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Abstract

This research proposes an explicit method to solve fuzzy heat equation with integral boundary
conditions. The necessary materials and preliminaries are expressed, and a finite difference
scheme for one dimensional heat equation is considered. Here, boundary conditions include
integral equations which are approximated by the composite trapezoid rule. Finally, an example
in order to illustrate the numerical results is given. In this example, the Hausdorff distance
between exact solution and approximate solution is obtained.
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1 Introduction

In this paper, the explicit method to solve fuzzy heat equation with nonlocal boundary conditions
are explained. The importance of this problem is that the mathematical modeling of many scientific
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phenomena involves nonlocal boundary conditions [1]. Therefore, the numerical solution of parabolic
partial differential equations with nonlocal boundary conditions has become an area of interest, in
recent years. The increase in research on fuzzy mathematics, necessitate the study of fuzzy partial
differential equations and fuzzy derivatives. Prerequisite of this topic is fuzzy derivative which was
first studied by Chang and Zadeh in [2]. This discussion was followed by Dubois and Prade by
defining the extension principle in [1]. Puri and Relescu in [3] and Goestschel and Voxman in [4]
considered some new methods in this context. The boundary value problems for first order fuzzy
differential equations have been surveyed by several authors [5, 6, 7, 8, 9]. Afterwards, many authors
studied fuzzy partial differential equations [10, 11, 12]. In this direction, Mutlu et al. introduced
a more general iteration method to solve initial value problems which can be extended for fuzzy
diferential equations [13, 14]. In this work, fuzzy heat equation with nonlocal boundary conditions
is studied. In section 2, some preliminaries are presented. In section 3, an explicit method to
compute fuzzy heat equation is presented. Here, the integral terms are estimated by the composite
trapezoid rule. Finally, in the last section, an example is presented.

2 Materials and Definitions

Let X be a universal set, then the fuzzy set Ã in X is determined by Ã = {(x, µÃ(x)) | x ∈ X}.
The function µÃ : X −→ [0, 1] is called the membership function, where µÃ(x) is the grade of

membership of x in Ã. The range of the membership function is a subset of the nonnegative real
numbers whose supremum is finite.

Definition 2.1. [15] Consider a fuzzy set Ã in X and any real number α, then the α-cut or α-level

set of Ã is denoted by Aα and defined as Aα = {x ∈ X | µÃ(x) ≥ α}. Similarly, A
′
α = {x ∈ X |

µÃ(x) > α} is called strong α-cut.

Definition 2.2. [16] The triangular fuzzy number Ñ is defined by three numbers α < m < β as

Ñ = (α,m, β) and represented as bellow:

µÃ(x) =


x−α
m−α

α ≤ x ≤ m

1 x = m
x−m
β−x

m ≤ x ≤ β

0 x = 0

If α > 0 (α ≥ 0), then Ã > 0 (Ã ≥ 0).

If β < 0 (β ≤ 0), then Ã < 0 (Ã ≤ 0).

Definition 2.3. [15] An arbitrary fuzzy number is shown, in the parametric form, by an ordered
pair of functions (a(r), a(r)) with 0 ≤ r ≤ 1 satisfying the following requirements:

1. a(r) is a bounded left semicontinuous non-decreasing function over [0,1],

2. a(r) is a bounded left semicontinuous non-increasing function over [0,1],

3. a(r) ≤ a(r), 0 ≤ r ≤ 1.

Peculiarly, if a and a are linear functions, then we have a triangular fuzzy number. A crisp number
a is represented by a = a = a, for all 0 ≤ r ≤ 1.

Definition 2.4. [17] For any fuzzy numbers u = (u(r), u(r)) and v = (v(r), v(r)), the algebraic
operations are defined as bellow:

1. ku =

{
(ku, ku) k ≥ 0
(ku, ku) k < 0

2. u+ v = (u(r) + v(r), u(r) + v(r))
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3. u− v = (u(r)− v(r), u(r)− v(r))

4. u · v = (minS,maxS), where S = {uv, uv, uv, uv}.

Remark 2.1. Since the α-cut of the fuzzy numbers is always a closed and bounded interval, then
we can write Ãα = [a(α), a(α)], for all α ∈ R.

