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Abstract

This paper is devoted to the effect of force termusidn in the classical field theory of elastic mixture
non-homogeneous equation of Kolosov-Muskhelishvli formula. piteblem of plane elasticity for a
doubly connected body with outer and inner boundaries in the dba regular polygon with a commagn
centre and parallel sides is addressed. The unknown @&cctd upon by external stress with sgme
prescribed boundary conditions. Here we use the metharoplex variable theory to determine the
applied force and the stress state of the elastic boalyreé3ults show that the theoretical frame work of
the forcing term is consistent with the experimental worthénliterature.
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1 Introduction

The application of the methods of conformal mappings and boynwatue problems of analytic functions
has proved to be the most effective way of solving boyndalue problems of elasticity and plate bending.
However, for a simply-connected domain, these methods yféddtige results (especially for domains
mapped onto the circle by rational functions). Howetrezse methods still remain poorly adapted to the use
of multiply-connected domains [1]. Nevertheless, for somactmally important classes of doubly-
connected domains bounded by polygons including the polygtomahin with a curvilinear 2-gonal hole,
we may succeed in constructing effectively (in the analytiorm) functions conformally mapping this
domain onto the circular ring. [2]. In addition to this, the Kole$luskhelishvili methods make it possible
to decompose these problems into two Riemann-Hilbert @mubifor the circular ring and by solving the
latter problem, we can construct the sought complex potetitie analytical form.

The theories of mixtures in the framework of rational tantm thermodynamics have been developed
throughout the sixties and seventies, and subsequent developmeatidus constitutive theories and
thermodynamic analysis are too numerous to document [3ind&oy value problems for a finite domain
with a part of its boundary being unknown and the other part yg@ohl line were solved in [4].
A similar boundary-value problems of plane elasticity fofinite plates weakened by unknown full-
strength holes with normal stresses acting on their bowsdand forces applied at infinity were analysed in
[5,6,7].

A mixed problem of elasticity was solved in [8,9] for a conpelygon and for a doubly connected domain
with a polygonal boundary. Also, linear and non-linear statbundary-value problems for doubly or
multiply connected isotropic and anisotropic elastic bogikgds and shell) were solved by Maksimyuk and
Chernyshenko [10], Liu, I-Shih: discussed the entropy fluxtrahsversely isotropic elastic bodies of
homogeneous type [11], while [12,13,14] gave a solution of a nesicéd problem of oscillation of two
component mixtures. A fundamental solution of the systediffafrential equations of stationary oscillations
of two-temperature elastic mixtures theory was provideflbj

In this paper, we analyse a problem of plane elasticityafdoubly connected body with outer and inner
boundaries in the form of regular polygon with a commonreeantd parallel sides. The sides of the polygon
are exposed to external gravitational force and the boundadjtioms of the forcing term are determined in
order to ascertain the impact of the force on the isotrlpigtic body.

This is achieved by deriving the forcing term from the non-bgeneous equation of statics in the theory of
elastic mixture. These forces are analysed under twesdiional stress function from which the equilibrium
and compatibility equations are derived. Using the compigileitjuation and the stress-strain relations, we
derived the basic equations of elasticity. And finally,deeived the boundary equation of the forcing term,
from which a graph was generated to explain the stregsdtthe isotropic elastic body.

2 Mathematical Formulation

We consider a homogeneous isotropic elastic body occupgindgpubly connected domain on the
complex plane = X; +iX2. Its outer and inner boundary akg and L, respectively and are regular
polygons with a common centrd =0 with parallel sides. The neighbourhood of the verticeshef

inner polygon are equal smooth arcs symmetric about thecoayig from the centre to the vertices as in
Fig. 1.
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Fig. 1. Isotropic elastic material in a polygonal shape

We assume that this body is inserted into a regular polygata of a rigid body. The boundary of the hole
coincided with the outer boundaly, of the elastic body. We assume also that the boundary dfofle and

the boundaryl, of the elastic body are smooth, that is, frictionatés are absent. Absolutely smooth rigid
punches with rectilinear bases are pressed by a foalirthe rectilinear sections of the internal boundary.
Under these assumptions, the normal displacements of tee and inner boundaries ar¥/, =0 and

V, = K = constant respectively. The unknown arcs are exposed to dxtnce The tangential stresses

T, =0 on the entire boundary of the domain S.

