It is a serious health problem, 
especially in high prevalence regions. Currently, 
the global incidence of HCC is alarming, but with 
the new therapies in hepatitis C virus (HCV) and 
the improvement of hepatitis B vaccine, a 
gradual decline is observed, and cases of HCC 
are expected to decrease in the coming decades. 
Another important issue is the high mortality of 
the patients with this tumour. Despite, continuous 
observation of patients with chronic liver 
diseases, most tumours are diagnosed at the 
intermediate or advanced stage, due to which 
only palliative measures are taken. Many reports 
are available suggesting that cancer cells have 
developed the alternative mechanism or use 
cholesterol for cell synthesis, making scientist 
think in a manner that drugs affecting cholesterol 
utilization can prevent or slow down the cancer 
growth. [1,2].  
 
Statins have gained tremendous importance as a 
drug in present-day life to control 
hypercholesterolemia, they inhibit HMG-CoA 
reductase, the main enzyme for cholesterol 
biosynthesis, with altered LDL receptors (LDLR) 
activity controlling the blood LDL levels [3]. They 
inhibit tumor growth through anti-invasive 
potential, anti-proliferative activity, and support 
the apoptotic process [4-7]. Further, there are 
several other cellular-based mechanisms which 
were tried to explain the anticancer mechanism 
by statin through cell cycle arrest via cyclin-
dependent p21 and p27 kinase alteration along 
with inactivation of Rho A proteins responsible 
for cell migration with destabilization of actin 
molecules [8]. Several human studies on statins 
have proved the anticancer potential of these 
drugs, where there was a significant reduction in 
carcinomas be it breast, lungs, colon,  prostrate 

or lymphomas compared to placebo-controlled 
studies [9,10]. Not all the statins can decrease 
the incidence of HCC; it is limited to some statins 
like atorvastatin [11] supported by Lai et al. 
where they have detailed the link between 
various statins and HCC [12]. Moreover, this 
drug was studied for multiple adverse effects on 
animals when given in therapeutic form where it 
prevented a significant decline in leukocytes 
count thus controlling the leukopenia in 
experimental animals. Furthermore, atorvastatin 
is well associated with protection from 
calcification, microvascular damage, antioxidant  
and its anti-apoptotic character [13]. 
 
In spite of all such proven records of statin from 
in vivo and in vitro studies to some clinical 
evidence, the effectiveness of these drugs are 
yet to pass the challenge of HCC; Especially 
when statins are combined with micronutrients 
like riboflavin, when there is a limited option for 
treatment of HCC. Riboflavin, also known as 
vitamin B2, is a member of vitamin B complex, 
responsible for the transfer of electrons in 
electron transport chain mechanism through 
redox intermediates coenzymes called FMN and 
FAD [14]. Riboflavin is well studied for its anti-
proliferative, anti-metastatic [15] and apoptotic 
properties on various solid tumors [16], anti-
inflammatory through alteration in TNF [17] with 
p53 alteration [18] have also been proved. 
Hence, this study attempts to treat DENA 
induced HCC with atorvastatin in combination 
with riboflavin and analyze the synergistic or 
antagonistic effect of this drug combination.  
 

2. METHODOLOGY 
 

2.1 Animals 
 

Albino-Wistar Rats (n=51; weight=100–120 gms; 
male) were obtained from King Fahad Medical 
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Research Centre (KSA, Jeddah). They were 
acclimatized to three minutes of handling                  
daily for initial seven days before the start of                 
the experiment. Rats were accommodated at 
animal-house of Biochemistry Department; 
Faculty of Science, King Abdulaziz University at 
21 ± 1ºC temperature, relative humidity (60 ± 
10%) on a 12-hour light/dark cycle with free 
access to food and water. The experimental 
procedures were as per the King Abdulaziz 
University Research Ethics Committee guidelines 
which are in compliance with the National 
Commission on the Ethics of Scientific Research 
at King Abdulaziz City for Science and 
Technology. 
 

