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Abstract

The postmerger gravitational wave (GW) emission from a binary neutron star merger is expected to provide
exciting new constraints on the dense-matter equation of state (EoS). Such constraints rely, by and large, on the
existence of quasi-universal relations, which relate the peak frequencies of the postmerger GW spectrum to
properties of the neutron star structure in a model-independent way. In this work, we report on violations of
existing quasi-universal relations between the peak spectral frequency, f2, and the stellar radius, for EoS models
with backwards-bending slopes in their mass–radius relations (such that the radius increases at high masses). The
violations are extreme, with variations in f2 of up to ∼600 Hz between EoSs that predict the same radius for a
1.4Me neutron star but that have significantly different radii at higher masses. Quasi-universality can be restored
by adding in a second parameter to the fitting formulae that depends on the slope of the mass–radius curve. We
further find strong evidence that quasi-universality is better maintained for the radii of very massive stars (with
masses 2Me). Both statements imply that f2 is mainly sensitive to the high-density EoS. Combined with
observations of the binary neutron star inspiral, these generalized quasi-universal relations can be used to
simultaneously infer the characteristic radius and slope of the neutron star mass–radius relation.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Gravitational waves (678)

1. Introduction

The advent of gravitational wave (GW) astronomy has opened
an exciting new era for constraining the equation of state (EoS)
of ultradense matter. Observations of the inspiral from the first
binary neutron star merger, GW170817 (Abbott et al. 2017),
have already provided strong constraints on the EoS (see, e.g.,
Baiotti 2019; Guerra Chaves & Hinderer 2019; Raithel 2019;
Chatziioannou 2020 for recent reviews), and it is expected that
future detections of postmerger GWs, which will become
possible with improved sensitivity of the detectors (e.g.,
Torres-Rivas et al. 2019), will offer further insight (Baiotti &
Rezzolla 2017; Paschalidis & Stergioulas 2017; Bauswein &
Stergioulas 2019; Bernuzzi 2020; Radice et al. 2020).

The postmerger GWs are emitted by oscillations of the hot,
rapidly rotating, massive neutron star remnant following the
merger. Numerical simulations have shown that the spectra of
these postmerger GWs display distinct peaks, which are driven
by various oscillation modes of the remnant and thus encode
information about its stellar structure. For example, the
dominant spectral peak, which we call f2 and which is present
in essentially all numerical simulations of the postmerger
phase, is powered by quadrupolar oscillations of the remnant
(e.g., Stergioulas et al. 2011; Takami et al. 2015; Rezzolla &
Takami 2016). Many studies have shown that this f2 spectral
peak correlates strongly with the characteristic radius, R, of the
neutron star EoS (e.g., Bauswein & Janka 2012; Bauswein
et al. 2012; Takami et al. 2014; Bernuzzi et al. 2015). In one
recent meta-analysis of over 100 numerical simulations,
Vretinaris et al. (2020) reported a latest set of quasi-universal

relations between f2 and the radius at various masses,
concluding that the correlation was strongest for the radius of a
1.6Me star. Such quasi-universal relations provide a straight-
forward way of mapping the postmerger GWs to the EoS,
either by direct comparison against X-ray measurements of the
neutron star radius (e.g., Özel & Freire 2016; Miller et al. 2021;
Riley et al. 2021) or by enfolding the R( f2) constraint into the
Bayesian inference schemes that have been developed to
constrain the EoS from mass/radius observations (e.g., Ozel
et al. 2016; Steiner et al. 2016; Raithel et al. 2017; Raaijmakers
et al. 2021). As such, these quasi-universal relations are a
powerful and important tool for accurately interpreting the
upcoming detections of postmerger GWs from a binary neutron
star coalescence.
In this Letter, we report on new violations of the quasi-

universal relations between f2 and R, using a diverse set of EoS
models that are systematically constructed to span a wide range
of slopes in their mass–radius -M R( ) relations. It has
previously been shown that the quasi-universal relations break
down for EoSs with a strong, first-order phase transition
(Bauswein et al. 2019), which leads to much smaller radii at
high neutron star masses. In this Letter, we generalize this
result and demonstrate that the standard quasi-universal
relations generically break down for EoSs that predict a
significantly nonvertical mass–radius slope. The violations are
the most extreme for models that predict increasing radii at
high masses (corresponding to a stiffening in the EoS at high
densities). We find strong evidence that the quasi-universal
relations need to be generalized to include the slope of the
mass–radius curve as an additional parameter. Alternatively,
quasi-universality can also be restored in our sample by
correlating f2 with the radius at higher masses than are typically
considered (M∼ 2Me).
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These findings imply that the postmerger GWs are mainly
sensitive to the EoS at high densities. Combined with
observations of the inspiral (which are governed by lower-
density physics), a complete GW event could thus constrain the
EoS across a potentially wide range of densities. In more
concrete terms, our findings suggest that a measurement of f2, if
supplemented with additional information from the inspiral,
can be used to constrain not only the characteristic radius of a
neutron star but also the slope of the mass–radius relation.

