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Abstract

The objective of this research is to investigatecth@ugate effects of dependent viscosity and dependent
thermal conductivity on natural convection flow of an eleatljcconducting fluid over an isothermal
sphere with heat generation. Viscosity is considered to ltiearand also thermal conductivity is taken
as a linear function of temperature. The governing equatwassolved numerically by numericgpl
solution strategy as per requirement and suitability. tmlumethod such as finite difference method
with keller box scheme has been employed. The computational finfbngdimensionless velocity
profiles, temperature profiles, local skin friction ffa@ent and local heat transfer coefficient are
displayed graphically.
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1 Introduction

Natural convection takes place while the density diffeeeoccurred due to the temperature variations in the
fluid. Natural convection has a great deal in attentioth&oresearchers because of its presence both in
nature and engineering applications. In addition the pmoldé natural convection flow over sphere has
much interest to the scientists and researchers for ¥heious applications. In engineering applications
convection is commonly visualized in the formulation of mitnatures during the cooling of molten metal
and flowing of fluid around shrouded heat dissipation fins, gmads, petroleum reservoir, nuclear energy,
fire engineering etc. A very common industrial applimatof natural convection is free air cooling without
the aid of fans. Moreover, viscosity is a measurmtefrnal fluid friction due to the resistance of fluid flow
On the other hand, thermal conductivity is a measurehefability of heat transfer. Considering, the
importance of viscous dissipation and thermal conductivityt af research works have been accomplished
by many researchers. Alam et [d]] investigated the viscous dissipation effects onDMikhtural convection
flow over a sphere in the presence of heat generationeffée of viscous dissipation on natural convection
flow along a sphere with heat generation is considereflkigr, S. et al[2]. Miraj et al [3] discussed the
conjugate effects of radiation and viscous dissipation amalatonvection flow over a sphere with pressure
work. Molla M.M. et al. [4] have been investigated #féects of temperature dependent viscosity on MHD
natural convection flow from an isothermal sphere. The ceffeof temperature dependent thermal
conductivity on MHD free convection flow alone a vertifiat plate with heat generation and Joule heating
have been examined by Islam et al. [5]. Nasrin R.,l.ef6h have investigated the combined effects of
viscous dissipation and temperature dependent thermal covityuoch magneto hydrodynamic (MHD) free
convection flow with conduction and joule heating along a vertiaaplate. Gitima [7] presented analysis
of the effect of variable viscosity and thermal conductiwitymicro polar fluid for a porous channel in
presence of magnetic field. Nasrin R. et al. [8], hbeen investigated MHD free convection flow along a
vertical flat plate with thermal conductivity and visitpsdepending on temperature. Nabil Eldabe T.M. et
al. [9] analyzed the effects of temperature dependenbsiiscand viscous dissipation on MHD convection
flow from an isothermal horizontal circular cylinder iretipresence of stress work and heat generation.
Safiqul Islam K. M. et al. [10], have been discussed dffects of temperature dependent thermal
conductivity on natural convection flow along a vertical fplate with heat generation. Molla et HI1]
analyzed the effect of temperature dependent viscositHD natural convection flow from an isothermal
sphere. Alim M. M., et al. [12], analyzed the heat geimnaffects on MHD natural convection flow along

a vertical wavy surface with variable thermal conduttivMd. Raihanul Haque et al. [13] analyzed the
effects of viscous dissipation on natural convection fteer a sphere with temperature dependent thermal
conductivity. In all of the aforementioned studies, the thertoalductivity was mentioned as a constant
quantity and temperature dependent thermal conductivity. gimsical property may change with the
change of temperature and viscosity. To the best of our Ikdge effect of dependent viscosity and
temperature dependent thermal conductivity on natural convefti@nover a sphere in presence of heat
generation has not been studied yet. So, the present wortndegates this issue. The non- dimensional
transformed boundary layer equations which govern the flowsahged numerically by using finite
difference method together with keller-box [14] method. Nicaé calculations were carried out for
different values of the various non-dimensional quastgied then presented in figures.

