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Abstract: Base pressure becomes a decisive factor in governing the base drag of aerodynamic vehicles.
While several experimental and numerical methods have already been used for base pressure analysis
in suddenly expanded flows, their implementation is quite time consuming. Therefore, we must
develop a progressive approach to determine base pressure (β). Furthermore, a direct consideration
of the influence of flow and geometric parameters cannot be studied by using these methods. This
study develops a platform for data-driven analysis of base pressure (β) prediction in suddenly
expanded flows, in which the influence of flow and geometric parameters including Mach number
(M), nozzle pressure ratio (η), area ratio (α), and length to diameter ratio (ϕ) have been studied.
Three different machine learning (ML) models, namely, artificial neural networks (ANN), support
vector machine (SVM), and random forest (RF), have been trained using a large amount of data
developed from response equations. The response equations for base pressure (β) were created using
the response surface methodology (RSM) approach. The predicted results are compared with the
experimental results to validate the proposed platform. The results obtained from this work can be
applied in the right way to maximize base pressure in rockets and missiles to minimize base drag.

Keywords: base pressure; machine learning; artificial neural networks; support vector machine;
random forest; response surface methodology

1. Introduction

A flow subjected to sudden expansion will always have flow separation and flow
reattachment associated with it (Figure 1). Such flows with a detached and high-speed
nature have not been thoroughly analyzed yet, even though much research has been carried
out. Hence, we are unable to predict the nature of these flows. Due to the complicated
nature of these flows, their prediction becomes very uncertain. This includes recirculation,
shock, and high pressure and velocity gradients [1–4]. As the shear layer exits the nozzle,
a sub-atmospheric recirculation region is developed at the base, with high turbulence,
high Reynolds number, and highly compressed shear flow. Such situations are critically
important at the base of aerodynamic vehicles like projectiles, missiles, and rockets. The
development of a recirculation zone at supersonic Mach numbers for these aerodynamic
vehicles with blunt bodies could result in voluminous amounts of base drag which is
detrimental to the vehicles’ performance. It has already been documented that the base
drag values account for almost 60% of the total drag force for aerodynamic vehicles [5,6].
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Figure 1. Suddenly expanded flow field, with duct diameter (D) and nozzle exit diameter (d).

Korst (1956) was the first to research base pressure in the supersonic Mach number
regime. He developed a physical model that predicted base pressure by considering the jet
and wake shear flow dependencies. Khan and Rathakrishnan [1,3,4,7] studied the influence
of various parameters like Mach number (M), nozzle pressure ratio (η), area ratio (α), and
length to diameter ratio (ϕ) on base pressure (β) experimentally. They established a direct
relationship between normalized base pressure with nozzle (η) and area ratio (α). They also
tried to modify base pressure through active controls by blowing through microjets [8–10].
Here, the air is drawn from the settling chamber and fed to the control chamber for
controlling base pressure through blowing. It was established that microjets were successful
in manipulating base pressure to a certain extent. Khan and Rathakrishnan [2] also studied
boundary layer regulation in submerged bodies by reducing drag. They employed a suction
on the boundary layer that eventually augmented pressure leading to separation control
in axisymmetric aerodynamic bodies. Yet another method for controlling or regulating
base pressure was employing passive flow control. Here, a geometrical adjustment is made
downstream of the nozzle exit that causes variation in base pressure. Khurana et al. [11]
conducted experiments on the blunt-body by implementing spikes. Spikes of different
shapes such as flat, square, and conical were used. The results showed that the spikes were
able to manipulate base pressure (β) effectively. Vikramaditya et al. [12] examined the base
cavity’s effect on pressure fluctuations for a typical missile configuration.