This Letter is laid out as follows. In Section 2 we provide an
overview of the microphysics and numerical methods used in
this work. In Section 3 we present the results of our numerical
simulations and provide a detailed analysis of the GW peak
frequencies. In Section 4 we discuss our findings in the context
of other observations of the neutron star radius.

2. Methods

In the following, we will provide a quick summary of the
EoS models and numerical methods employed in this work. For
10 of the 14 models considered in this work, we describe the
nuclear composition of the neutron stars using a finite-
temperature EoS framework laid out in Raithel et al. (2019)
(for additional details on our implementation, see Most &
Raithel 2021). In particular, the zero-temperature, β-equili-
brium pressure is constructed using a piecewise polytropic
parameterization with five segments (Ozel & Psaltis 2009;
Read et al. 2009; Steiner et al. 2010; Raithel et al. 2016). We
extrapolate this parametric, cold EoS to finite temperatures
using the M

*

model of Raithel et al. (2019), which includes the
leading-order effects of degeneracy in the thermal pressure. We
additionally extrapolate the EoS to arbitrary proton fractions
using an approximation of the nuclear symmetry energy
(Raithel et al. 2019). The low-density EoS (below 0.5 times
the nuclear saturation density) is taken to be the finite-
temperature SFHo EoS (Steiner et al. 2013),4 which we
smoothly connect to our high-density parameterization using
the free-energy matching procedure of Schneider et al. (2017)
to ensure that the resulting EoS is thermodynamically
consistent. In constructing these parametric EoSs, we use the
same M

*

parameters as in Most & Raithel (2021), namely,
n0 = 0.12 fm−3, α= 0.8, and γ= 0.6, which are consistent
with best-fit parameters for a range of commonly used
tabulated EoSs (Raithel et al. 2019). For additional details on
the construction of our EoSs, see Most & Raithel (2021).

In total we construct 10 EoSs for this study, 7 of which have
been presented before (Most & Raithel 2021). We show their
mass–radius relations in Figure 1, color-coded throughout this
work according to the parameter R1.4/R1.8, where Rx indicates
the radius of a neutron star of mass M= xMe. The three new
models constructed for this work correspond to the two blue
curves with R1.4= 13 km, as well as the darker blue curve with
R1.4= 10.8 km. We provide additional details on the three new
EoS models in Appendix A.

Different from previous works (e.g., Takami et al. 2014;
Vretinaris et al. 2020), our EoS sample spans a wide range of
slopes in the mass–radius relation, with multiple EoSs that
predict backwards-bending mass–radius slopes. In particular,
we construct families of EoSs that have an identical
characteristic radius R1.4, but that vary significantly in their
radii at higher masses. This allows us, for the first time, to

systematically investigate how the common set of quasi-
universal relations for the postmerger GW frequency f2 break
down when the sample of EoS is significantly broadened.
In addition to these parametrically constructed EoSs, we also

simulate four existing, finite-temperature EoS tables: the
nuclear EoS of Lattimer & Swesty (1991) with a bulk
incompressibility of 375MeV (“LS375”), the nuclear EoS
SLy4 (Schneider et al. 2017), the nuclear EoS TMA (Toki et al.
1995; Hempel & Schaffner-Bielich 2010), and the hyperonic
EoS BHBΛf (Banik et al. 2014). With this comprehensive EoS
sample, we can assess the validity of our findings for both
commonly used and newly constructed EoS tables.
In order to investigate the impact of the different mass–

radius slopes on the postmerger GW emission, we simulate the
coalescence of a GW170817-like event for each of the 14 EoSs
in our sample. For our baseline simulations, we consider a
moderate mass ratio of q = 0.85 for a system with a total mass
of M= 2.73Me. For a subset of models, we also perform
simulations with the same chirp mass, but with q= 1. For each
EoS, we construct numerical initial conditions of compact
binaries on quasi-circular orbits using the LORENE code
(Gourgoulhon et al. 2001). We then use the Frankfurt-/
IllinoisGRMHD (FIL) code (Etienne et al. 2015; Most
et al. 2019) to solve the coupled Einstein-hydrodynamics
system (Duez et al. 2005) using the Z4c formulation (Hilditch
et al. 2013). FIL operates on top of the Einstein Toolkit
infrastructure (Schnetter et al. 2004; Loffler et al. 2012). A
detailed description of the numerical setup can be found in
Most & Raithel (2021).

