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Abstract: This paper synthesizes a continuous, multivariable, finite-time-convergent, super-twisting
attitude and rate controller for rotorcraft with the objective of providing desired handling qualities and
robustness characteristics. A sliding manifold is defined in the system state space to represent ideal
attitude and rate command response dynamics of relative degree one with respect to the command
input. Subsequently, robust command tracking is achieved via the synthesis of a multivariable
super-twisting flight controller, which renders the plant states convergent on to the defined sliding
manifold in finite-time and in the presence of matched external disturbance input. To validate the
efficacy of the controller, simulation results are presented based on a nonlinear, higher-order rotorcraft
model operating in turbulence. True system convergence to the sliding manifold from an untrimmed
state is shown to lie within the theoretically predicted finite-time convergence bound. Furthermore,
simulations with a linear quadratic flight controller are also presented for performance comparison
with the proposed super-twisting flight controller.

Keywords: flight control; robust control; handling qualities; sliding-mode control

1. Introduction

There is renewed interest in both manned and unmanned rotorcraft. Advances in
electric/hybrid propulsion have led to a surge of new vertical take-off and landing (VTOL)
prototypes aimed at commercial passenger operations. The diversity among eVTOL aircraft
configurations is noteworthy, with designs ranging from vectored thrust to fixed multi-
copters, along with single person configurations such as hover bikes and personal flying
devices (See evtol.news/aircraft (accessed on 27 October 2021) for an exhaustive list and
References [1,2]). Likewise, unmanned rotorcraft are increasingly used in aerial logistics
and allied missions (See recent statistics for unmanned aircraft systems in the United States:
www.faa.gov/uas/resources/by_the_numbers/ (accessed on 27 October 2021)).In the con-
text of military missions, future high-speed VTOL aircraft are expected to impose new flight
dynamic response requirements in the high-speed regime [3], representing a significant
evolution and departure from conventional helicopter handling qualities requirements [4].
However, design complexities in conventional and unconventional rotorcraft continue to
pose challenges, namely several degrees of freedom, higher-order dynamics, instability,
complex aerodynamics, and the difficulty to fully characterize the entire spectrum of flight
dynamic responses (see References [5,6] for a detailed discussion on the modeling and con-
trol challenges of conventional helicopters). As a result, flight dynamic models employed
for controller synthesis in both conventional and unconventional configurations inherently
include varying levels of uncertainty that cannot be fully characterized. These challenges
will have to be overcome through innovative solutions to simplify piloting tasks and enable
safe autonomous flight.

A robust controller capable of assuring specified performance under endogenous
and exogenous uncertainty is likely to be an indispensable building block on which sim-
plified manned missions and autonomous unmanned missions will hinge. For instance,
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References [1,2] reported in their experiments that very few “flight-naïve” test subjects
they examined could safely translate an unaugmented VTOL personal aerial vehicle; only
about half of them could use an attitude and rate command system, while a majority of
them required a translational rate command system. Likewise, Reference [7] showed that
inexperienced pilots could only fly a conventional helicopter when it was augmented via
their H∞ and µ controllers to offer translational rate command responses. Reference [8]
showed the ability of a robust sliding mode flight controller to alleviate pilot workload for
a shipboard landing task.

On the unmanned front, Reference [9] showed how a nonsingular terminal sliding
mode controller and a disturbance observer could permit shipboard recovery of a small
unmanned helicopter. Reference [10] flight-tested various unmanned rotorcraft maneuvers
such as sling load and collision avoidance under atmospheric disturbance using a robust
model predictive control scheme. Reference [11] gives a detailed survey of various control
architectures developed for small unmanned helicopters, including robust control based.

Sliding mode control (SMC) is a promising robust control technique that can assure
uniform, lower-order flight dynamic responses under uncertainty. SMC allows the de-
signer to choose a sliding manifold representing reduced-order dynamics in the system’s
state space. Conventional SMC techniques utilize a high frequency (theoretically infinite
frequency) switching control action to force the system states to converge on the sliding
manifold in finite time. Upon convergence, the same SMC control action continues to keep
the system states on the sliding manifold by compensating for any matched uncertainty
affecting the system [12]. However, such a controller becomes impractical to implement
since theoretically infinite switching frequency is impossible to achieve by mechanical
actuators. Applying finite switching control or the presence of unmodeled dynamics
induces oscillations and limit-cycle behavior in the closed-loop system responses. This
phenomenon is called as the “chattering effect” in the literature. Early approaches to
alleviate chattering have adopted a continuous control approximation using the boundary
layer concept, wherein a linear control approximation to the nonlinear switching control
is applied inside a sufficiently small boundary about the sliding manifold, whereas the
nonlinear switching control is applied outside of this boundary. Such a pseudo-SMC
approach, however, degrades the desirable robustness properties of the original SMC,
since the linear approximation inside the boundary layer is no longer completely robust to
uncertainties [13]. Pseudo-sliding mode controllers based on the boundary layer concept
have been developed and studied for rotorcraft flight control applications with good results
in References [8,14–18].