The experiments were conducted for a Mach number ranging from 0.7 to 1.0 in a
wind tunnel test. The results concluded that passive controls in base cavities could act as
potential drag reduction techniques for different Mach numbers, mainly for jet-off condition
flows. In the recent past, passive control through a backward-facing step (BFS), with the
expanded duct having duct dimples implemented in the base region, was investigated by
Khan et al. [13]. The nozzle pressure ratios (η) used for the study were 1.28, 1.40, 1.55, and
1.70, and the length to diameter ratios (ϕ) used were varied from 10 to 4. They included
dimples of 3 mm diameter along the square duct at 1800 intervals at a pitch circle diameter
(PCD) of 23 mm at the nozzle exit. The influence of dimples on flow patterns was analyzed
by conducting a computational fluid dynamics (CFD) analysis of the pressure and velocity
contours. According to the literature presented above, several ways to determine base
pressure through experiments have been demonstrated by various researchers.

Soft computing is an approach that reflects the extraordinary capacity of the human imagi-
nation when confronting problems that involve ambiguity and imprecision (Raibaudo et al. [14]).
These techniques incorporate various computing models such as fuzzy logic, optimization
techniques, regression analysis, neural networks, etc. Quadros et al. [15] used the fuzzy logic
approach to predict the primary recirculation region’s length developed from the suddenly
expanded flow process. Flow simulations were conducted using the CFD analysis [16,17].
The input variables were M, η, and expansion corners (€). Fuzzy logic membership func-
tions, namely triangular, generalized bell shape, and Gaussian membership functions, were
used. The results found the triangular membership function to have the least percentage
error of 9.0705%.
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Similarly, the artificial neural network (ANN) approach was implemented to pre-
dict the different aerodynamic coefficients of an airplane configuration. Nejat et al. [18]
used the ANN approach to estimate lift coefficients for a selected Reynolds number in
a NACA0012 airfoil at various incidence angles. The ANN results were validated using
the CFD approach. The work concluded that the ANN approach reasonably predicted lift
coefficient, leading to a preliminary design involving low computation cost. Using the CFD
and neural networks approach, Quadros and Khan [19] developed a predictive model for
base pressure. A CFD database was created to train the network. The input variables were
M, η, and α, and the output was base pressure (β). The Levenberg-Marquardt algorithm
was used for optimization. The ANN model successfully predicted base pressure with a
regression coefficient (R2) of less than 0.99 and a root mean square error (RMSE) of 0.0032.

Using the ANN weight coefficients, the influence of parameters demonstrated M as
the dominating variable that primarily affected base pressure (β). The other studies involve
optimizing base pressure (β) conducted by Quadros et al. [20], wherein an experimental
design approach was implemented by considering various kinematic and geometric param-
eters. The experiments were performed as per the L9 Orthogonal array. Regression analysis
and variance analysis (ANOVA) were conducted for base pressure (β) by considering M, α,
and ϕ. The results found M significantly contributes to base pressure (β), followed by α
and ϕ. The regression models developed were sufficiently accurate in making predictions
for base pressure (β). The same authors attempted to model and analyze the base pressure
from a sudden expanded flow process using the Response Surface Methodology technique
(Quadros et al. [21]). The authors implemented the central composite design (CCD) and
Box-Behnken design (BBD) to develop non-linear regression models. The BBD model
results in making accurate predictions for base pressure compared to the CCD model. The
techniques mentioned above have been helpful in the analysis of base pressure. However,
these methods cannot accurately account for the parameters’ effects as they are predom-
inantly experiment and statistical-based. Therefore, it is imperative to propose a novel
approach that could overcome the current issues.

Typically, a strategy that characterizes a problem containing numerous non-linearities
is classified as machine learning (ML). It is a widespread technique that could be used for
the prediction of complex issues, like predicting the stability of metal frameworks [22],
design optimization of composite frameworks with limited training data [23], prediction of
mechanical properties of composite materials [24], damage detection in metallic parts [25],
industrial demand forecasting [26], image recognition [27] and health monitoring [28], etc.
The most commonly used ML models for the prediction of such problems are artificial
neural networks (ANN), support vector machines (SVM), and random forests (RF). Of
these, the ANN technique comprises diversely interconnected neurons. It is commonly
used for the prediction of problems that involve non-linearity, such as fatigue life predic-
tion [29], fatigue caused due to loading [30], prediction of damage induced by fatigue [31].
The suddenly expanded flow process majorly deals with non-linearity due to significant
changes in the flow density (as the flow progresses downstream, the nozzle exit into the
expanded duct), leading to undesirable base pressure changes.