2 Formulation of the Problem

We consider a steady two-dimensional natural convection bouradaayflow of an electrically conducting
and viscous incompressible fluid over a sphere of radiusThe surface temperature of the sphere is

assumed ad,and T, being the ambient temperature of the fluid. Whgn>T, an upward flow is

established along the surface due to free convection andlaweis downward forT, <T_ . The

mathematical model for the assumed physical problem ignived by the following conservation equation
of mass, momentum and energy.
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Fig. 1. Physical model and coordinate system

Under these considerations the governing equations are
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The boundary conditions for the governing equations are
Uu=v=0 T=T, on Y=0
4
U—»O,T—»Tw at Y - o0 )
. X
X) = —
r(X)=a sin (aj ©)

where the radius of sphere ds, I' is the radial distance from the symmetrical axish® $urface of the
sphere,k(T) is the thermal conductivity of the fluid depending on thedfliemperaturdl. Here we will

1
M is the dependent viscosity Wheae:—(—’uj . We also consider the form
1+ a(T - Too) Hi\OT ),

of the temperature dependent thermal conductivity whighdposed by Charraudeau [15] as follows:

considerld =
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k=k (1+ yD(T —Too)) , where Kk, is the thermal conductivity of the ambient fluid and

(kY Ly 1
y‘k(aTj - Tk

reduced into the following form

[—j(TW -T, )wherey is a constant .Equation (3) can be

(6)
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3 Transform of the Govern Equations

The above equations are non-dimensional as usual manner fojithwing substitutions:
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wherelU, = —Gr% is the characteristic velocity of the fluids. Here wi# @onsider
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Using the above transformations into equations (1) to (3), we have
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9)

The boundary conditions associated with (9) to (10) becomes
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u=v=0 @=1 até=0, foranyn
u=v=0 €=1 atn=0,¢>0 (11)
U—»O, 9—»08.5/7—»00,{>0

Here, Gr = g/i’(TW -Tm)a?’/l/2 is the Grashof number artls the non-dimensional temperature function,

Pr= ,uka is the Prandtl's numbery = ki(g—_llfj(TW—Tw) is the thermal conductivity variation

00 f
_1(ou , o
parameter an& = — E (T =T, ) is the dependent viscosity parameter. To solve equa@rend
H; f
(10) subject to the boundary conditions (11), we assumefdiewing variablesu and v where
Y=< (&) (E,n) andyw (€,n) is a non-dimensional stream function which is relatethéovelocity

components in the usual way as

=l6_1// ando = _}a[//
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The momentum and energy equations (9) and (10) reduces to

3 2 2 2
1 5f3+1+ ¢ cosffdz—ﬁ — zﬁJ‘; (12)
1+&6 on siné on on (1+ge) on on
,osiné _ (ﬁ 5 f _ﬂdzfj
¢ a MmaE A& on?
1 520 1 (Y £ 56
—(1+ )0 —+—y[—j +(1+_—cos£jf—+Q6?
pr( )5/72 pr'on siné n (13)
:g(ﬂﬁ_ﬂﬁj
ap & ok an
The corresponding boundary conditions are
of
f=—=0, @d=1atn =0 for any 7
an
of
f=—=0, @d=1latn =0,>0 (14)
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In practical application, the physical quantities of ppatiinterest are the heat transfer and the skinidrict
coefficient, which can be written in non- dimensiorahf as

_}/ —% 2
Nu, = aGr ™ q, andCf{=Gr a T

= _— 15
Cok(T,-T) wo" =

aT ou
whereq,, = —K,| — andl, = 4| — ,K; being the thermal conductivity of the fluid. Using
Y Jy=o Y )y

the new variables (7), we have the simplified form of the traasfer and the skin- friction coefficient as

a4 0°f
Nu, = —(—J andCf, = 5(—} (16)
017 ), on* )

4 Method of Solution

To obtain the solution of the problem, the nunarimethod used is a finite difference method
known as Keller-box [14] method. To begin with, the pardifferential equations(12)-(13) are first
converted into a system of first order differenggjuations. Then these equations are expressed in finite
difference forms by approximating the functions and theirveévies in terms of the centered differences
and two point averages using only values at the corner of théobawesh rectangle). Denoting the mesh

points in the(f,l]) -plane byq‘i and/7j wherei =1, 2,... Mandj=1, 2,... N, central difference

approximations are made, such that those equations invofvinplicitly are centered a(tfi_llz,qj_l/z)