3. Results

In this section, we present the results of our numerical
simulations. We focus exclusively on the quasi-universal
behavior of the postmerger GW frequency spectrum. These
are computed as outlined in Appendix C of Most & Raithel
(2021). From these spectra, we identify f2 as the frequency
corresponding to the maximum power. We show f2 as a
function of the radius at various masses in Figure 2, for each of

Figure 1. Mass–radius relations for the EoSs simulated in this work. The solid
lines correspond to our parametric models, while the dashed lines represent
four commonly used finite-temperature EoS tables included in this work (in
order of increasing radius, these are SLy4, BHBΛf, TMA for the red curves,
and LS375 in blue). We color-code the curves according to R1.4/R1.8, where Rx

represents the radius of a star with mass M = xMe. The parametric EoS sample
(solid lines) is specifically constructed to sample a wide range of slopes in the
mass–radius relations.

4 The SFHo table was provided by stellarcollapse.org.

2

The Astrophysical Journal Letters, 933:L39 (8pp), 2022 July 10 Raithel & Most



the EoSs simulated in this work, as well as a previous set of
simulations from Most & Raithel (2021).

Figure 2 also shows, for reference, the quasi-universal
relations found in Vretinaris et al. (2020) between f2 and R1.4,
R1.6, and R1.8. Correlations with R2.0 were not studied in that
work. The dashed gray line shows the best-fit relations from
Vretinaris et al. (2020), while the dark and light gray bands
represent the mean and maximum residuals, respectively.
Overall, we find a similar inverse correlation between f2 and the
radius at any mass, but one that is much broader than reported
in Vretinaris et al. (2020). In particular, we find that a large
number of our models violate the existing quasi-universal
relations. For example, when considering the correlations with
R1.4 or R1.6 (top row of Figure 2), we find that five to six of the
models fall outside of the previous maximum-residual error
bands, and a majority fall outside of the mean-residual error
band of Vretinaris et al. (2020). This violation of the quasi-
universal relations is extreme, with f2 varying by up to
∼600 Hz for models with the same characteristic R1.4. The
scatter is largest for the correlation with R1.4, and decreases at
increasing masses. Only when correlating f2 as a function of
R1.8 do we find that most of our models fall within the previous
maximum error band. However, even in this case, many of the
EoSs populate the extreme lower edge of that error band.

In all three of these cases (R1.4, R1.6, andR1.8), we find a strong
trend between the degree to which the quasi-universal relations are
violated and the slope of the mass–radius curve, which is here
characterized by the ratio R1.4/R1.8 (for alternate definitions of the
slope, see the discussion in Appendix B). The models that most
strongly violate the existing quasi-universal relations are those with
R1.4/R1.8< 1, which corresponds to the EoSs with a backwards-
bending mass–radius relation in Figure 1. This phenomenological
M–R behavior is caused by a stiffening of the EoS at high
densities, such that more massive stars are characterized by steeper
pressure gradients and thus extend to larger radii. This type of
behavior is consistent with the predictions, for example, of the
emergence of a quarkyonic phase of matter (McLerran &
Reddy 2019). On the other hand, an EoS with significant softening
at high densities (caused, e.g., by a cross-over phase transition) is
characterized by a forward-tilting M–R relation, with decreasing
radii at high masses. In general, we find that models with
R1.4/R1.8< 1 (EoSs with significant stiffening at high densities)
lead to systematically lower values of f2, while models with
R1.4/R1.8> 1 (EoSs with significant softening) lead to larger f2.
Indeed, the red and blue points in Figure 2 appear to follow
separate quasi-universal relationships between f2 and Rx.
We note that the correlations for EoSs with forward-bending

