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ABSTRACT 
 

Regression analysis plays indispensable role in QSAR/QSPR, chemical Engineering, science & 
technology and research projects. Best fit regression models are constantly a challenge to the 
researchers, efforts are taken to minimize the error components so that the predictability and 
efficiency of models increase. Presence of high error component eventually upset the future 
research and forecasting of the facts. In this paper a technique is introduced that reduces the error 
component and improves the predictability and efficiency of the model.  
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1. INTRODUCTION   
 
Regression analysis plays important role in 
engineering fields, science & technology and 
other related fields. Many methods are used to fit 
the best models [1,2]. In case of linear regression 

models, Ordinary Least Square (OLS), 
Orthogonal Regression (OR) and Geometric   
Mean Regression (GMR) methods are   
extensively used and have seen a fair share of 
its applications in Aerosol sciences [3]; geology 
[4]; dietary assessment [5]; bioinformatics [6]; 

Original Research Article 



 
 
 
 

Bhat; JERR, 4(1): 1-5, 2019; Article no.JERR.46138 
 
 

 
2 
 

social science [7] and physics [3]. OLS method 
assumes that errors are confined to the 
dependent variable, while as OR is on the 
standard linear regression method to correct for 
the effects of measurement error in predictor. 
Different types of orthogonal regression models 
are available depends on different assumptions 
[8,9]. The method of OR has a long and 
distinguished history in statistics and economics. 
The method, which involves minimizing the 
perpendicular distance between the observations 
and the fitted line, has been viewed as superior 
to OLS in two different contexts. Firstly, the 
independent and dependent variables in a two-
variable linear regression cannot be pre-
determined because of the minimizing of 
perpendicular distance do not depend on a 
specific axis [10-12]. Secondly, when used, there 
are errors in the independent variables called the 
errors-invariables mode [13]. In the present study 
an internal linear combination method is 
introduced that increases the efficiency of the 
model by reducing the sum of square error (SSE) 
and improves R2.   
 

2. METHODS 
 
Let us assume the two variable regression model 
 

Y + ɛy = a + b(X + ɛx) + µ 
 
Here ɛy and  ɛx are measurement errors of Y and 
X both with mean zero, ‘a’ is the intercept, ‘b’ is 
the slope and ‘µ’ is the equation error with zero 
mean. 
 
Introduce a internal linear combination of the 
variables i,e 
 

Let P = {(Xi + Xi+1)/2} and Q = {(Yi + Yi+1)/2} 
 
This relationship reduced the error sum of square 
and improves the efficiency of the model. 
 

2.1 Theorem  
 
If (X,Y) is bi-variate data set and V(X), V(Y), rxy 
are the variances and correlation coefficient of X 
and Y then for the linear combination P = {(Xi + 
Xi+1)/2}and Q = {(Yi + Yi+1)/2} ,V(P) ≤ V(X), V(Q) ≤ 
V(Y) and rpq ≥  rxy. 
 

2.2 Proof 
 
Let (X,Y) is a bi-variate data set having ‘n’ 
observations.  

Let, 
 

 P = {(Xi + Xi+1)/2} and Q = {(Yi + Yi+1)/2} 
be the two varaites with ‘m’ number 
of observations (m < n).  

E(P) = E{(Xi + Xi+1)/2} 
E(P)  = (n/m)E(X) – (1/2m)(X1 +Xn) 
V(P)  = E(P2) – {E(P)}2 
V(P)   = (n/2m)V(X) + (n/2m) E(X

2
) – (1/4m)            

(X1
2 +Xn

2) + (1/2m){ ∑ ����� } – 
{E(P)}2 

 

Now, 
 

Cov(P,Q)   = E(PQ) – {E(P)}{E(Q)} 
Cov(P,Q)   = (n/2m) Cov (X,Y) + (n/2m) 

E(X)E(Y) – (1/4m)( X1Y1 +XnYn
 ) 

+ (1/4m)  
 

                     {∑ (���� + ����)� } – {E(P)E(Q)} 
 

2.3 Special Case 
 
If, 

Xi              = Yi          = k (any constant value) 
E(P)          = E(Q)   =  k and  
V(P)          = (n/2m)V(X) 
V(Q)          = (n/2m)V(X) 
COV(P,Q) = (n/2m) Cov (X,Y) 

 
The factor (n/2m) is always less than one.  
 

Hence, V(P)  ≤ V(X),  V(Q) ≤ V(Y) and   
 

Correlation Co-efficient (P,Q)  (rpq) ≥  correlation 
Co-efficient (X,Y) (rxy). 
 
Using this linear combination, the co-efficient of 
correlation is improved, consequently reduces 
the error sum of squares and increase R2. An 
ideal quantitative structure – property or structure 
– activity relationship and test the three different 
models least square (LS) orthogonal regression 
(OR1 and OR2). Here ‘X’ is a descriptor (a 
connectivity χ index) and ‘Y’ is a property or 
activity (P) [9].  
 
Now apply the above internal linear combination 
(Table 2), P = {(Xi + Xi+1)/2} and Q = {(Yi + 
Yi+1)/2}the original data is changed and the new 
set of data is formed then use same models, the 
regression equations are depicted in Table 3. 
 
The graphical representation of the predicted 
values before and after the method is in (Fig. 3a, 
b), it clearly shows a good difference, the 
predicted values after applying the methods are 
more consistent than the previous one.   
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Series 1

f(x)=0.4760x-0.6050

f(x)=0.4905x-0.7825

f(x)=0.5129x-1.0563
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Fig. 1. Original data and the three regression lines by using three models (LS, OR1 and OR2) 
 

Series 1

f(x)=0.4513043x-0.399455

f(x)=0.4589537x-0.4926831

f(x)=0.4731x-0.66
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Fig. 2. Original data and the three regression lines by using three models (LS, OR1 and OR2) 
after applying the new method 
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(a)      (b) 

 
Fig. 3. (a) Predicted values before (b) Predicted values after 

 

Table 1. Experimental data 
 

X 0.86 1.57 2.53 4.32 6.13 7.42 9.19 10.47 12.65 
Yexp 0.22 0.82 1.22 1.24 3.96 2.49 4.38 2.90 3.40 

 
X 13.25 15.43 15.96 16.25 18.24 18.53 20.07 21.97 25.56 
Yexp 6.46 7.85 4.80 6.53 6.42 6.43 10.35 10.15 14.41 

 

Table 2. Regression lines 
 

Method Regression equation (I) SSR R
2
 

LS Ycal =0.4760X – 0.6050 33.66355 86.14 
OR1 Ycal = 0.4905X – 0.7825 33.85659 86.06 
OR2 Ycal =0.5129X – 1.0563 34.91823 85.628 

 

Table 3. Regression lines after applying method 
 

Method Regression equation(II) SSR R
2
 

LS Ycal =0.4513043X – 0.399455 33.54431 86.194 
OR1 Ycal= 0.4589537X – 0.4926821 33.62053 86.16 
OR2 Ycal =0.4731X – 0.66 33.82074 86.08 

 

3. CONCLUSION 
 

In this paper a technique is used to minimize the 
error components in the model so that the 
predictability and efficiency of models increase. 
The technique used here is named as internal 
linear combination technique in which every 
average pair is consider the new data for the 
model. The theorem provides the complete proof 
for the reduction of error in regression model by 
applying this average method. These techniques 
can be used in chemical engineering and every 
field of science and technology where regression 
models are used. 
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