Chattering alleviation by means of second order sliding mode (SOSM) controllers is
an area of active research. The SOSM approach offers a continuous control signal (instead
of a discontinuous one) without compromising the robustness properties of SMC [19]. One
of the first SOSM helicopter flight controllers in Reference [20] showed robustness to both
matched and unmatched perturbations. However, its design assumed input decoupling
in an essentially highly-coupled, multi-input, multi-output plant, and it necessitated an
observer to estimate the sliding variable derivative. A special case of SOSM is the super-
twisting algorithm (STA) for systems of relative degree one [21]. Not only does STA obviate
the need to estimate the sliding variable derivative but it also attenuates chattering, since
the switching action appears under an integral. Recent results have extended the scalar
super-twisting structure to a multivariable structure suitable for multi-input, multi-output,
coupled systems [22,23], along with theoretical convergence time estimates [23].

On this background, the intent and contributions of this paper can be summarized as
follows:

1. A multivariable, finite-time-convergent, super-twisting flight controller (STFC) based
on [23] is synthesized for a helicopter attitude and rate command system. Its multi-
variable structure respects plant cross-coupling and ensures an identical convergence
time for all sliding variables. Unlike References [9,20], estimation of neither the sliding
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variable derivative nor the exogenous disturbance input is needed, thus offering a
simpler yet equally robust controller.

2. The STFC’s efficacy, chattering alleviation, and finite-time convergence are demon-
strated on a nonlinear, higher-order helicopter plant model in atmospheric turbulence.
To our best knowledge, this constitutes the first SOSM controller validation on a
nonlinear helicopter plant, since Reference [20] used a lower-order, linear plant. Per-
formance comparisons are also presented between the STFC and a linear quadratic
flight controller, the latter synthesized along the lines of Reference [24].

2. Model Description

The plant is a nonlinear flight mechanics simulation model of the BO-105 helicopter,
which is a two-ton, multipurpose, twin-engine helicopter with a hingeless main rotor
and a tail rotor. The model computes cumulative forces and moments produced by the
individual structural components – main rotor, tail rotor, fuselage, and empennage—using
nonlinear aerodynamic coefficients and wind tunnel data. Specifically, the main and
tail rotor dynamics are based on the blade element momentum theory with rigid blade
assumptions and analytical inflow models to simulate the zeroth and first harmonics of the
blade flap, lead-lag, and torsion modes. Further details on the simulation model are given
in References [25,26] and omitted here for brevity. Plant linearization about steady-state
trim conditions yields a six degree-of-freedom (6DOF), 8th order model for controller
synthesis:

ẋ(t) = Ax(t) + Bu(t) + f(u,t), y(t) = Cx(t), (1)

where x ≡ [φ θ u v w p q r]> ∈ R8 represents change from trim states of Euler roll and pitch
attitudes, longitudinal and lateral speeds, heave rate, roll, pitch, and yaw rates, respectively.
u ≡

[
Dθ Dα Dβ Dδ

]> ∈ R4 represents three main rotor control inputs (collective, lateral
cyclic, longitudinal cyclic), and one tail rotor control input. A ∈ R8×8 and B ∈ R8×4 are the
state and control matrices; the pair (A, B) is controllable; and B has full column rank. For the
purpose of controller synthesis, full state feedback is used. y ≡ [φ θ w r]> ∈ R4 is a subset
of the state vector that must robustly track a command signal r ≡ [φc θc wc rc]

> ∈ R4.
Figure 1 compares the state responses produced by the nonlinear model (shown in

solid lines) and the 8th order state space model of Equation (1) (shown in dashed lines)
for a −5% lateral cyclic step input. Note that these dynamic responses do not contain
any external disturbance. While the 8th order model generally gives a good match for the
evolution of the rigid-body states, it fails to capture the transient effects caused by the rotor
dynamics, as seen in the roll rate response (p).

Remark 1. The model (1) is a quasi-steady lower-order representation of the true plant in that it
subsumes the steady-state effects of the higher frequency rotor dynamics.

Assumption 1. The plant’s internal dynamics i.e., the rotor modes are stable.