In contrast, the RF technique is commonly adopted for classification or regression
issues and is trained using bagging and variable collection. These include modeling
mechanical properties for composite/metallic materials [32], modeling manufacturing
processes [33], etc. The SVM method is derived from the statistical learning theory and is
mainly based on risk minimization. It is more commonly used for problems that involve
forecastings, such as engine life estimation [34], strength analysis of concrete [35], and
assessment of compaction properties [36]. While many studies have been conducted
to determine and optimize base pressure through different techniques, no studies have
reported computing base pressure using these three ML models.

In the present study, data-driven analysis of base pressure (β) is performed by con-
sidering specific geometric and kinematic parameters. These parameters include Mach
number (M), nozzle pressure ratio (η), area ratio (α), and length to diameter ratio (ϕ).
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As a first step, experiments are performed to determine the base pressure for various
input parameters combinations. The response surface methodology (RSM) [37–41] and
regression [42] approach was implemented to develop the base pressure (β) response
equation. Typically, the experiments were conducted as per the central composite design
(CCD) and Box-Behnken design BBD [38], which accommodated four input factors at three
levels and consisted of 27 datasets each. The response equation developed from both these
designs was used to generate 1000 output data that were used to train the ML models.
Subsequently, ANN, RF, and SVM models were employed for base pressure (β) prediction,
and the results were correlated to prove the accuracy of this novel technique.

2. Experimental Details
2.1. Nozzle Design

The present study considered three Mach numbers. The detailed dimensions of one
of the nozzles, i.e., Mach 3.0 nozzle, have been shown in Figure 2. The exit diameter of
the nozzle is kept constant at 10 mm. The throat diameters of the nozzles of Mach 2.0,
2.5, and 3.0 have been derived from the gas dynamics tables by Genick [43]. The nozzle
was designed and fabricated based on theoretical calculations. These calculations gave the
design Mach number for the nozzles. However, the nozzle was calibrated to determine the
actual Mach number at the nozzle exit once fabricated. The calibrated nozzles showed that
the exact Mach number at the nozzle exit was 2.0, 2.5, and 3.0, respectively. The detailed
dimensions of the three nozzles are shown in Table 1.

Figure 2. Mach 3.0 nozzle dimensions.

Table 1. Nozzle dimensions.

Mach Number
(Actual)

Diameter at
the Inlet

Diameter at
the Throat

Divergent
Length

Diameter at
the Exit

Convergent
Length

(mm) (mm) (mm) (mm) (mm)

2.0 30.44 7.69 11.00 10.00 35.00

2.5 28.88 6.14 18.38 10.00 35.00

3.0 27.60 4.86 24.47 10.00 35.00

2.2. Experimental Setup

The different zones of a suddenly expanded flow process have been shown earlier
in Figure 1. The experimental setup is shown in Figure 3. The nozzle attached to the
settling chamber and expanded duct is shown in (Figure 3a). The pressure tank connections
with the settling chamber delivering the required pressure to the nozzle are shown in
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(Figure 3b). The ratio of pressure set in the settling chamber to atmospheric pressure is
defined as the nozzle pressure ratio; the ratio of expanded duct area to the nozzle exit
area is called the area ratio. The pressure sensor is attached to the expanded duct, and
the data acquisition system displays the base pressure measurement. The actual setup
consists of a circular convergent-divergent (C-D) nozzle. It has eight holes at its outer
circular periphery. The holes are denoted by ‘m’ and ‘c’ and are equidistant from each
other. The holes marked ‘m’ are used to measure the base pressure, and the holes marked
with ‘c’ are used to manipulate base pressure by blowing air in the form of microjets. A
tube connecting the blowing chamber and holes ‘c’ is used for blowing air.

Figure 3. Experimental setup; (a) Nozzle connections with the settling chamber and duct; (b) Data acquisition system for
base pressure through the expanded duct.