2.2 Chemicals 
 
Chemicals and reagents including atorvastatin 
and riboflavin were gifted by Jamjoom 
Pharmaceuticals Co., Jeddah, Saudi Arabia.  
Other chemicals and specific surgical was 
purchased from a local distributor. 
 
2.2.1 Preparation of diethyl nitrosamine 

(DENA) 
 
DENA solution for liver cancer induction: 
Hepatocarcinogenesis was induced by a single 
intraperitoneal injection of diethylnitrosamine 
(DENA) prepared in phosphate buffer. 
 
2.2.2 Dose & duration of DENA 

administration 
 
160 mg/kg, single administration. 
 
2.3 Experimental Design 
 
After one week of acclimatization, the fifty-one 
rats were randomly assigned to eight groups. 
 
Animals in group I: (n = 6) served as normal 
controls. Rats received a daily gavage of 1 ml/kg 
of distilled water; hereafter referred as ‘Normal 
control’. 
 
Animals in group II: (n = 6+3) served as 
disease controls. They were treated with single 
intraperitoneal injections of (DENA) once at a 
dose of 160 mg/kg body weight; hereafter 
referred as ‘DENA control’. 
 
Three animals from this group were sacrificed at 
the termination of the initiation phase (i.e. in the 
eleventh week) to identify the histological 
alterations in the liver architecture. 

Animals in group III: (n = 6) were subjected to 
atorvastatin only at a daily dose of 30 mg/kg 
body weight, for the whole period of the 
experiment (12 weeks); hereafter referred as 
‘ATS control’. 
 
Animals in group IV: (n = 6) were subjected to 
riboflavin (50 mg/kg/day) mixed in water provided 
daily ad libitum, for the whole period of the 
experiment (12 weeks); hereafter referred as ‘B2 
control’. 
 

Animals in group V: (n = 6) were subjected to 
atorvastatin and riboflavin at a daily dose as 
given to groups III and IV, for the whole period of 
the experiment (12 weeks); hereafter referred as 
‘ATS+B2 control’. 
 
Animals in group VI: (n = 6) received DENA 
treatment as in group II and subsequently 
administered atorvastatin at a dose of 30 mg/kg 
of body weight/day for the whole experimental 
period; hereafter referred as ‘DENA + ATS’. 
 

Animals in group VII: (n = 6) were subjected to 
the same protocol as in group II and 
subsequently administered riboflavin as group IV 
for the whole experimental period; hereafter 
referred as ‘DENA + B2’.  
 
Animals in group VIII: (n = 6) were subjected 
with DENA i.p and followed by the treatment with  
atorvastatin and riboflavin in combination at a 
daily dose as given to group III & IV for the whole 
period of the experiment (12 weeks); hereafter 
referred as ‘DENA+ ATS + B2’. 
 
At the end of the dosing and treatment protocol, 
rats of all groups were sacrificed; blood-serum, 
heart and liver tissues were collected for the 
estimation of different biochemical parameters 
and histopathological examination, respectively. 
 

2.4 Determination of Biochemical 
Parameters 

 

On the 90
th
 night, all the rats were kept for 12 

hours fasting and next day under mild 
anesthesia. The blood samples were withdrawn 
from all the rats, one by one, via retro-orbital 
puncture technique and blood was collected in 
anticoagulant tubes. The collected blood was 
centrifuged at 4500 rpm and examined for the 
biochemical parameters. Triglyceride (TGL), 
cholesterol, low-density lipoprotein (LDL), 
aspartate transaminase  (AST), alanine 
transaminase (ALT), uric acid, creatinine, 
bilirubin, albumin, LDL, FT3, FT4, calcium, 
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phosphorus etc. were determined using the 
reported method with minor modification [19,20] 
 

2.5 Histopathology Study 
 
After the blood collection, different organs (heart 
and liver) were isolated for histopathological 
analysis. The organs were fixed in 10% neutral 
buffered formalin, dehydrated by passing through 
a graded series of alcohol and paraffin infiltration. 
5 µm sections were prepared using a semi-
automated rotatory microtome and then it was 
dried at 37ºC overnight. Hematoxylin and eosin 
were used for staining and, 20x focus was used 
for images. 
 