Figure 2 plots the open-loop eigenvalues of a 12DOF, 20th order model that is lin-
earized in a similar fashion as (1) but with six additional degrees of freedom–three rotor
flap and three rotor lead-lag. Except one unstable longitudinal mode (phugoid), all other
fuselage modes are stable. Among the higher-frequency rotor modes, the lead-lag modes
are lowly damped but stable, while the flap modes are well damped. This also validates
Assumption 1. Note that the 6DOF model (1) will be used for control design, since both
direct rotor state measurements as well as accurate estimation of the rotor dynamics in the
fuselage are a challenge in practice.
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Figure 1. Comparison of state responses to a−5% lateral cyclic step input in hover (—8th order linear
state space Equation (1), —nonlinear model).

Version December 18, 2021 submitted to Aerospace 4 of 17

0 1 2 3 4 5
t(s)

0

1

2

u(
m

/
s)

0 1 2 3 4 5
t(s)

−6

−3

0

v(
m

/
s)

0 1 2 3 4 5
t(s)

−2

−1

0

w
(m

/
s)

0 1 2 3 4 5
t(s)

−8

−4

0

p(
◦ /

s)

0 1 2 3 4 5
t(s)

−8

−4

0

q(
◦ /

s)

0 1 2 3 4 5
t(s)

−6

−3

0

r(
◦ /

s)

0 1 2 3 4 5
t(s)

−20

−10

0

φ
(◦
)

0 1 2 3 4 5
t(s)

−10

−5

0

θ(
◦ )

Figure 1. Comparison of state responses to a −5 % lateral cyclic step input in hover ( 8th order
linear state space Equation (1), nonlinear model)
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The uncertainty f : R4 ×R+ → R8 represents bounded turbulence acting on the
input channels (matched uncertainty), i.e. f = Bδu, where δu ≡

[
δDθ δDα δDβ δDδ

]> ∈

Figure 2. Open-loop eigenvalues showing fuselage and rotor modes in hover.

The uncertainty f : R4 ×R+ → R8 represents bounded turbulence acting on the input
channels (matched uncertainty), i.e., f = Bδu, where δu ≡

[
δDθ δDα δDβ δDδ

]> ∈ R4 is
the plant input disturbance due to turbulence. Turbulence is simulated by an empirical
control equivalent turbulence input (CETI) model that uses filters driven by zero mean,
unity covariance, band-limited white noise (Wn) [20,27]:
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δDβ

Wn(s)
=

5.99
(s + 3)

,
δDα

Wn(s)
=

6.07
(s + 3)

,

δDδ

Wn(s)
=

21.5
(s + 7.28)

,
δDθ

Wn(s)
=

0.974(s + 60)
(s + 1.89)(s + 15)

.
(2)

The nature of the turbulence inputs are illustrated in Figure 3. The figure shows the
percentage of displacements of the main rotor longitudinal cyclic, main rotor lateral cyclic,
main rotor collective, and tail rotor collective simulated for 10 s. To simulate turbulence in
closed-loop, these CETI filter outputs are superimposed on the controller output before
inserting the sum in the plant model. Note that Equation (2) were obtained from EC135
tests and are primarily applicable in hover and low speed flight. However, due to the
similarity of the EC135 and BO105 rotor systems, Equation (2) are assumed to be applicable
to the BO105 model. This assumption is also validated by previous works applying the
EC135 turbulence filters to a BO105 physical model [28].

0 2 4 6 8 10
t(s)

−10

−5

0

5

10

15

δD
β
(%

)

0 2 4 6 8 10
t(s)

−10

−5

0

5

10

15

δD
α
(%

)

0 2 4 6 8 10
t(s)

−20

−10

0

10

20

δD
δ
(%

)

0 2 4 6 8 10
t(s)

−10

−5

0

5

δD
θ
(%

)

Figure 3. Illustration of control equivalent turbulence inputs applied to the main and tail
rotor actuators.

3. Response Characteristics and Sliding Manifold Design
3.1. Response Requirements for Good Handling Qualities

Experimental studies into emerging VTOL concepts [1,2,7] suggest that the essential
vehicle responses that simplify piloting and guidance tasks are: second-order attitude
command attitude hold (ACAH) in the fuselage pitch and roll axes, first-order vertical rate
command height hold (RCHH) in the fuselage heave axis, and first-order yaw rate com-
mand direction hold (RCDH) in the fuselage yaw axis. Here, an attitude (rate) command
is to be understood in the sense that an axial step input, either by a pilot or a guidance
system, shall produce second (first) order attitude (rate) responses at the plant output only
in the concerned axis; off-axial responses shall be suppressed. The response requirements
can be expressed as follows:

ACAH: θ̇ + 2ζθωθθ + ω2
θ

∫ t

0
(θ − θc)dτ = 0 (3)