M–R curves (red points) are still largely consistent with the

Figure 2. Peak frequency of the postmerger GW spectrum as a function of the neutron star radius at various masses. The color coding is the same as in Figure 1.
Diamonds represent results from the new simulations performed in this work, while circles correspond to results from Most & Raithel (2021). We note that the results
from the four microphysical EoS tables are included in all four panels but are only labeled in the bottom-right panel for clarity. Solid-filled symbols indicate a binary
mass ratio of q = 0.85, while the hatched symbols are for q = 1. The dotted gray lines correspond to the best-fit, quasi-universal relations reported in Vretinaris et al.
(2020), with mean and maximum residuals from that work shown in the dark and light gray bands, respectively. Finally, the blue and red lines correspond to our best-
fit, two-parameter quasi-universal relations (Equation (1b)), with varying values of R1.4/R1.8, while the purple line corresponds to the best-fit, single-parameter relation
for f2(R2.0). We find that models with R1.4/R1.8 < 1 (blue points) systematically violate the existing quasi-universal relations for stars of intermediate mass (top row)
and instead follow a separate relation between f2 and Rx.
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existing quasi-universal relations. In the limit of extreme
softening in the EoS (i.e., a first-order phase transition to a
stable hybrid star), Bauswein et al. (2019) have shown that the
f2 quasi-universal relations can also be broken and that this
feature can be used to infer the presence of a phase transition
from the postmerger GWs. The trend reported in that work is
the same as what we find in Figure 2—i.e., that EoSs with
softening tend to have larger f2—but our family of EoSs with
softening is less extreme (i.e., no first-order phase transitions)
and thus shows more modest violations in that direction.

We confirm that these trends between f2 and the mass–radius
slope are not very sensitive to the mass ratio of the binary by
performing a subset of the simulations at a second mass ratio of
q= 1. These points (which correspond to the three models with
R1.4= 12 km) are shown in Figure 2 with hatched shading. We
find small shifts in f2 depending on the mass ratio, as has also
been found in previous studies (e.g., Bernuzzi et al. 2015;
Rezzolla & Takami 2016), but that the overall trend with
R1.4/R1.8 is maintained.

In order to confirm that our results are robust to the
parametric construction of the EoSs, we perform one further
simulation with an approximate version of the TMA EoS,
where the finite-temperature and composition-dependent
dimensions of the EoS table have been replaced by the
complete M

*

framework using the TMA-specific parameters
listed in Raithel et al. (2019). The peak frequency extracted
with the parametric version of the EoS table is consistent with
the f2 obtained using the full table to within 20 Hz, thus
confirming that the parametric thermal treatment produces
reliable peak frequencies. A further comparison of
M

*

-parametric EoS to tabulated EoS in the context of merger
simulations is presented in Raithel et al. 2022.

In addition, we find that the three microphysical EoS tables,
SLy4, BHBΛf, and LS375, all support the trend we have
identified with the parametric EoSs. In particular, LS375 leads to
a smaller-than-expected f2, while SLy4 leads to a larger f2 than
predicted by the previous quasi-universal relations. Both of these
deviations are explained by the mass–radius slopes of these
EoSs. The peak frequency of BHBΛf, which predicts only a
small -M R slope, lies closer to the existing quasi-universal
relation, also as expected. The peak frequency for TMA (the
rightmost red diamond in Figure 2) is a modest outlier, which we
attribute to the changing curvature of its mass–radius slope. We
discuss this point further in Appendix B.

In order to quantify these trends with mass–radius slope, we fit
the results shown in Figure 2 to two different functional forms
using a standard, nonlinear, least-squares-fitting algorithm. The
first functional form is a single-parameter relation motivated by the
fits done in Vretinaris et al. (2020), which were quadratic in Rx
(where x represents an arbitrary stellar mass). We also consider a
two-parameter relation, which adds a linear correction term that
scales with R1.4/R1.8 in order to account for the trends observed in
Figure 2.5 The fitting functions are thus

= + +f R b b R b R 1ax x x2 0 1 2
2( ) ( )

= + + +f R
R

R
b b R b R b

R

R
, , 1bx x x2

1.4

1.8
0 1 2

2
3

1.4

1.8

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

where bi (iä [0, 3]) are the fit coefficients. We note that we do
not include the chirp mass as a free parameter (in contrast to
Vretinaris et al. 2020) because all simulations done in this work
are for a fixed = M1.186c . Thus, our fits can be viewed as
characterizing one slice of the f Rx c2 – – plane that was
identified in Vretinaris et al. (2020). The best-fit coefficients for
Equation (1) are reported in Table 1 for various choices of Rx.
To illustrate the performance of these fits, Figure 2 additionally
shows the best-fit, two-parameter relations for R1.4, R1.6, and
R1.8 with varying choices of the slope parameter (shown in the
light blue-to-red shading), as well as the best-fit, single-
parameter relation for R2.0 (in purple). Finally, Table 1 also
reports the adjusted coefficient of determination ( 2 ) for each
fit, the Bayesian Information Criterion (BIC),6 and the
maximum and mean residuals.