2.6 Statistical Analysis 
 
Graph Pad Prism 6 was used for the estimation 
the statistical analysis. The whole data were 
expressed as the mean±SEM and analysis of 
variance (ANOVA). T-test was performed as 
follows: Normal control versus DENA control, 
ATS control and B2 control; DENA control versus 
DENA+ATS, DENA+B2 and DENA+ATS+B2. 
P values of different biochemical parameters 
were considered to be increasingly significant in 
the following order <0.05(*), < 0.01(**) and 
< 0.001(***). 
 

3. RESULTS AND DISCUSSION 
 
3.1 Biochemical Test Reports 
 
3.1.1 Alanine aminotransferase (ALT) 
 
ALT constitutes the essential part of liver function 
tests and any alteration in ALT is directly 
implicated in liver function. ATS and B2 controls 
significantly increased the ALT levels, with P 
values < 0.0001 and < 0.01, respectively. Among 
the treated groups DENA+ATS+B2 group was 
found elevated 2X to normal control group (56 ± 
1.9 U/L). 
 
3.1.2 Aspartate aminotransferase (AST) 
 
DENA control was significantly (P < 0.05) 
decreased, whereas DENA+ATS and 
DENA+B2+ATS therapeutic groups significantly 
(P < 0.0001) increased the level when compared 
to the DENA control. The ALP levels in B2 
control and DENA+B2 was observed to be 
lowered, though this decrease was non-
significant when compared to normal and DENA 
controls, respectively. 
 

3.1.3 Total bilirubin 
 
Despite the narrow range of total bilirubin levels 
in different groups, there was clear demarcation 
expressing significant alterations among controls 
and therapeutic. DENA control was significantly 
decreased (P < 0.01) as compared to normal 
control (0.064 ± 0.0042 mg/dL). All the three 
therapeutics groups showed highly significant 
alteration in the TB level when compared to 
DENA control.  
 

3.1.4 Blood urea nitrogen (BUN) 
 
The alteration in normal BUN levels could mean 
that either the kidneys or the liver may not be 
working properly. The blood urea nitrogen levels 
in DENA control was slightly increased, but 
surprisingly all the other control and therapeutic 
groups revealed significantly low levels of BUN. 
The B2+ATS control group was observed with 
the lowest level of blood urea nitrogen (16 ± 
0.089 mg/dL). Among all, B2 control and 
therapeutic groups showed levels which were 
near to normal levels.  
 
3.1.5 Creatinine 
 
Due to the low standard mean error in all the 
groups, we can easily make out the variations in 
the levels of creatinine in different groups, though 
the range is apparently narrow. The DENA 
control elevated the creatinine level with high 
significance (P < 0.0001). The combinational 
therapeutic group (DENA+B2+ATS) significantly 
normalized the effect of DENA and brought the 
creatinine level to almost normal.  
 
3.1.6 Uric acid 
 
Uric acid is the end product of purine 
metabolism. The pathological alteration s of uric 
acid in blood serum in most patients results for 
serious clinical implications. It is useful in 
diagnosing for most of purine metabolic 
disorders. The effect of atorvastatin on the uric 
acid is clearly seen in uric acid levels. ATS 
control group was highly increased as compared 
to normal (P < 0.0001). B2+ATS control also 
exhibited the highest level (1.5 ± 0.022 mg/dL) of 
uric acid, unlike all the other groups.  
 
3.1.7 Creatine kinase 
 

Creatine kinase catalyzes the reversible transfer 
of phosphate from ATP to creatine and also 
facilitates the energy transfer function.  All the 



 
Fig. 1. Effect of atorvastatin and riboflavin therapy on ALT, AST, CK, BUN, creatinine, uric acid, 

bilirubin, phosphorus, LDH, triglyceride, and cholesterol levels of different groups
ATS, B2 controls were compared to 
DENA+ATS+B2 were compared to DENA control group; values are mean

 
groups associated with atorvastatin have a 
significant increase in the level of creatine kinase 
(P < 0.0001). DENA control was observed with 
near to normal level (349 ± 17 U/L). The ATS 
control group CK level was almost two times 
higher (688 ± 44 U/L) and DENA+ATS was found 
to be with highest level of CK (832 ± 18 U/L) 
which is approximately three times to that of 
normal CK level in normal control group (377
U/L). 
 