φ̇ + 2ζφωφφ + ω2
φ

∫ t

0
(φ− φc)dτ = 0 (4)

RCDH: r + λr

∫ t

0
(r− rc)dτ = 0 (5)

RCHH: w + λz

∫ t

0
(w− wc)dτ = 0 (6)
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The parameters ζ(·), ω(·) in Equations (3)–(6) represent the damping and natural
frequencies in the second-order response structures, and λ(·) represents the inverse time
period in the first-order response structures. These parametric values can be tailored to
meet vehicle-specific response crtieria. In the present work, the following values are chosen
from previous studies into passenger VTOL [1,2,7], which provide a high-bandwidth
attitude and rate control system: ωθ = ωφ = 2.34, ζθ = 0.9, ζφ = 0.75, λr = 4, and
λw = 0.95. Figure 4 shows the time- and frequency-domain responses of the specified
ideal response characteristics. Note that for second-order pitch and roll ACAH response-
types in Equations (3) and (4), the bandwidth is the frequency at which the phase angle
between command signal and output signal is −135°. For the first-order RCDH and RCHH
response types in Equations (5) and (6), the bandwidth is defined by the cutoff frequency at
−3 dB. The bandwidth values shown in the Bode plot in Figure 4b for all four response-
types are well above the respective bandwidths required for level 1 handling qualities in
Reference [4].
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Figure 4. Required response characteristics of the attitude command response types. (a) Time
response characteristics; (b) Frequency response characteristics.

3.2. Sliding Manifold

The response requirement implies that the system states must converge and obey
the closed-loop behavior specified in Equations (3)–(6). This requirement motivates the
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choice of the sliding variable, since by definition the sliding variable shall represent a stable
manifold in the system’s state space [17,20]:

σ(t) =




φ̇(t) + 2ζφωφφ(t) + ω2
φ

∫ t
t0
(φ− φc)dt

θ̇(t) + 2ζθωθθ(t) + ω2
θ

∫ t
t0
(θ − θc)dt

w(t) + λw
∫ t

t0
(w− wc)dt

r(t) + λr
∫ t

t0
(r− rc)dt




, (7)

for σ(t0) = σ0 6= 0.

Remark 2. The relative degree of σ with respect to u is one for the 6DOF model (1) through
φ̇, θ̇, w, r; but the relative degree of σ with respect to the true plant is greater than one due to the
presence of higher-order rotor dynamics.

In order for the sliding variable in Equation (7) to be written as a linear combination
of the system state, the state vector must include the integral states on the right hand
side of Equation (7). To do so, the original state vector x from (1) is augmented with four
integral states xr(t) =

∫ t
t0
(y(τ) − r(τ))dτ to obtain an augmented state vector, written

as x̃ ≡ [xr x]>. Recall that y ≡ [φ θ w r]> and r ≡ [φc θc wc rc]
>. Next, x̃ can be further

repartitioned as x̃ ≡ [x1 x2]
> for x1 ≡ [xr φ θ u v]> ∈ R8, the indirectly actuated states, and

x2 ≡ [w p q r]> ∈ R4, the directly actuated states. The augmented uncertain system written
in compact form is:

˙̃x(t) = Ãx̃(t) + B̃u(t)− T̃r(t) + f̃(t). (8)

The matrices Ã, B̃, T̃, and f̃(t) are given by:

Ã =




04×4 C1 C2
02×4 A11 A12
06×4 A21 A22


, B̃ =

[
06×4
B2

]
, T̃ =




I4
02×4
06×4


, f̃(t) =

[
04×1
f(t)

]
. (9)

where A11 ∈ R2×2, A12 ∈ R2×6, A21 ∈ R6×2, A22 ∈ R6×6, B2 ∈ R6×4, C1 ∈ R4×2, and
C2 ∈ R4×6.

To represent the sliding variable σ in Equation (7) in terms of the augmented state
vector x̃, the kinematic relationships φ̇ = p + q sin φ tan θ + r cos φ tan θ and θ̇ = q cos φ−
r sin φ are utilized. The sliding manifold to be enforced can be written as a function of the
augmented state vector:

S = {(x1, x2) : S1x1 + S2(x1)x2 = S(x̃)x̃ = 0}, (10)

where

S =[S1 S2] (11)

=




ω2
φ 0 0 0 2ζφωφ 0 0 0 0 1 sin φ tan θ cos φ tan θ

0 ω2
θ 0 0 0 2ζθωθ 0 0 0 0 cos φ − sin φ

0 0 λw 0 0 0 0 0 1 0 0 0
0 0 0 λr 0 0 0 0 0 0 0 1


. (12)