Table 1
Fit Coefficients for Equations (1a) and (1b)

Rx b0 b1 b2 b3 Adjusted 2 BIC Max resid (kHz) Mean resid (kHz)

R1.4 1.754 0.573 −0.039 L 0.680 3.5 0.43 0.17
R1.6 5.384 0.001 −0.017 L 0.793 −3.9 0.38 0.13
R1.8 11.379 −0.964 0.022 L 0.883 −13.5 0.29 0.10
R2.0 19.554 −2.328 0.078 L 0.932 −22.9 0.28 0.07
Rmax 21.740 −2.833 0.102 L 0.919 −19.9 0.22 0.09

R1.4 0.081 −0.592 0.007 8.900 0.927 −20.2 0.21 0.08
R1.6 5.403 −1.083 0.027 6.544 0.923 −19.3 0.21 0.08
R1.8 12.179 −1.821 0.057 4.287 0.933 −21.7 0.20 0.07
R2.0 19.455 −2.459 0.083 0.837 0.929 −20.6 0.30 0.07
Rmax 21.421 −2.871 0.104 0.504 0.913 −17.2 0.23 0.08

Note. All coefficients assume radii in kilometers and f2 in kilohertz. The four rightmost columns contain the adjusted coefficient of determination ( 2 ), the BIC, the
maximum residual, and the mean residual for each fit. In this table, Rx indicates the radius of a neutron star with mass M = xMe, while Rmax indicates the radius
corresponding to the maximum mass configuration.

5 We point out that to linear order,

» -
= 

R

R R

dR

dM
1

2

5
.

M M

1.4

1.8 1.8 1.8

Hence, a linear correction in R

R
1.4

1.8
is equivalent to a linear correction in the slope

M

R

d

d
, with an adjusted set of fit coefficients. We report the corresponding fits for

alternate definitions of the slope parameter in Appendix B.
6 In order to be as conservative as possible, we use the BIC rather than other
criteria such as the Akaike Information Criterion, as the BIC more strongly
penalizes the addition of free parameters to the model. We compute the BIC
under the assumption that the errors in f2 are independent, identical, and
Gaussian. When comparing two models, ΔBIC > 5 indicates “strong”
evidence and ΔBIC > 10 indicates “decisive” evidence in favor of the model
with a more negative BIC, according to the Jeffreys scale (Jeffreys 1961;
Liddle 2007).
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We turn first to the results of the single-parameter fits. The
strength of the correlation between f2 and Rx increases
significantly as we consider larger masses x, as expected based
on the scatter seen in Figure 2. For example, the adjusted 2
for the single-parameter fit to R1.4 is only 0.68, but it increases
to 0.93 for R2.0. TheΔBIC also shows strong evidence for each
subsequently larger mass compared to the previous (e.g., R1.8 is
favored over R1.6, etc.). The correlation is strongest for R2.0. If
we correlate instead with the radius corresponding to the
maximum mass (as in, e.g., Bauswein & Janka 2012), the
adjusted 2 decreases and the correlation is disfavored,
compared to R2.0.

When comparing the results of Equations (1a) and (1b) with
our sample of EoSs, we find strong evidence in favor of adding
this second parameter to the existing quasi-universal relations.
For example, when comparing the evidence for a single-
parameter fit with R1.4 to the two-parameter fit with R1.4/R1.8,
we find ΔBIC≈ 24, indicating decisive evidence for the latter
model. The results are similar for Rx= R1.6 (“decisive”
evidence with ΔBIC = 15) and R1.8 (“strong” evidence with
ΔBIC = 8). For the case of Rx= R2.0, the correlation with the
single-parameter fitting formula is already quite strong, and we
do not find statistical evidence to justify the addition of a
second parameter.

To summarize, we find that the existing, single-parameter
quasi-universal relations all break down for EoSs with
significant stiffening at high densities, i.e., with backwards-
bending mass–radius relations. We find that for R1.4, R1.6, and
R1.8, the existing single-parameter relations are all significantly
improved with the addition of a second parameter, which
incorporates information about the M–R slope. Indeed, by
expanding the functional forms to include a second parameter
(R1.4/R1.8), we are able to recover quasi-universality, as
evidenced by coefficients of determination near unity. Alter-
natively, we are also able to better maintain quasi-universality
for the correlation between f2 and a single radius at sufficiently
high masses, here for R2.0. The fact that quasi-universality is
recovered for radii at very high masses strongly suggests that f2
depends on the EoS at high densities. In addition, the slope of
the M–R relation has been shown to correlate with the pressure
at∼3.7ρsat (Ozel & Psaltis 2009), where ρsat≈ 2.7× 1014 g/cm3

is the nuclear saturation density. Thus, by adding a slope-
dependent parameter to the fitting function for Rx at low masses,
we are effectively adding in information about the high-density
EoS, which also helps to restore the quasi-universality.