3.1.8 Lactic acid dehydrogenase (LDH)
 
Lactate dehydrogenase is an enzyme required 
by cells during the process of turning sugar into 
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Effect of atorvastatin and riboflavin therapy on ALT, AST, CK, BUN, creatinine, uric acid, 
bilirubin, phosphorus, LDH, triglyceride, and cholesterol levels of different groups

ATS, B2 controls were compared to normal control group; DENA+ATS, DENA+B2 and 
DENA+ATS+B2 were compared to DENA control group; values are mean ± SEM; n = 6

groups associated with atorvastatin have a 
level of creatine kinase 

0.0001). DENA control was observed with 
level (349 ± 17 U/L). The ATS 

control group CK level was almost two times 
higher (688 ± 44 U/L) and DENA+ATS was found 
to be with highest level of CK (832 ± 18 U/L) 
which is approximately three times to that of 

control group (377 ± 5 

Lactic acid dehydrogenase (LDH) 

is an enzyme required 
by cells during the process of turning sugar into 

energy. Like CK, LDH levels were also elevated 
in all the atorvastatin groups. Though DENA 
alone was not found to elevate the 
but DENA+ATS was observed with the highest 
level of LDH (1706 ± 29 U/L; P <
compared to other groups in the protocol 
followed by DENA+B2+ATS (1206 ± 30 U/L), 
ATS control (1253 ± 109 U/L) and B2+ATS 
control (1127 ± 29 U/L).  
 
3.1.9 Cholesterol 
 
Atorvastatin as an established cholesterol
lowering drug has significantly affected the 
cholesterol levels in all the ATS control and 
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Effect of atorvastatin and riboflavin therapy on ALT, AST, CK, BUN, creatinine, uric acid, 
bilirubin, phosphorus, LDH, triglyceride, and cholesterol levels of different groups; DENA, 

control group; DENA+ATS, DENA+B2 and 
 ± SEM; n = 6 

energy. Like CK, LDH levels were also elevated 
in all the atorvastatin groups. Though DENA 

the levels of LDH 
but DENA+ATS was observed with the highest 

< 0.0001) when 
compared to other groups in the protocol 
followed by DENA+B2+ATS (1206 ± 30 U/L), 
ATS control (1253 ± 109 U/L) and B2+ATS 

Atorvastatin as an established cholesterol-
lowering drug has significantly affected the 
cholesterol levels in all the ATS control and 
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therapeutic groups. The DENA control group was 
found to be with the highest level of cholesterol 
(99 ± 0.34 mg/dL) whereas the therapeutic 
groups lowered the levels significantly 
(DENA+ATS: 84 ± 3.0 mg/dL, DENA+B2+ATS: 
63 ± 0.58 mg/dL) 
 
3.1.10 Triglycerides 
 
Triglycerides level was significantly (P < 0.001) 
lowered by the DENA control group as compared 
to the normal control group. Similarly, ATS 
control also lowered the TG level. Among the 
therapeutic groups, the combination therapy i.e 
DENA+B2+ATS was found with the lowest level 
of TG (54 ± 1.1 mg/dL). 
 
3.1.11 Phosphorus 
 
All the drug controls, individually and in 
combination, exhibited significant increase (P 
< 0.001) in the serum phosphorus levels. Though 
the phosphorus levels were altered in the 
therapeutic groups as well, none of them turned 
out efficient in bringing the phosphorus to normal 
levels.  
 