Notice that S2 is a nonlinear function of the states through sinusoidal pitch and roll
attitude terms. From Equations (10)–(12), the sliding variable can be written as:

σ = S1x1 + S2(x1)x2 = S(x̃)x̃. (13)

3.3. Expected Closed-Loop Behavior

For the choice of sliding manifold in Equation (10), the poles of the system upon the
sliding manifold, i.e., when σ = 0 is enforced, can be determined using a regular-form-
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based approach discussed in Reference [13] (p. 66), and applied previously to a similar
sliding manifold in Reference [20]. The key difference between [20] and the present sliding
manifold (10) is the state-dependency of S2. By the same approach, first, the following
coordinate transformation is introduced:

z = Trx̃ (14)

where the orthogonal transformation matrix Tr is computed by QR decomposition of the
matrix B̃. Since the pair (A, B) is controllable and rank(B) = rank(B̃) = 4, the original
system can be expressed in a regular form by taking the time derivative of Equation (14)
and substituting for the system and control matrices. The augmented system dynamics
from Equation (8) (disregarding the uncertainty term) in the new coordinates become:

ż1 = Ā11z1 + Ā12z2 − T̄1r, (15)

ż2 = Ā21z1 + Ā22z2 + B̄2u, (16)

and written in compact form as:

ż = Āz + B̄u− T̄r, (17)

where the matrices in the original and new coordinates are related by:

Ā ≡
[

Ā11 Ā12
Ā12 Ā22

]
= TrÃT>r , B̄ ≡

[
0

B̄2

]
= TrB̃, T̄ ≡

[
T̄1
0

]
= TrT̃ (18)

Likewise, the sliding variable from Equation (10) can be written in terms of the new
coordinates as:

σ = S̄z = S̄1z1 + S̄2z2, (19)

where S̄ ≡
[
S̄1 S̄2

]
= ST>r (20)

To enforce sliding motion, σ = 0 in the new coordinates, which implies:

σ = S̄1z1 + S̄2z2 = 0, (21)

and hence, z2 = −S̄−1
2 S̄1z1 = −Mz1. (22)

Substituting Equation (22) into Equation (15), the system dynamics upon the sliding
surface are defined by the following relation:

ż1 = (Ā11 − Ā12M)z1 − T̄1r, (23)

z2 = −Mz1. (24)

Thus, from Equation (23), the system poles upon the sliding manifold are simply given
by the eigenvalues of the closed-loop system matrix Ācl ≡ (Ā11 − Ā12M). In other words,
suppose that a controller exists which forces the states of the rotorcraft to lie on the sliding
manifold σ = 0. Then, the closed-loop stability of the rotorcraft is governed by the sliding
mode poles, which are the eigenvalues of Ācl. The existence of a continuous, nonlinear,
multivariable controller that can enforce the required behavior σ = 0 in finite-time will be
established in the following section.

Figure 5 plots the eigenvalues of Ācl as a function of the pitch and roll attitude
variations in the S̄2 sub-matrix. The closed-loop heave and yaw modes appear as single
poles at −0.95 and −4, respectively. These values are identical to the specified RCDH and
RCHH first-order response-types in Section 3.1. The closed-loop pitch and roll modes
appear as complex conjugates whose frequency and damping are nearly identical to the
second-order ACAH response-types in Section 3.1. Figure 5a indicates that the closed-loop
eigenvalues are invariant to pitch attitude variations in the domain θ ∈ [−30°, 30°] through
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the submatrix S2. However, for roll attitude variations in the domain φ ∈ [−40°, 40°], the
closed-loop pitch mode changes its characteristics at high roll angles, as seen in Figure 5b.
The remaining closed-loop modes are invariant.
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Figure 5. Close-loop eigenvalues (sliding mode poles) of the matrix Ācl ≡ (Ā11 − Ā12M) in
Equation (23) for pitch and roll attitude variations from trim. (a) θ ∈ [−30°, 30°]; (b) φ ∈ [−40°, 40°].

4. Multivariable Finite-Time Super-Twisting Flight Controller

In contrast to conventional pseudo-SMC flight controllers in References [14–18], a
fixed-time disturbance observer-based first-order terminal SMC flight controller in Refer-
ence [9], and an input-decoupled SOSM flight controller and observer in Reference [20],
this section synthesizes a multivariable, finite-time-convergent, super-twisting flight con-
troller (STFC) for the helicopter plant that stabilizes both σ and σ̇ about the origin. Aside
from obviating the need to estimate σ̇, the multivariable STFC ensures that all sliding
variables simultaneously converge to zero in finite time. The latter property is particularly
advantageous in multi-input-multi-output coupled systems.