In our method, we aim to consider the problems of determithieglisplacement and the stress state of the
elastic body, on the assumption that the normal sigesis constant 5 = K =constant) .......

3 Method of Solution

We use non-homogeneous equation in the theory of elastic esxasrour governing equation to derive the
forcing term (F) and the general form of [16-18]. Isfsown that the displacement vector components are
represented in this theory by means of four arbitraryyiadunctions. In the two-dimensional case, the
basic non-homogeneous governing equation [16] of the theory titetasture has the form:
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a,Au'+b,grad div u'+cAu'+dgrad div u'=-p,F =¢'

@)
cAu'+ d grad div u'+a,Au''+b,grad div u"'=-p,F"=¢"

whereA is the two-dimensional Laplacian, grad and div are thecipah operators of the field theoryy,
and p, are the partial densities (positive constants of the umixt F' and F" are the mass forces
respectivelyu' = (ui,u'z):w andu''= (u;,u;) = W" are the displacement vectodf' and /' denote

the product of the partial densig and the mass forde respectively,a,,b;,c,d, a,b, are combination of
constitutive constants characterising the physical preseofithe mixtures [19-20].

3.1 Introducing complex variable theory
We solve equation (1) by introducing the complex variabléslsvs:

z=x, +iX,

2
and
Z=x —iX, )
X1 and % are real and imaginary parts. Thus we obtain
Zi+|i :22 and 2i—|i :21_
ox,  0X, 0z ox,  0x, 0z 3)
Multiplying the two equations in (3) and simplifying, we have
2 2 2 2 2
PRCAREYY R 1 A @
0207 ox;, 0%, 0X,0X, 0X,0X,
Let the displacement vectorandu' in its complex form be represented by
w=u,+Hu,,  W'=u,'-iu,’ }
w'=u, U, w'=u,"-iu," )
Substituting equation (5) into equation (4) we have
°w _ 4(aw av—v'J .(aw av—v'J
4= =4 | -4 — -
020z \ 9z o0z 0z o0z ©)
2w 4[avw 6\Tv“j .(avw 6\Tv“j
4 = + 4| — - ——
09z \ 9z 0z oz 0z @)
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Note: The displacement vecterandw"'depends on the elastic and plastic regiaan( Z ).

To make equation (1) solvable, we shall, as in [1], let

2 2050
=42 and au=42W
0207 0207 (8)
and
W OW | sy M2 )y i u= 46
ox, 0z ox, 0x,
So that,
Uy L Y% 5 divu'= 26
0x,  0X, ©)

Substituting equation (8) and (9), in equation (1) we have

2 2,00
a_v! + 4ca—V\C +2b gradd'+2d grad@'=¢'
020z Z
2 2 1
4ca—V\f +4a, a_v\i +2d gradd'+2b,gradd"=¢"
0207 0207 (10)

4,

Here, our Laplacian is defined as
A=000=—03-
(11)

Substituting for grad in equation (10) Witig: we have
Z

o°w °w" 06 00"
4 +4c +2b, —+2d — =y
R oz ¥
2 2 1 n i
20 1 42, 0 4 2999 4 26, 99" =
0207 0207 0z 0z (12)

Which on factorization gives:

0 ow ow
da, — +4c— +20,0+2d0" | =y’
( 4 0z 0z b j v

oz
i_(4ca—"" +22, 2 4 odg42m,0 ) —y
0z 0z 0z (13)
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Under certain assumption from formula the integral in [fi§ above equations (13), gives

U 0
42,2 1+ 4™ 4 o gr42dg7=2Y
0z 0z Z (14)
1 1 D]
4c?" 1+ 43,2 4 2dg 420,602 99
0z 0z Z
oy’

Wherea—_ is the analytic non-homogeneous term. defined as
Z

= u-+ iV is the displacen ent function at the plastic region ard - iX ,iS the complex conjugate
g 2 Jug
function.