We note that for EoSs that predict mass–radius curves with
significant curvature in their slopes, such as TMA, the choice
of where to define a mass–radius slope is not always obvious.
In this work, we use a definition of the slope that leads to the
best goodness-of-fit statistics. We discuss alternate definitions
of the slope and their (negligible) impact on our conclusions in
Appendix B.

4. Discussion and Conclusions

In this Letter, we have shown that the existing family of
single-parameter, quasi-universal relations is insufficient to
reliably infer the radius of an intermediate-mass neutron star
from postmerger GW frequencies alone. EoSs that produce
backwards-bending mass–radius curves lead to systematically
lower values of the postmerger peak frequencies f2. As a result,
we show that such EoSs violate existing quasi-universal
relations proposed to infer neutron star radii, e.g., R1.4, R1.6, or

R1.8, from the postmerger frequency f2. Moreover, we find that
the EoSs that violate the existing relations form their own,
separate quasi-universality class, which can be used to relate f2
to neutron star radii for a fixed mass–radius slope (see
Figure 2). This observation motivates the extension of existing
quasi-universal relations to incorporate a second parameter,
related to the slope of the mass–radius curve. For the sample of
EoSs explored in this Letter, we find strong statistical evidence
in favor of the two-parameter, quasi-universal relations,
compared to models that do not incorporate information about
the mass–radius slope.
Interestingly, we find that single-parameter quasi-univers-

ality can be better maintained when considering massive
neutron stars M; 2Me. Intuitively, this is consistent with the
fact that the postmerger remnant itself is a massive neutron star
and thus probes higher densities than are present in the inspiral.
Hence, we might reasonably expect that the peak frequencies of
the postmerger GWs should correlate more strongly with
parameters of the high-density EoS (this is also consistent with
our findings in Most & Raithel 2021).
The better universality of the f2–R2.0 relation is of particular

interest, given the recent NICER observations of the∼2Me
neutron star PSR J0740+6620, for which two recent radius
inferences have been performed (Miller et al. 2021; Riley et al.
2021). Based on our findings, we expect that a future
measurement of f2 will be be able to provide robust and
independent constraints on the radius of this pulsar.
If such a measurement of R2.0( f2) can be supplemented with

constraints on R1.4 from the inspiral measurement of the tidal
deformability (see, e.g., Baiotti 2019; Raithel 2019; Chat-
ziioannou 2020), then a sufficiently sensitive merger event—
observed from inspiral through postmerger—could effectively
be used to the trace out the entire mass–radius relation to linear
order.
Alternatively, it may also be possible to reconstruct the linearized

mass–radius curve by utilizing the so-called binary Love relations
of Yagi & Yunes (2016). These relations relate symmetric,
l l l= +s

1

2 1 2¯ ( ¯ ¯ ), and antisymmetric, l l l= -a
1

2 1 2¯ ( ¯ ¯ ), combi-
nations of the mass-normalized tidal deformabilities l1,2¯ of the
inspiraling neutron stars in an EoS-insensitive way (Yagi &
Yunes 2016). In a recent work, Tan et al. (2021) showed that these
relations, previously thought to be fully universal, also receive an
effective correction that is linearly proportional to the slope of the
mass–radius curve. We illustrate this behavior in Figure 3, where
we show the l l-a s¯ ¯ correlation for the EoS and binary
parameters used in this work. We can clearly see that, in line
with Tan et al. (2021), there is a range of slopes separating EoSs
with backwards- and forwards-bending mass–radius curves.
Because the binary-Love relation also depends on the neutron star
radius and mass–radius slope, but with a different dependence than
our two-parameter, quasi-universal relations for f2, combined
detections of inspiral and postmerger should enable a reconstruction
of the linearized mass–radius curve.
While our findings constitute strong evidence for the

existence of a two-parameter, quasi-universal relation for
f2(Rx, R1.4/R1.8) in our sample, future work will be necessary
to further quantify this new dependency on the mass–radius
slope. In particular, this will require a systematic investigation
of an even larger number of EoSs with varying and nonlinear
mass–radius slopes, and simulations of a wide class of binary
masses and mass ratios. We leave such detailed explorations to
future work.
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Appendix A
New Piecewise Polytropic EoS Models Studied in this Work