The time derivative of Equation (13) gives:

σ̇(t) = S˙̃x(t) + Ṡx̃(t). (25)
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Using (8) and (25), one obtains:

σ̇(t) = SÃx̃(t) + SB̃u(t)− ST̃r(t) + Sf̃(t) + Ṡx̃(t). (26)

Assumption 2. The disturbance Sf̃(t) is assumed to satisfy the Lipschitz condition with Lipschitz
constant L.

Remark 3. The turbulence entering the plant f̃(t), which has been identified from flight data in
Reference [27], uses a band-limited white noise input of constant power spectrum and covariance.
Since S containing constants and sinusoidal terms is bounded, Sf̃(t) along with its derivative are
both bounded. The time evolution of Sf̃(t) and its derivative will be further discussed in Section 5.

The following multivariable continuous control law is chosen [23]:

u(t) = −(SB̃)−1

(
(
SÃ + Ṡ

)
x̃(t)− ST̃r(t) + β

σ(t)√
‖σ(t)‖

+ α
∫ t

t0

σ(τ)

‖σ(τ)‖dτ

)
. (27)

where (SB̃) is square and non-singular by design, ‖·‖ denotes the Euclidean norm, and
control gains α, β > 0.

Remark 4. The controller (27) is independent of the sliding variable time derivative, i.e., σ̇ is
absent in (27). Furthermore, Ṡ can be derived analytically, since the elements of S contain constants
and sinusoidal terms in φ and θ alone. Thus, no numerical differentiation or derivative estimation
is necessary to implement the continuous controller (27).

Theorem 1 ([23]). Let Assumptions 1 and 2 hold. Then the controller (27) drives the trajectories
of the system (8) to the sliding manifold (10) in finite-time given by:

Tr 6

(
2
√√

n‖σ(t0)‖
β

)(
1 +

M
m(1−

√
2α/β)

)
(28)

for M = α + L and m = α− L, n being the order of the system (which is 12 for the augmented
state vector x̃), and provided that the control gains are set as α > L and β >

√
2α.

Proof. Substituting the controller (27) into the sliding variable dynamics (26) yields the
following:

σ̇(t) = −β
σ(t)√
‖σ(t)‖

− α
∫ t

t0

σ(τ)

‖σ(τ)‖dτ + Sf̃(t). (29)

Let the uncertainty term be denoted as η(t) = Sf̃(t). Then (29) becomes:

σ̇(t) = −β
σ(t)√
‖σ(t)‖

− α
∫ t

t0

σ(τ)

‖σ(τ)‖dτ + η(t). (30)

Since η(t) satisfies the Lipschitz condition by Assumption 2, denote ξ(t) = η̇(t) and
rewrite (30) as:

σ̇(t) = −β
σ(t)√
‖σ(t)‖

+ µ(t), (31)

µ̇(t) = −α
σ(t)
‖σ(t)‖ + ξ(t). (32)

The system (31)–(32) is identical to the problem statement in Section 5 of [23]. Us-
ing Lemma 1 of [23], both σ(t) = 0 and µ(t) = 0 are achieved in finite time given by (28),
provided α > L and β >

√
2α. It follows from (31) that the continuous, multivariable
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STFC (27) drives both σ and σ̇ to the origin in finite time given by (28). This implies that the
system (8) enters the sliding manifold (10) in finite time and remains on it subsequently.

The convergence time estimate (28) for the nonlinear plant will be ascertained in the
numerical simulations that follow.

5. Numerical Simulations
5.1. Simulation Environment and STFC Gain Setting

The nonlinear plant described in Section 2 is hosted in a real-time-capable Matlab/
Simulink-based helicopter simulation environment (see Figure 6 and the Supplementary
Material). The STFC implementation is shown in Figure 6a. The state vector x is fed back
to the STFC, where first the sliding manifold is computed. Then the STFC control vector
is computed according to (27). Turbulence inputs δu from (2) are superimposed upon the
controller output and, combined with the initial control input u(t0), are fed to the plant.
The plant computes the aerodynamic forces and moments for this combination of inputs,
and it outputs the resulting fuselage motions. The band-limited white noise inputs in (2)
are scaled such that input disturbance is limited to |δu| 6 5 % in each control channel. Note
that u ∈ [0, 100]% represents the minimum and maximum permissible plant control inputs.

Plant
r Sliding

Manifold

x

σ u

δu

u(t0)

x

∫

y

xr
STFC

(a)

PlantLQIFC∫r

w

Outer

Loop

s

z

zr
u

δu

u(t0)

[φ θ]>

(b)

Figure 6. Helicopter simulation environment with two flight controllers. (a) Multivariable finite-time
super-twisting flight controller; (b) Linear-quadratic-integral flight controller.