0
3.2 For the non-homogeneousterm [a(;/f J
z

Equating the non-homogeneous part of equations (14) and (hpwee

a O
G
z (15)

So that

olu+iv) _du v . du . ov .
= —— ——— i —+i— = g +i
ax —ix,) ox ox, Ox, 0x PRI

(16)
Separating and equating the real and imaginary parts
ou odv ou ., ov
SoTo-=pRand =R
0x,  0X%, ox, 0% (17)
Introducing the new arbitrary analytic functiohgndn , we have from, [11] that
_0¢  0n
U= Tax __0¢  0n
X, 0X, and VE-———+—— (18)
ox, 0x
Using equation (18) and substituting foandv in equation (17), we obtain
0°¢p  0°
—f +—f = pF, and hence 0°¢ = pF,
ox, 0%, (19)
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Similarly, %7 = pF, (20)

From equation 16, we have;

D% +i0% = pR +ipF, = pF  or  O*(g+in) = oF (21)
Note:

The classical field theory describing gravity is the @vwan gravitation, which describes the gravitational
force F, as a mutual-interaction between two massesmdvim, (wheré is the isotropic elastic body, Fig. 1
andm s the object of our forcing term). So that

_GMm

r* (22)

F =

whereG andr are earth gravitational constant and distance respectively.

The massive body M has a gravitational figldSince the gravitational force F, is conservative figid g,
can be written as a gradient of gravitational scalegrg@il ¢, that is

g=-le¢ (23)

Also, in the case of a gravitational field due to anaating massive objects of densify, Gauss’ law for
gravity in differential form can be used to obtain the c@wasging Poisson equation for gravity, [14].
Gauss'’ law for gravity is

Ulg=-4nGp (24)
Substituting fog = —[J¢ in equation (23)

O%p=41Gp (25)
Equation (25) is called Poisson equation for gravity [2]

Hence, equation (21) is equivalent to equation (25), bedairselves the mutual interaction between the
isotropic elastic bodi (Fig. 1) and the object of our forcing term (m).

That is
0%(¢+in)=D0%p=pF =47Gp. ; pPF =47Gp and F= 476G (26)

Hence, our forcing term is a gravitational force, angl Roisson in nature, as such, it is restricted to a plane
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3.3 Boundary conditionsfor the forces (f) on the plane

The boundary conditions are obtained from the requiremenathhe surface of the body, the stress must
equal the imposed surface force [3]. If the surface akemA has a normal then we evaluate the stress
vector at this point as shown in [13].

We now specify stresses in different directions

. . F =
(i). X-direction: F, =dAc, cosa +dAr, sina and denoting d_; =X
we have,
7 _ N .
X =0,c0sa +71,, sina 27
(ii). In Y-direction, similarlyY = rxysina+ o, cosa (28)
Hence, force balance on the plane is given in the followiagiras:
SR Ko dbanid
i y (29)
Letiing, 0, =a, T, =bando, =c.
So that
F = [3cosT bsina
bsinad ccosa
or
— 2l
|F/=accog a-b’sit a (30)
At equilibriumF = 0, so that,
2 - o(a) I st nd(a)=tar’ a 31
b2 (general stress) a = (31)
Equations (30) and (31) are the main results
4 Results
From [13] the inner displacement vector is given as
— v (A-Dk(h-1)
Vn (t) - 2
H (32)
From our main result, the boundary equation is
— Cain?
F = olcos a -sin®a) (33)
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At equilibriumF = 0. Equation (30) becomes

ola)=tan’a= 1, a =45

The complete Kolosov-Muskhelishvili formula for a displaesnvector [13] is

2, (t)-V,(t)=F

v-%0-F
2u  2u
V. (t)-kV, ([t)=k'F.
—i — 1
k=g K (2u)

-2+

Fig. 2. A graph of angle a against theforceF

(34)

(3p

(3%)

(3p
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5 Discussion of Results

The graph in Fig. 2 above results from the relationship etwiee angler and the applied external force F.
When the mass and momentum resulting from the forces are weds#ren the stability of the system in

7 7l
which the forces act upon, depends on its perfect angutaafiam. In the graph, fronE-E toE, there is a

slight rise of the curve above the horizontal axis, indigaéin increase in the energy level of the particles in

71 7l
the solid. Beyondg, it drop and touch the horizontal axiszlat This implies that, all the forces in that
. " . . 71 7l
system are resolved to zero at that point and thastdislity of the continuum is attaln-zf. Beyondz,

71 57
the curve drops below the horizontal axis to the negatvecal axis, indicating that at ang+3e,§ etc.,

the system is unstable.

6 Conclusion

In this paper, we considered the problem of non-homogeneaasiaay of statics in the theory of elastic
mixture, using complex variable theory. It was fouhndttour theoretical solution for the stress state of the
isotropic elastic body (Fig. 1) is consistent with the expental existing result.
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