1
and the remainder a¢ ,/7j_1,2), where 77,_4,, = E(,]j +I7J-_1) etc. Grid dependency has been tested

and solutions are obtained with grid of optimum dimensib82x200 in the(f,/]) domain and non-
uniform mesh size is employed to produce resultsgf Atcuracy near the coordingte O, n=0.
The central difference approximations reduces the systefirst order differential equationsto a set
of non-linear difference equations for the unknowd;ain terms of their values af,_,. The resulting set
of nonlinear difference equations are solved by using theitdwes quasi-linearization method taking as the
initial iteration of the converged solution &t=¢;_,.Now the initial process af =0, we first provide

guess profiles for all five variables and use the kellerrethod to solve the governing ordinary differential
equations. Having obtained the lower stagnation point solutimpbssible to march step by step along the

boundary layer. For a given valuedf the iterative procedure is stopped when the differenceriipating
the velocity and the temperature in the next iterationss thariO_G, i.e. When‘dt i‘ < 10_6, where the

superscript denotes the iteration number. A uniform dgrzD61 points are used in thf-direction with the
step size = 0.01 and another non-uniform grid in fhalirection has been incorporated, considering

n, =Sinh{(j—1)/ p} where j=1, 2,....301 andp=100 to get quick convergence and thus save

computational time and memory space. The Jacobian matsixahllock-tridiagonal structure and the
difference equations are solved using a Block-magision of the Thomas algorithm; further details
of the computational procedure have been discussedeirbdok by Cebecci and Bradshow [16].
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5 Results and Discussion

The problem considered here involves a number of parametethe basis of which a wide range of
numerical results have been derived. Of these resuksadl section is presented here for brevity. The
numerical results of velocity and temperature preféed also for local skin frictions as well as locathe
transfer coefficient are shown in Fig. 2(a) to Fig. 9() Yarious values of parameters entering into the
problem.

Fig. 2(a) shows the effects of the velocity profite fifferent values of the dependent thermal conductivity
parametery = 0.10, 0.30, 0.50, 0.70, 0.90 while the other controllingmater®r = 0.72,Q = 0.30 and&

=1.50. Corresponding distribution of the temperature lerifishown in Fig. 2(b). From Fig. 2(a), it is seen
that if the dependent thermal conductivity paramgtencreases, the velocity of the fluid also increases. O

the other hand, it is observed that the temperature profiteases within the boundary layer due to increase
of the dependent thermal conductivity paramegtewhich is evident from Fig. 2(b).

From Fig. 3(a) and Fig. 3(b), it can also easily be deatnain increase in the dependent thermal conductivity
y leads to increase the local skin friction coefficiéifg and also the local rate of heat transfeefficient

Nug increase with the increase of dependent thermal condyatiile Prandtl’'s numbePr = 0.72, heat
generation paramet€y = 0.30 and dependent viscosity parameter 1.50. Also it is observed that at any
position ofé, the local skin friction coefficieang and the local Nusselt numb@u, increase ay/

increases from 0.00 to 1.2. This phenomenon can easily bestowterfrom the fact that when the
dependent thermal conductivity increases, the temperature of the fluid rises and theknétss
of the velocity boundary layer grows i.e. the thermal boondyer becomes thinner than the velocity
boundary layer. Therefore the skin friction coefficie(ﬁf{ and the local Nusselt numbd\lu{ are

increased.

From Fig. 4(a), it may be concluded that the dependentsitydncreases the velocity field in the regign

0[0, 12]. The changes of velocity profiles in thedirection reveals the typical velocity profile for netiu

convection boundary layer flow i.e. the velocity is zerthatboundary of wall then it increases and reaches
to the peak value a9 increases and finally the velocity approaches to zerchasymptotic value. The

maximum values of the velocity are 0.40934, 0.44132, 0.471836425, 0.52296 foe = 0.10, 1.00, 1.50,
2.00, 2.50 respectively and which occursijat 1.23788 for first and second maximum values/j at

1.36929 for third and fourth maximum values apd= 1.43822 for last maximum value. Here we see that
the velocity increases by 27.76% Rsincreases from 0.10 to 2.50. In Fig. 4(b) it is cleadgn that the

temperature distribution increases owing to increase ofdhees of the dependent viscosity parameter
and maximum is at the wall.

The effect for different values of dependent viscosity patarm& (= 0."10, 1.00, 1.50, 2.00, 2.50), the local
skin friction coefficienth{ and local rate heat of transfer coefficid\dug are shown in the Fig. 5(a) and

Fig. 5(b) whilePr = 0.72, Q = 0.90 andy'= 0.70. Here, it is seen that as the dependent visqusimeter
& increases both the local skin friction coefficient and lloeée of heat transfer coefficientl\{ug)
increase.
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Fig. 6(a) and Fig. 6(b) illustrate the effect of the heategation parametdp (= 0.40, 0.70, 0.90, 1.10) with
parameter®r = 0.72,& = 0.60 andy = 0.80 on the velocity profile and the temperature profitenfFig.