One of the challenges of super-twisting control is the need for a priori knowledge
on the bounds of the disturbance gradient. As mentioned in Assumption 2 and Theorem 1,
this bound sets the condition on α and β for the STFC to overcome matched disturbance.
In the present case, a numerical approach is pursued. Figure 7 plots the disturbance η
and its numerical derivative η̇ simulated using η = Sf̃ = SB̃δu, with δu from (2). As
observed in the η̇ plot (Figure 7 bottom), the largest value of the disturbance derivative is
seen in the roll channel. Instead of applying these disturbance derivative limits, α and β
are set according to the standard deviation of the disturbance derivative in each channel.
Although this does not strictly satisfy the condition in Theorem 1, the authors found
this to be a good compromise between disturbance rejection and chattering alleviation
in the present example. Indeed, it has been shown that the amplitude and frequency
of the limit cycles in finite-time controllers arising from unmodeled internal dynamics
are functions of the sliding mode gains [29]. Thus, α and β in the present case are set
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according to: α > diag(stdev(η̇1), . . . , stdev(η̇4)) and β >
√

2α. Referring to Figure 7,
α = diag(200, 450, 1200, 400) and β = diag(30, 50, 80, 50) are used in what follows.

0 2 4 6 8 10 12 14 16 18 20
t(s)

−100

0

100

200

η

0 2 4 6 8 10 12 14 16 18 20
t(s)

−4000

−2000

0

2000

4000

η̇

Figure 7. Matched disturbance in the sliding dynamics (top) and its derivative (bottom); w channel,
r channel, p channel, q channel.

5.2. Linear Quadratic Integral Flight Controller

To benchmark STFC’s performance against an established linear technique, a linear
quadratic integral flight controller (LQIFC) is synthesized along the lines of [24]. As shown
in Figure 6b, the LQIFC is implemented in a two-loop structure to produce equivalent
attitude and rate responses as the STFC. An outer-loop generates the necessary angular
rates to track the pitch and roll attitudes appearing in the command signal r(t). To do so,
the pitch and roll attitude derivatives obtained from the constraint σ(t) = 0 with identical
parametric values as (7) are used to generate angular rate commands. To this are added the
yaw and heave rate commands from r(t) to obtain the command signal s(t) for the LQIFC.
This outer-loop computation takes the following form:




pc,o(t)
qc,o(t)
rc,o(t)


 = Ω−1



−2ζφωφφ(t)−ω2

φ

∫ t
t0
(φ− φc)dt

−2ζθωθθ(t)−ω2
θ

∫ t
t0
(θ − θc)dt

0


, (33)

s(t) = [pc,o(t) qc,o(t) 0 rc,o(t)]
> + [0 0 wc(t) rc(t)]

> (34)

where Ω is the transformation matrix from the angular rate vector to the derivative of
the Euler angle vector. Integral states are defined as zr(t) =

∫ t
t0
(s(τ)−w(τ))dτ, where

w ≡ [p q w r]> is a subset of the state vector z ≡ [u v w p q r]>. Defining an augmented
state-feedback vector z̃ ≡ [z zr]

>, an optimal gain matrix K is then computed via the
Matlab function lqi(). The choice Q = diag([0.1 0.1 5 0.1 0.5 0.5 2 4 50 8]) and
R = diag([10 1 1 1]) in the LQIFC design is found to yield the closest match of the plant
output response to the constraint σ = 0. Finally, the optimal state-feedback control law
applied to the plant in Figure 6b is u = −Kz̃.

5.3. Results

Controller performance is evaluated for the following two tasks: (a) stabilization from
an untrimmed (unsteady) state, followed by (b) step input command tracking. Task (a)
is initiated in hover with arbitrary, unsteady initial conditions (sinking with nose down
and rightward tilt) x(t0) = [{10,−5}°, {0, 0,−6}m/s, {0, 0, 0}°/s] where the steady-state
condition to maintain stable hover is x = [{−3.8, 4.7}°, {0, 0, 0}m/s, {0, 0, 0}°/s]. Thus,
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r = [{−3.8, 4.7}°, 0 m/s, 0 °/s]. The controller must attempt to stabilize the helicopter
within 5 s. Thereafter, task (b) requires the controller to track r = [{−33.8,−10.3}°, wcm/s,
0 °/s] within 5 s and hold these values for quick translation at constant altitude and heading.
Note here that wc =

u sin θ−v sin φ cos θ+Vz,c
cos θ cos φ (using the inertial to body velocity transformation)

is used to regulate inertial vertical speed to Vz = 0. The fulfilment of tasks (a)–(b) for
the high-bandwidth command system in (7) under time constraints is expected to evoke
aggressive maneuvers.