Definition 2.5. [15] Assume that u = (u(r), u(r)) and v = (v(r), v(r)) are two fuzzy numbers.
The Hausdorff metric DH between u and v is defined by:

DH(u, v) = max
r∈[0,1]

{|u(r)− v(r)|, |u(r)− v(r)|}. (2.1)

This metric is considered as a bound for computing error, and by using that the difference between
exact solution and approximate solution is obtained.

3 Finite Difference Method

In this section, an explicit difference scheme is applied to acquire the numerical solution of fuzzy
heat equation:

(Dt − a2D2
x)Ũ = 0̃, x ∈ (0, 1), t ∈ (0, 1] (3.1)

with the following boundary conditions{
Ũ(0, t) =

∫ 1

0
k0(x)Ũ(x, t)dx+ g̃0(t)

Ũ(1, t) =
∫ 1

0
k1(x)Ũ(x, t)dx+ g̃1(t)

(3.2)

and the initial condition

Ũ(x, 0) = g̃(x), x ∈ (0, 1) (3.3)

where g̃0, g̃1 and g̃ are known fuzzy functions, Ũ is an unknown fuzzy function which must be
determined and k0 and k1 are crisp known functions.

Let Ũ be a fuzzy function of two independent crisp variables x and t. Define I = {(x, t)|0 ≤
x ≤ 1, 0 ≤ t ≤ T}. An α-cut of Ũ(x, t) and its parametric form is presented as Ũ(x, t)[α] =
[U(x, t;α), U(x, t;α)]. Assume that the functions U(x, t;α) and U(x, t;α) have continuous partial
differential, then (Dt − a2D2

x)U(x, t;α), and (Dt − a2D2
x)U(x, t;α) are continuous, for all (x, t) ∈ I,

α ∈ [0, 1]. The domain [0, 1] × [0, T ] is partitioned into M × N sub-domain with spatial step size
h = 1

N
and k = T

M
in x-direction and t-direction, respectively. The grid points are given by xi = ih

and tj = jk, for i = 0, 1, · · · , N and j = 0, 1, · · · ,M . The value of Ũ at the point p(xi, tj) is denoted

by Ũp = Ũ(xi, tj) = Ũi,j , and the parametric form of fuzzy number Ũi,j is Ũi,j = (U i,j , U i,j). Hence,
we have: {

(Dt)Ũi,j = (DtU i,j , DtU i,j)

(D2
x)Ũi,j = (D2

xU i,j , D
2
xU i,j)

In this stage, the Taylor-series expansion is exerted at a given point p to determine the following
schemes: {

D2
xU i,j+1 ≃ ui−1,j−2ui,j+ui+1,j

h2

D2
xU i,j+1 ≃ ui−1,j−2ui,j+ui+1,j

h2

(3.4)

3



Hosseinpour; ARJOM, 8(1): 1-7, 2018; Article no.ARJOM.38350

and: {
DtU i,j ≃ ui,j+1−ui,j

k

DtU i,j ≃ ui,j+1−ui,j

k

(3.5)

Parametric representation of the heat equation (3.1) will be:

{
DtU i,j − a2D2

xU i,j = 0̃

DtU i,j − a2D2
xU i,j = 0̃

(3.6)

By inserting (3.4) and (3.5) into the Equation (3.6), the difference scheme for fuzzy heat equation
is obtained as bellow:

{
ui,j+1−ui,j

k
− a2 ui−1,j−2ui,j+ui+1,j

h2 = 0
ui,j+1−ui,j

k
− a2 ui−1,j−2ui,j+ui+1,j

h2 = 0
(3.7)

By simplifying the above equations, we obtain:

{
ui,j+1 = rui−1,j + (1− 2r)ui,j − rui+1,j

ui,j+1 = rui−1,j + (1− 2r)ui,j + rui+1,j = ui,j
(3.8)