6(a), it is revealed that the velocity profile increaggth the increase of the heat generation paraneteat
indicates that heat generation parameter acceleratetuithenfotion Small increment is shown from Fig.
6(b) on the temperature profile for increasing value®.of

Fig. 7(a) and Fig. 7(b) illustrate the variation of loskin friction coefficient f "(f) and the rate of local
heat transferN U, againsté for different values of heat generation param@ér 0.40, 0.70, 0.90, 1.10)
as obtained by solving numerically equations (7.13) and (7.14) whered.72,& = 0.60 andy = 0.80. It

is seen from Fig. 7(a) that the skin friction coefﬁci@fg is influenced considerably and increases when
the values of heat generation parameferincrease at different position af with other controlling
parameters. Fig. 7(b) indicates that the rate of lo€dleat transfelN U, decreases owing to increase in
values of heat generation paramederith other fixed parameters.

Fig. 8(a) depicts the velocity profile for differentlwas of the Prandtl,s numbBr ( = 0.72, 1.00, 1.74,
2.00, 3.00) with parameter® = 0.70, & = 0.50 andy = 0.90. Corresponding distribution of the

temperature profile is shown in Fig. 8(b). From Fig. 8{g)can be seen that if the Prandtl's number
increases, the velocity of the fluid decreases. On therchand, from Fig. 8(b) we observe that the
temperature profile also decreases within the boundsey ldue to increase of the Prandtl’'s nunider

Fig. 9(a) and Fig. 9(b) illustrate the variation of loddhdriction coefficienthg and the rate of local heat
transferNu‘, againstf for differentPr ( = 0.72, 1.00, 1.74, 2.00, 3.00) with paramet@rs 0.70,& =

0.50 andy = 0.90. as obtained by solving numerically equations (7.18)(ai4). It is seen from figure
9(a) that the skin friction coefficierft‘,f{ is influenced considerably and decreases when the values of
Prandtl’s numbePr increase at different position df with other controlling parameters. Fig. 7(b) indicates
that the rate of local of heat transmtug increases owing to increase in values of Prandtl's nuberth

other fixed parameters.

0.5 1

o
2
o
g
T
=
=

o

w

o

)

T
- B
T
-

04k AV

1]

g

S

o

<

2 IO Q=0.30,Pr=0.72,
: .

£ 2\

[} .

[ N\,

Velocity Profiles
°
N

"’\,'\ B\A =150

[ <
N
T

0.1

%

Fig. 2(a) and 2(b). Variation of dimensionless velocityrpfiles f'(l],f) and temperature profiles

5(/7, E) against dimensionless distancg for different values of dependent thermal conductivity
parameter ) with Pr=0.72,& =1.50 andQ = 0.30



Alam et al.; ARJOM, 8(1): 1-13, 2018; Article no.KRV.38684

1 F
r 1 Pr=0.72, Q=0.30,
I Q=0.30,Pr=0.72, I — y=090
osf S €=150  ------ y =0.70
g [ €=150 St
g 5
% 06; ,,’/;/; §
o | 77,7 (0]
o | /'/4", “(7’
c [ 57 c
2 | p y =0.90 I
Soal Y =0.70 =
L 4,7 y =0. 5
£ [ Y y =0.50 =
@ 2k & e y =030 g
i —mmememem Y = 0,10 -
i (a)
0 1 1 1 1 1
0 0.3 0.6 0.9 12 15

Fig. 3(a) and 3(b). Variation of dimensionless skin frigbn coefficient f"(f) and local Nusselt

number, Nu, against dimensionless distancé for different values of dependent thermal
conductivity parameter ) with Pr=0.72,& = 1.50 andQ = 0.30

0.6 r 1
[ £€=2.50
s AN @0 ------ £=2.00
o 7 \‘
oy mmmeee £=1.50 "
woal BN mm———— €=1.00 .%_J .
= LAWY - o
£ | N [ £=0.10 2
5 F AW 2
S03F \ \\‘\ =1
5 LN =0. ®
st AR y=0.70 5
o | ALY Q
>02 \.\\\\.\\ Pr=0.72,Q = 0.90, g,
AN [
NN
0.1 . \\?\\ N
\,
(a) N
D
o A I R Rt et
0 2 4 6 8 10 12
n

Fig. 4(a) and 4(b). Variation of dimensionless velocityrpfiles f'(n,f) and temperature profiles

9(/7, f) against dimensionless distancg for different values of dependent viscosity paramete&
with Pr=0.72, )y = 0.70 andQ = 0.90