Figure 8a shows the state evolution with both controllers during tasks (a)–(b). The
stabilization task (a) by the STFC evokes up to 40 °/s peak pitch rate and 70 °/s peak roll
rate, whereas the peaks with the LQIFC are relatively smaller. Despite the high peak values,
the STFC stabilizes both pitch and roll attitudes to their respective trim values, and regulates
the angular and heave rates. The LQIFC evokes oscillatory pitch attitude that takes longer
to stabilize, although the remaining states evolve as expected. In the subsequent tracking
task (b), the STFC quickly and accurately forces the plant to reach the commanded attitudes
with minimum overshoot, whereas the LQIFC evokes oscillatory pitch and roll attitudes. In
this task, the STFC shows better heave and yaw rate regulation as compared to the LQIFC.
The angular rates with the STFC, however, reveal minor chattering effects.

Figure 8b shows the plant control inputs generated by both controllers. Initial control
saturation can be observed in pursuit of the stabilization task (a). Thereafter, the full
spectrum of control authority is utilized for the remainder of both tasks. In particular, all
STFC inputs are continuous in nature with minor chattering observed in the lateral cyclic
(Dα), longitudinal cyclic (Dβ), and tail rotor collective (Dδ) channels.

Finally, Figure 9 shows the extent to which each controller enforces the sliding manifold
constraint (10). The STFC in Figure 9a enforces σ = σ̇ = 0, simultaneously for all channels
per Theorem 1, and sustains sliding motion thereafter. The reaching time can be observed
to be about Tr,obs = 3.3 s. The theoretical reaching time calculated using the values: n = 12,
‖σ(t0)‖= 80, α = 1200, β = 80, L = 1000 according to (28) is Tr,est = 12.2 s > Tr,obs. Note
that the roll channel has been used to estimate this reaching time. Although much higher,
the theoretical convergence time can be a useful metric for design assurance purposes.

On the contrary, the LQIFC in Figure 9b achieves σ̇ = 0 but the constraint σ = 0 is
inadequately fulfilled during task (a). Later in task (b) the yaw channel of σ diverges from
zero. Likewise, the LQIFC fails to satisfy ‖σ‖= 0 especially during the command tracking
of task (b).

The interested reader is referred to the accompanying Supplementary Video showing
our helicopter simulation environment and the responses of Figure 8 as viewed from the
helicopter cockpit.

5.4. Discussion

The presence of unmodeled internal dynamics in the plant in the form of the higher-
frequency rotor states implies that chattering is alleviated but unavoidable. Periodic
motion in σ (Figure 9a, top) occurs because the STFC, synthesized using a lower-order
linear representation (1) of the true plant, is oblivious to the presence of higher frequency
rotor dynamics in the plant. Moreover, the disturbance (2) does not vanish as σ → 0.
Together with the compromise on the α and β values, σ being identically zero during the
sliding phase cannot be achieved in the present case. Nevertheless, Figure 9a (bottom plot)
indicates ‖σ‖< 10 all through the sliding phase.

Although chattering is mild in the present case, it may pose difficulties in some others,
since flight control is typically a safety critical function in most aircraft. Further research
is necessary to characterize chattering due to rotor dynamics in the present STFC. Recent
results [29] may be a good point of departure in this direction.
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Figure 8. Controller performance during Task (a) stabilization, Plant state responses; command,
LQIFC, STFC, and Task (b) command tracking, Controller output applied to plant; LQIFC,
STFC.
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6. Conclusions

This paper presented a continuous, multivariable, finite-time-convergent, super-
twisting flight controller (STFC) for rotorcraft and demonstrated its efficacy on a nonlinear,
higher-order plant model. A sliding manifold of relative degree one with respect to the
control input was chosen to represent preferred piloting and guidance responses. The STFC
was shown to robustly render the system trajectories convergent to the sliding manifold
in finite time under the influence of exogenous disturbance. Simulation results showed
the ability of the STFC to quickly stabilize a helicopter from unsteady, untrimmed initial
conditions and accurately track command signals under the influence of atmospheric
turbulence. True reaching time of the sliding manifold was shown to lie well within its
theoretical estimate. The STFC was also shown to be superior to a linear quadratic controller
in enforcing the sliding manifold constraint. However, minor chattering was observed due
to unmodeled internal dynamics in the form of higher-frequency rotor states.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/aerospace9010006/s1. Video S1: Closed-loop controller simulation
and visualization in FlightGear open-source flight-simulator.
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