In this appendix, we provide additional details on the new
piecewise polytropic EoSs constructed for this work. As

described in Section 2, 7 of the 10 piecewise polytropic EoSs
studied in this work were previously presented in Most &
Raithel (2021), and we refer the reader to that paper for details
on those models. We show the three new models, which were
constructed specifically for this study, in Figure 4. These
models correspond to some of the most extreme backwards-
bending mass–radius relations from Figure 1. As can be seen in
Figure 4, the backwards-bending phenomenology is produced
by a stiffening of the EoS at intermediate densities.
As was the case for the original sample of seven EoSs

constructed in Most & Raithel (2021), these three new models
are subject to several physical constraints. In particular, we
require that each of these EoSs remain causal and thermo-
dynamically stable and that the maximum mass of each EoS is
at least 2Me, in order to be consistent with the observation of
massive pulsars (Demorest et al. 2010; Antoniadis et al. 2013;
Fonseca et al. 2016; Cromartie et al. 2019). In addition, we
impose a lower limit on the pressure at our first fiducial density
P(0.86 ρsat) 1.7× 1033 dyn/cm2, which is set by the two-
body potential of Argonne AV8 (Gandolfi et al. 2014).
The radii and tidal deformabilities of these EoS models are

presented in Table 2. In addition, Table 2 also reports the
piecewise polytropic parameters that describe each EoS. We
note that all of the phenomenological EoS models used in this
work comprise five piecewise polytropic segments, which are
spaced log-uniformly in the density. The fixed dividing
densities are located at [0.86, 1.47, 2.52, 4.32, and
7.4]× ρsat, where ρsat= 2.7× 1014 g/cm−3 is the nuclear
saturation density. As described in Section 2, the EoS is fixed at
densities below 0.5ρsat to SFHo. We list this anchoring pressure
as well in Table 2 for convenience. For details on constructing
piecewise polytropic EoSs using these parameters, see, e.g.,
Read et al. (2009), Ozel & Psaltis (2009), and Raithel et al.
(2016).

Figure 3. Binary Love relations for the symmetric ls¯ and antisymmetric, la¯
tidal deformabilities of the coalescing binary with mass ratio q = 0.85
considered in this work. Different curves correspond to the various equation of
state models used, with color indicating the slope of the mass–radius curve in
terms of the ratio R1.4/R1.8, where Rx denotes the radius of a neutron star with
mass M = x Me.

Figure 4. Pressure as a function of density for the three piecewise polytropic
EoSs newly constructed in this work. The density, ρ, is plotted with respect to
the nuclear saturation density, ρsat = 2.7 × 1014 g/cm−3. The labels are
arbitrarily assigned, for reference in Table 2.
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Appendix B
Alternate Definitions of the Mass–Radius Slope

In this Letter, we have shown that the existing family of
single-parameter, quasi-universal relations between f2 and the
neutron star radius break down for EoSs that predict
nonvertical slopes in their mass–radius relations, but that
universality may be restored by adding in a second parameter
that depends on the slope. In this appendix, we confirm that this
conclusion is robust to different definitions of the slope,
including the value of ∂R/∂M evaluated at either 1.2, 1.4, or
1.6Me. We report the statistics for these fits in Table 3.

In particular, for each of these alternate definitions of the
slope, there is still strong evidence in favor of adding a second
parameter to the relationship between f2 and R1.4,R1.6, or R1.8

(ΔBIC 5, compared to the monoparametric fits reported in
Table 1). As was found in the main text, for each these
definitions, the evidence favoring a second parameter again
decreases as f2 is correlated with radii at increasingly large
masses, such that for f2(R2.0), there is no significant evidence in
favor of adding a second parameter. This confirms that the
conclusions of the main Letter do not change depending on
where the slope is defined.

However, in spite of these qualitatively consistent trends, the
goodness of fit does change slightly depending on the
definition of the slope parameter. For example, in the fit for
f2(R1.4, R1.4/R1.8) reported in the main text, the adjusted 2 was
0.927. For f2(R1.4, ∂R/∂M), the adjusted 2 value is reduced,
ranging from 0.85 to 0.91, depending on the mass at which the
slope is evaluated.
We find that the sensitivity to the definition of the mass–radius

slope comes primarily from a subset of models, as can be seen in
Figure 5. Figure 5 shows the same set of EoSs from Figure 1 but
now color-coded by a local (or instantaneous) slope. The models
have been divided into three panels for visual clarity, with
forwards-tilting MR curves in the left panel, backwards-bending
models in the middle panel, and models with varying mass–
radius slope in the right panel. While the majority of curves can
be well represented by a single slope parameter across the mass
range of interest, a subset of models (grouped in the right panel
of Figure 5) show some degree of curvature in their mass–radius
relations. These include the finite-temperature EoSs BHBΛf and
TMA, as well as two of the parametric models. As a result, the
goodness of fit for the quasi-universal relation relating f2 to a
characteristic radius and the mass–radius slope can be sensitive
to where, precisely, the slope is defined.