12 18
[ Pr=0.72,Q=0.90, rPr=0.72,Q=0.90,
i = Lk y= — £=250
_ [ y=070 gory=070 T b
= 09 c |
ST = £=150
1 QL
£ | 8
sof
By &
&+ o0
c | 3 =
%03— £ §
r £ - £=1.00 =
: (a) T 82010 ol v g b b
b 0.2 0.4 0.6 0.8 1 12 14 16
OU 0.2 0.4 0.6 0.8 1 12 14 16 E

Fig. 5(a) and 5(b). Variation of dimensionless skin frigbn coefficient f"({) and local Nusselt

number, Nug against dimensionless distancé for different values of dependent viscosity parameter
& with Pr=0.72, y =0.70 andQ = 0.90



Alam et al.; ARJOM, 8(1): 1-13, 2018; Article no.KRV.38684

0.8

o
o

Velocity profiles
=

0.2

Temperature profiles

Fig. 6(a) and 6(b). Variation of dimensionless velocityrpfiles f'(l],f) and temperature profiles

6’(/7, {) against dimensionless distancg for different values of heat generation parameteQ with Pr
=0.72,)y =0.80 and& =0.60

Skin friction coefficients
° ° - e ~
= 3 S > ~ N

o

— Q=0.40
E e Q=0.70
S Q=0.90
r —emimmemem Q= 1.10
L Pr=072,
- £=0.60,y=0.80
_ .,«f:"":’/;,
I
1 1 1 1 1
0 0.3 0.6 0.9 12 15
g

_ Local heat transfer coefficients

3

N
N

e
®

.
N

o
o

o

)
o

[N
N

N
®

Fig. 7(a) and 7(b). Variation of dimensionless skin friton coefficient Cfg and local Nusselt number,

Nu, against dimensionless distancé for different values of heat generation parameteQ with Pr =
0.72, y =0.80 and& =0.60

0.6

0.5

)
IS
LAMLLJL A LA

Velocity profiles

)
N

0.1

Pr=0.72
Pr=1.00

Temperature profiles

12

1
\,‘\\ Pr=0.72
sk ™ 00 T+ Pr=1.00
W e Pr=174
W\ - Pr=200
T N Pr=3.00
[N
X\‘-\ \
\‘\\\. N €=0.50,y=0.90
0.4 \\\\ \
\,\\~\\‘\ R Q=0.70,
AN \\
02 A S
N, N\ ~
\-\\§~\ S
(b) ™D v2
0 1 1 [ 1
0 2 4 8 10 12
n

14

Fig. 8(a) and 8(b). Variation of dimensionless velocityrpfiles f'(/],f) and temperature profiles

6’(/7, f) against dimensionless distancg for different values of prandtl’s number Pr with Q = 0.70,
y =0.90and& =0.50

10



Alam et al.; ARJOM, 8(1): 1-13, 2018; Article no.KRV.38684

| Q=0.70 = [ Q=070
osl €= 0.50, y= 0.90 //7;7:9”’ ; £=0.50,y=0.90

0.6 A5

Skin friction coefficient
N
Local heat transfer coefficient

I N Pr=1.00
i —mmemimems Pr=0.72
(@

oM ) o)
0.3 06 0.9 12 15 0.1 0.2 03 0.4

g 3
Fig. 9(a) and 9(b). Variation of dimensionless skin fridon coefficient Cfg and local Nusselt number,

Nug against dimensionless distancé for different values of prandtl’s number Pr with Q= 0.70, y =
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6 Conclusions

From the present investigation, the following conclusions neagrawn:

* Increase in the values of dependent thermal conductivity heap leads to increase the velocity
profile. The temperature profile, the local skin frthmticoefficienth{ and also the local rate of heat
transfer Nu, increase with the increase of dependent thermal condycttameter)y while
Q=0.30, &£ =1.50 andPr = 0.72.

* The velocity profiles, the temperature profiles, thealoskin friction coefficienth{ and also the
local heat transfer coefficieri U, increase significantly when the values of dependent viscosi

parametere increase.

» Significant effects of heat generation param&eon velocity and temperature profiles as well as on
local skin friction coefficient and the rate of heaintsfer have been found in this investigation but the
effect of heat generation paramegion rate of heat transfer is more significant. An inseeia the
values of heat generation parame@rleads to both the velocity and the temperature profiles

decreases. The local skin friction coefficiébfg increases at different position §f but the local
rate of heat transfeN U, decreases at different position 45ffor Pr=0.72,& =0.60 andy = 0.80.

* Increasing values of Prandtl's number leads to decrease the velocity profiles. The temperatur
profiles, the local skin friction coefficier(f,f‘, but the local rate of heat transfhl'ug increases with

the increase of Prandtl's numid@rwhile Q = 0.70, & = 0.50andy = 0.90.
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