It must be noted that the current research work deals with base pressure without
the use of microjets or active control. A pressure transducer (PSI 9010 model) ranging up
to 300 psi pressure range was used to record the variation in base pressure. It consisted
of 16 channels and recorded the measurement at an average of 250 samples/second.
The operating temperature range for the pressure transducer was between −20 ◦C to
+70 ◦C. It had a resolution of ±0.003 psi and accuracy in the reading of up to ±1 percent.
The uncertainty in the measurement of base pressure was conducted as per [7]. The
uncertainty in base pressure was found to be approximately ±1.803%.The backpressure
values were added to the gauge pressure values to get the absolute pressure values. The
base pressure values were then normalized with the atmospheric pressure values. Before
the experimentation, it is imperative to check for the actual Mach numbers of the fabricated
nozzles as there are chances of these nozzles differing from their exact Mach numbers.
These types of cases develop due to a certain level of inaccuracies in the nozzle fabrication.
The nozzles are calibrated by determining the nozzle exit total pressure using a pitot tube.
A bow shock exists, and the pitot tube records the pressure beyond the shock wave and is
given by Equation (1).

P02

P01
=

[
1 +

2γ

γ + 1

(
M2

1 − 1
)] −γ

γ−1
[

(γ + 1)
(

M2
1
)

(γ− 1)M2
1 + 2

] γ
γ−1

(1)

Here, P01 is the settling chamber pressure, M1 is the exit Mach of the nozzle, and γ is
the ratio of specific heat at constant pressure to constant volume (1.4 for air). The nozzle
Mach exit was determined by Equation (1). The design Mach numbers were the same as
the actual Mach numbers for all the nozzles used in this study

3. Response Surface Methodology

The RSM is essential in identifying critical variables for various industrial activities,
such as process preparation and experimentation [37–41]. Such designs allow several
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different elements for a wide range of options that the controller could design at two
or more levels. The two popular RSM designs are the central composite design (CCD)
and the Box-Behnken design (BBD) [32]. A particular design is selected to perform the
experiments and obtain a potential response function dependent on the input variables.
This concept would help achieve base pressure control using suitable parameters in light
of the current issues. Therefore, the RSM approach consisting of various combinations
of input parameters is implemented to obtain the input-output data used to train the
ML models.

CCD and BBD Designs

Various designs with all possible combinations of input parameters are available in
RSM. Generally, a robust and well-ordered design must be implemented for the current set
of experiments. A variable causes variance in the response function due to the difference
between levels of the input variables. This is known as the main effect and is of critical
significance in the experiment. The current investigation understands that the problem
is non-linear, either a CCD or BBD could be designed and implemented with the chosen
parameters and levels. The design parameters such as M, η, α, and ϕ were selected as
input parameters. The first column is designated for M, the second for η, the third for α,
and the fourth for ϕ. The factors and levels are shown in Table 2. Both the CCD and BBD
individually accommodate a total of 27 experiments for a combination of input variables.
The detailed CCD and BBD designs showing input parameters at different levels are shown
in Appendix A.

The CCD and BBD designs are executed on Minitab 19 software. The present work de-
velops non-linear regression models for base pressure (β). The response equations for base
pressure as per the CCD and BBD design matrices were displayed in Equations (2) and (3),
respectively.

β(CCD) = −0.143 +(0.301×A)− (0.2003× B) + (0.2311×C)− (0.2011×D) +
(

0.0412×A2
)

+
(

0.00613× B2
)
−
(

0.01308×C2
)
+
(

0.01634×D2
)
+ (0.01523×A× B)

−(0.01831×A×C)− (0.02004×A×D)− (0.01927× B×C) + (0.00611× B×D)
−(0.00302×C×D)

(2)

β(BBD) = −0.145 +(0.323×A)− (0.0877× B) + (0.0992×C)− (0.1323×D) +
(

0.0412×A2
)

+
(

0.00983× B2
)
−
(

0.00997×C2
)
+
(

0.00891×D2
)
+ (0.00014×A× B)

−(0.01864×A×C)− (0.00529×A×D)− (0.00338× B×C) + (0.00951× B×D)
−(0.01623×C×D)

(3)

Table 2. Experimental parameters and their levels.