Table 2
Parameters Describing the Three New Piecewise, Polytropic EoSs Considered in This Work

Model R1.4 (km) Λ1.4 P(0.5ρsat) P(0.86ρsat) P(1.47ρsat) P(2.52ρsat) P(4.32ρsat) P(7.4ρsat)

A 10.8 216 8.88 × 1032 1.80 × 1033 4.00 × 1033 4.10 × 1034 5.20 × 1035 1.60 × 1036

B 13.0 608 8.88 × 1032 4.00 × 1033 1.55 × 1034 1.10 × 1035 4.00 × 1035 1.00 × 1036

C 13.0 665 8.88 × 1032 3.10 × 1033 1.43 × 1034 1.80 × 1035 3.00 × 1035 6.00 × 1035

Note. The first column gives the model labels from Figure 4. The second and third columns report the radius and tidal deformability of a 1.4 Me neutron star,
respectively. The remaining columns report the pressures at each fiducial density in the piecewise polytropic model. All pressures are given in units of dyn/cm2.

Table 3
Fit Coefficients for Equation (1b) for Alternate Definitions of the Mass–Radius Slope

Slope Rx b0 b1 b2 b3 Adjusted 2 BIC Max resid (kHz) Mean resid (kHz)

R1.4 0.081 −0.592 0.007 8.900 0.927 −20.2 0.21 0.08
R1.6 5.403 −1.083 0.027 6.544 0.923 −19.3 0.21 0.08

R1.4/R1.8 R1.8 12.179 −1.821 0.057 4.287 0.933 −21.7 0.20 0.07
R2.0 19.455 −2.459 0.083 0.837 0.929 −20.6 0.30 0.07
Rmax 21.421 −2.871 0.104 0.504 0.913 −17.2 0.23 0.08

R1.4 16.073 −1.780 0.057 −0.204 0.848 −7.7 0.44 0.10
R1.6 16.180 −1.792 0.057 −0.148 0.874 −10.9 0.39 0.09

¶
¶

R

M 1.2
R1.8 18.674 −2.191 0.073 −0.102 0.918 −18.1 0.28 0.08

R2.0 22.530 −2.848 0.100 −0.066 0.946 −25.2 0.27 0.06
Rmax 23.182 −3.112 0.116 −0.070 0.937 −22.7 0.21 0.07

R1.4 10.058 −0.790 0.016 −0.244 0.880 −11.7 0.34 0.09
R1.6 12.202 −1.139 0.030 −0.177 0.889 −13.0 0.33 0.09

¶
¶

R

M 1.4
R1.8 16.467 −1.828 0.058 −0.118 0.919 −18.4 0.25 0.08

R2.0 21.120 −2.606 0.090 −0.049 0.934 −21.8 0.29 0.06
Rmax 22.746 −3.030 0.112 −0.057 0.923 −19.3 0.24 0.08

R1.4 7.552 −0.365 -0.002 −0.283 0.910 −16.6 0.23 0.08
R1.6 11.070 −0.944 0.022 −0.206 0.910 −16.6 0.25 0.08

¶
¶

R

M 1.6
R1.8 16.052 −1.755 0.055 −0.133 0.925 −19.7 0.20 0.07

R2.0 20.285 −2.457 0.083 −0.025 0.928 −20.4 0.30 0.07
Rmax 21.976 −2.880 0.105 −0.017 0.913 −17.2 0.23 0.08

Note. The formatting is otherwise identical to Table 1. The results with the slope parameter R1.4/R1.8 are repeated for reference.
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In summary, we find that the main conclusions of this Letter
are robust to these alternate definitions of the slope. However,
for broader families of EoSs, it may be necessary to revisit this
definition or even to include additional correction terms to the
quasi-universal relations that describe the shape of the mass–
radius relation beyond linear order. Understanding this
dependence will require additional simulations, spanning a
wide range of both linear and curved mass–radius relations,
which expands the dimensionality of the problem significantly.
We leave such an investigation to a future study.
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