Where r = ka2

h2 . Let Ũ = (u, u) be an exact solution of the approximate difference equations.
According to Equation (3.8), we have 2(N − 1) equations with 2(N + 1) unknowns, therefore we
need four more equations. The required equations are obtained by boundary conditions (3.2) which
are approximated by the trapezoid rule. Thus, we have

a0Ũ0,j+1 +

N−1∑
i=1

aiŨi,j+1 + aN ŨN,j+1 ≈ −g̃0,i+1

b0Ũ0,j+1 +

N−1∑
i=1

biŨi,j+1 + bN ŨN,j+1 ≈ −g̃1,i+1

where

a0 =
h

2
k0(x0)− 1 aN =

h

2
k0(xN )

bN =
h

2
k1(xN )− 1 b0 =

h

2
k1(x0)

and

ai = hk0(xi) , bi = hk1(xi) i = 1, . . . , N − 1

The parametric form of fuzzy numbers g̃0 and g̃1 are as bellow:

g̃0 = (g
0
, g0) g̃1 = (g

1
, g1)

We obtain

ũ0,j+1 = Y −1[Z0(hk1(xN )− 2)− Z1hk0(xN )],

ũM,j+1 = Y −1[Z1(hk0(x0)− 2)− Z0hk1(x0)].
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Where,

Z0 = −2h

N−1∑
i=1

k0(xi)ũi,j+1 − 2g̃0,j+1 , Z1 = −2h

N−1∑
i=1

k1(xi)ũi,j+1 − 2g̃1,j+1,

and

Y = (hk0(x0)− 2)(hk1(xN )− 2)− h2k1(x0)k0(xN ) ̸= 0.

Equations (3.8) emply that:

Ũ i,j+1 = rŨ i−1,j + (1− 2r)Ũ i,j + rŨ i+1,j , i = 1, . . . , N − 1, j = 0, 1, . . . ,M

By this way, the approximate solution of fuzzy heat equation can be found.

4 Numerical Results

In this section, a numerical example is provided to describe how our method works. Let us consider
the following fuzzy heat equation:

∂Ũ

∂t
(x, t)− 1

8

∂2Ũ

∂x2
(x, t) = exp(t)[4x2 + t], 0 < x < 1, t > 0

with the following nonlocal boundary conditions

Ũ(0, t) =

∫ 1

0

xŨ(x, t)dx+
1

2
(t− 2) exp(t)

Ũ(1, t) =

∫ 1

0

xŨ(x, t)dx+
1

2
(t+ 6) exp(t)

and the initial condition Ũ(x, 0) = 4K̃x2, where, K̃[α] = [k(α), k(α)] = [α − 1, 1 − α]. It is easily
seen the exact solution for

∂U

∂t
(x, t;α)− 1

8

∂2U

∂x2
(x, t;α) = exp (t)[4x2 + t]− α

∂U

∂t
(x, t;α)− 1

8

∂2U

∂x2
(x, t;α) = exp (t)[4x2 + t] + α

is

U(x, t;α) = k(α) exp (t)[4x2 + t]

U(x, t;α) = k(α) exp (t)[4x2 + t]

The Tables (1) and (2) show the exact and approximate solutions with spatial step h=0.005 and
time step k=0.00001 at x=0.5 and t=0.05, respectively. The Housdroff distances between solutions
are shown in each table. We observe that our method is accurate for heat equation to four decimal
places. The numerical and exact solutions for this example in place x=0.5 and at time t=0.05 are
illustrated in Figs. (1) and (2), respectively.
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Fig. 1. Exact and computational

solution at time t = 0.05
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Fig. 2. Exact and computational

solution at position x = 0.5

Table 1. Error at t = 0.05 with
h = 0.005

x Exact Numerical Error

0.2 0.2208 0.2208 0.0000
0.4 0.7254 0.7254 0.0000
0.6 1.5664 1.5664 0.0000
0.8 2.7438 2.7438 0.0000
1.0 4.2576 4.2576 0.0000

Table 2. Error at x = 0.25 with
h = 0.005

t Exact Numerical Error

0.02 1.0406 1.0406 0.0000
0.04 1.0824 1.0824 0.0000
0.06 1.1255 1.1255 0.0000
0.08 1.1700 1.1700 0.0000
0.10 1.2157 1.2157 0.0000

5 Conclusions

Our purpose in this article is solving fuzzy partial differential equation (FPDE) including integral
terms. We presented an explicit method to solve this equation, and finally in the last section, we
given an example to consider the numerical results. We also compared the approximate solution
and exact solution by Hausdorf distance between them.
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