Parameters Notations Level 1 Level 2 Level 3

Mach (M) A 2.0 2.5 3.0

NPR (η) B 3 7 11

Area ratio (α) C 3.25 4.75 6.25

L/D (ϕ) D 3 6 9

4. Data Acquisition for Base Pressure
4.1. Data Collection

The performance of ML models is generally based on the quality and quantity of
the data used. For our study, thousand (1000) sets of data have been generated. Out of
these, 54 data were generated using the CCD and BBD experiments, and the rest 946 were
generated using the response equations for various combinations of input parameters.
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Typically, the ML models require massive data to adjust and optimize the parameters
during training. It would be impractical to collect such data merely through experiments
due to the time and cost involved. Therefore, the response equations developed by CCD
and BBD designs through actual experiments were used as an effective tool to generate
considerable input-output data by selecting the input parameters within their respective
levels and ranges.

4.2. Training Data

Experiments have been conducted using the CCD and BBD designs. The two non-
linear regression equations were developed to measure the response base pressure (β).
Both the CCD and BBD non-linear regression models have been tested for statistical
adequacy. For this purpose, 15 random experimental test cases were performed, as shown
in Appendix B. These test cases consisted of various combinations of input parameters that
differed from those used in the CCD and BBD design matrices. However, they were within
the respective range of levels (refer to Table 1). The regression equations were developed
using the statistical Minitab 20 software. It was found that the regression equations were
able to predict base pressure accurately with an mean absolute error (MAE) of 6.40%.
More importantly, a vast database was generated using the regression equations. The
response/regression Equations (2) and (3) were used to create one thousand (1000) output
base pressure values corresponding to various combinations of input parameters within
the respective range of levels.

5. Machine Learning
5.1. Artificial Neural Network (ANN) Model

The ANN and the ML algorithms are facilitated by a brain structure [44]. The training
phase primarily determines the effectiveness of the results produced by ANN. The current
study uses a multi-layer perception (MLP) neural network. Figure 4 shows the MLP
network architecture. The optimal architecture shown in Table 3 helps to achieve results
that require low computing time and cost. The input, output, and hidden layers form
the network architecture. All these layers consist of neurons. The neuron behavior (i) is
represented by Equation (4).

yi = fi
(
∑ wijxj − ti

)
(4)

Figure 4. MLP neural network architecture in which xk represents M, η, α, and ϕ, and y represents
the output base pressure (β).
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Table 3. Optimized MLP neural network architecture.

Network Number

Input layer neurons 4

Hidden layers 3

First hidden layer neurons 25

Second hidden layer neurons 15

Third hidden layer neurons 10

Output layer neurons 1

The inputs xj and weights wij are multiplied by each other. When their summation, i.e.,
∑ wijxj increases to a particular value that is beyond ti, using the activation function fi, the
neuron output yi can be calculated. The activation function is called the mathematical ‘gate,’
which feeds the output neuron to the subsequent layer. The present study uses a sigmoid
function as the activation function, fx = 1

1+e−x . This function assures that a range between
0 and 1 is maintained as the values are passed on to the next neuron. Random values have
been assigned to weights and thresholds modified by a different approach that minimizes
the output errors during training. The current MLP neural network uses a backpropagation
algorithm for data training. The procedure followed is as per Guerrero et al. [45].

5.2. Random Forest (RF) Model

Typically, a traditionally organized machine learning approach employs a statistical
technique of non-linear nature, paired with an ensemble learning strategy [46]. For the
present work, RF model is not used for base pressure prediction. Moreover, the RF has
not been compared with the other ML models. The average values of the output of
hundreds of decision trees generated by the RF are computed to predict the final base
pressure result. The decision tree is formed by leaf nodes and decision nodes that use a test
function to evaluate the input data. Ideally, the training process here includes decision tree
development that is uncorrelated.