3.2 Histopathological Study 
 
3.2.1 Liver histopathology analysis 
 
Liver sections from the normal control group 
exhibited normal liver histology with no evidence 
of hepatocyte injury or dysplasia or malignancy 
or fibrosis noticed. DENA control animals 
revealed central veins surrounded by 

inflammatory infiltrate and extensive                   
necrosis, clusters of hepatocyte necrosis and the 
portal tract with marked atypia and bile                     
duct proliferation. The tumor cells resembling 
hepatocytes show pleomorphism and are seen 
as 2–8 cell wide trabeculae that are separated by 
endothelium-lined sinusoidal spaces. The ATS 
and B2 control groups exhibited mild                 
necrosis and binucleated cellular architecture 
with very less fat depositions. Moreover, the 
therapeutics groups barely absorbed the                    
stain due to DENA. The DENA+ATS+B2                
group exhibited severe necrosis with           
substantial fat depositions and binucleated cells 
(Fig. 2). 
 
3.2.2 Heart histopathology analysis 
 
Fig. 3 reveals the randomly selected heart 
samples of various controls and therapeutics 
groups of current protocol. A normal heart 
cellular architecture with regular muscle tone is 
observed. No intracellular gaps are seen and a 
regular pattern of cell arrangement is noticed 
with minimum fat deposition; DENA Control: The 
muscle tone is lost with high intracellular gaps; 
the cells are not connected with each other. 
Though the fat deposition is less, the intracellular 
spaces seem to be highly occupied with fat. The 
heart seems to be in the state of remodeling with 
eosinophilic infiltration. The ATS and B2 control 
groups exhibited regular stretches of cells with 
slight eosinophilic infiltration. The 
DENA+ATS+B2 group reveals partial 
detachment of cells with increased intracellular 
gaps filled with fat. 

 

 
 

Fig. 2. Liver histopathology samples of all the control and therapeutic groups (randomly 
selected; H&E stained; 20X) 
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Fig. 3. Heart histopathology samples of all the control and therapeutic groups (randomly 
selected; H&E stained; 20X) 

 

4. DISCUSSION 
 
The concept of drug-repositioning can reveal 
potential therapeutic horizons which are 
promising and are expected to pass the clinical 
approvals at a faster pace [21]. Recently, 
atorvastatin—a renowned cholesterol-lowering 
drug has attracted the attention of many 
researchers to explore its anti-cancer potential 
[22-25]. In fact, significant attempts have been 
made to treat liver cancer and hepatic damage 
with atorvastatin. In a recent study, Braeuning A 
et al. have treated DENA induced HCC in 
C3H/He mice with atorvastatin, but found no 
positive influence on the tumor growth in the liver 
[26]. In another study, thioacetamide-induced 
liver cirrhosis treated with atorvastatin has also 
revealed similar negative results [27]. In the 
current study, initially it was hypothesized that 
atorvastatin in combination with riboflavin might 
treat HCC due to their cholesterol-lowering and 
antioxidant properties respectively. Cholesterol is 
essential for the formation of the cell membrane 
and cell-division couldn’t be accomplished in the 
absence of cholesterol. Considering the above-
mentioned hypothesis, several biochemical tests 
were performed and histopathology samples of 
liver and heart were taken to analyze the 
biochemical variation and cellular morphology of 
DENA-induced HCC rats. Unexpectedly, the 
results suggested that this combinatorial therapy 
was not only unsupportive but detrimental to the 
hepatic and cardiac cells. 
 
As noted in previous independent studies, both 
statins and water-soluble vitamins are known to 
elevate the liver enzymes [28-30] in our study the 
atorvastatin and riboflavin combination also 

elevated the ALT levels significantly. Atorvastatin 
is often neglected in this regard as this elevation 
in ALT (even up to 3times) is asymptomatic [31]. 
The riboflavin, though its water soluble and 
excess of it flow out as free riboflavin, is causing 
toxicity as it can react with light, resulting in 
adverse cellular effects [29,30]. Aspartate 
aminotransferase also known as SGOT is one of 
the commonly used markers for the evaluation of 
any toxicity that has been induced in the liver. 
This enzyme generally elevates and squeeze out 
of the liver cells during necrosis or hepatitis 
whether chronic hepatitis or cholecystitis 
hepatitis [32]. In contrast, this study revealed 
mild reduction level of AST in the DENA control 
group this is a unique observation which is not 
evidenced in earlier studies.  
 
Total bilirubin level commonly elevates after 
DENA exposure in the experimental animals [32]. 
Lower bilirubin levels are usually not a health 
concern, but higher levels are. All the three 
therapeutics groups showed a highly               
significant increase in the TB level when 
compared to DENA control; this expresses the 
combined toxicity of all the drugs together on 
hepatic cells. In all the groups the fall of urea 
corresponds to the excess discharge of nitrogen, 
indicating the overwork of kidneys or load on 
kidneys plus disturbance in metabolism of 
nitrogen. This may relate to alteration in 
parathyroid hormone [33] by influence by 
atorvastatin. The fall may be due to nephrotoxic 
effect in this dose where inhibition of p38-
mitogen-activated protein kinase (MAPK), as well 
as nuclear factor kappa-β (NF-κβ) signaling 
pathways, and inducible nitric oxide synthase 
(NOS) expression is altered [34].  
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The preclinical studies unfold that statins may 
help in the prevention of certain type of cancers 
such as prostate, but the population and 
epidemiological studies gave contradictory 
results [35]. The molecular mechanism 
underlying this phenomenon has not been clearly 
understood, except one hypothesis that relates 
ATP alteration in cells to the detrimental effects 
of statin. The modulation of ATP level is a 
biomarker in the diagnosis of muscular myopathy 
in animal tissues which is generally associated 
with statin therapy [36]. Any alteration in the ATP 
content will disturb the metabolic processes of 
normal or cancer cells with the disruption in the 
respiratory chain of mitochondria [37]. 
Additionally, Knauer et al. have also reported a 
noticeable decrease in the ATP content of both 
cell lines and animal tissue are found when 
atorvastatin is administered with some adverse 
cardiac condition [36].  
 
Currently, the micronutrients like vitamins have 
fascinated researchers in designing effective 
therapeutic regimens in chemoprevention of 
many tumors; in particular, vitamin B9 (also 
known as folic acid or folate) antimetabolites can 
target the dihydrofolate reductase [38]. It is well 
documented by in-vivo and in-vitro studies that 
folate is an important co-factor required for the 
biosynthesis of methyltransferase to obtain 
purine bases to meet the demands of rapidly 
proliferating tumor cells [39]. Riboflavin is a 
biochemical precursor of FAD and FMN that are 
involved in the electron transport chain to 
generate ATP. Presently, the mitochondrial 
enzymes NDUFV1, NDUFV2 and NDUFV3 [40] 
of complex I associated with vitamin B2 are 
promising targets to inhibit cell division. Many 
FDA approved drug molecules are being tested 
currently to explore this mechanism  [41]. 
Furthermore, it is important to mention that 
deficiency of riboflavin may significantly inhibit 
the proliferation of breast and colon cancers in 
mice models [42]. On the contrary, the excess of 
riboflavin may enhance the cell division of cancer 
cells as vitamins cause a manifold increase in 
the biosynthesis of nucleotides, replication of 
DNA, the supply of methyl-groups, growth and 
repair of the cells. Aberrant dysregulation in all 
these biological processes have been implicated 
in the development of carcinogenesis [43].  
 
Altogether, these evidences suggest that intake 
of riboflavin could enhance the level of ATP 
synthesis and subsequently promote the cell 
division of tumor cells in DENA-induced HCC rat 
model. Furthermore, this excess ATP inhibits the 

statin activity and initiate the de novo synthesis 
of the fatty acid and cholesterol by the cancer 
cells by an alternate pathway [44]. However, the 
precise molecular pathways remain elusive 
which can be explored by the application of latest 
technologies by ‘omics’ approach. 
 

5. CONCLUSION 
 
Ironically, this study was an attempt to treat HCC 
with the atorvastatin and riboflavin combination; 
however, the results obtained, infer otherwise. 
The significant increase in the serum parameters 
like ALT, AST, total bilirubin and creatine kinase 
by the ATS+B2 combination therapy has led us 
to conclude it to be liver damaging supported by 
the histopathology results.   
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