The RF models are generally trained by the bootstrap aggregating algorithm [47]. Bootstrap
is the process of compiling samples randomly. The training set is Sn = {(X1, Y1) . . . (Xn, Yn)}.
Here, X represents the input vector with m variables and X = {x1, x2, . . . xm }. The
function f (X, Sn) is generated at the closure of every training stage, and the input data
and splitting of input data occur at every node. The bootstrap algorithm collects a few
samples (Sn1, . . . Snk) establishes prediction trees represented by f (X, Sn1), . . . , f (X, Snk),
and delivers the output in the form Y1pre = f (X, Sn1), . . . Y1pre = f (X, Snk). The Ypre [47]
is calculated by using Equation (5) given below

Ypre =
1
k

k

∑
i=1

Ypre
i =

1
k

k

∑
i=1

f
(

X, Sk
n

)
(5)

There are three parameters of prime importance in the RF model which are to be
adjusted. Those include the number of trees ntree, number of variables nvar, and depth
of trees ndep. It is a well-known fact that each node in a tree is attached to another node
through a direct edge. Moreover, every node could be linked to ‘n’ number of nodes in a
tree. The tree depth is the edges that exist between the root and the leaf node of the tree.
More information about the data is achieved when the depth of the tree ndep is higher. The
ntree is also a parameter that improves the prediction accuracy of the output. The output
accuracy increases with an increase in the ntree. The parameter nvar is quite a sensitive
parameter that performs well when the nvar is equal to 1/3rd number of input variables.
The present study uses ntree = 100, nvar = 2, and ndep = 20 to achieve a reasonable balance
between accuracy and computation cost. Figure 5 summarizes the RF regression and its
general operation is as follows:
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• Initially, the bootstrap samples are extracted from the training sample.
• The bootstrap samples that are extracted are established with regression trees by

following the steps as mentioned. The sampled input variables are provided with a
suitable split at every node, which is the RF algorithm’s adjustment parameters. The
regression tree is treated as complete when there is no split.

• The trained RF model conducts data prediction for the new inputs.

Figure 5. Flow chart of RF regression consisting of bootstrap samples and trees. Snk represents the
samples used for training by the bootstrap algorithm, and Ypre represents the predicted value.

5.3. Support Vector Machine (SVM) Model

The structure of the SVM model shown in Figure 6 consists of an input vector,
X = {x1, x2, . . . xn }, and an output vector Y = {y1, y, . . . ym}. Here, X is a four-dimension
variable consisting of input variables M, η, α, and ϕ. Y represents the output base pressure
(β) that is dependent on the input variables. The input-output relationship is established
by SVM using Equation (6).

f (x) = ω.ϕ(x) + b (6)

Here, f (x) represents the regression function, ϕ(x) is the function of non-linearity,
ω and b are the weight coefficients and bias term, respectively. The SVM is devised with
constrained optimization [48], then converted to a dual optimization problem using a
Lagrangian function [49].

Figure 6. SVM model comprising of three-layer. Here xn represents inputs M, η, α and ϕ, K(x, xn) is
the kernel function and f (x) is the predicted base pressure (β).
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6. Results and Discussions
6.1. Prediction of Base Pressure by Novel Methods

In the present study, base pressure has been predicted and compared with a few base
pressure values obtained from experiments. A total of 69 experiments were conducted and
compared with the results computed. Fifty-four experimental results were obtained.

CCD and BBD designs (see Appendix A) were derived from Appendix B, with 15
experimental results. The computed/predicted base pressure results against experimental
results have been shown in Figure 7. The results observed that the ANN model could
effectively predict base pressure as all the predicted base pressure data were within the
three error bands (±5%). On the other hand, the RF model had four data sets located
beyond the three error bands, and the SVM model had six data sets. Additionally, the
mean squared error MSE and determination coefficient R2 are determined to assess the ML
models’ performance. The R2 and MSE Equations (7) and (8), respectively, are shown below

R2(y, ypre) = 1−
∑n

i=1

(
yi − ypre

i

)2

∑n
i=1(yi − ymean)

2 (7)

MSE(y, ypre) =
1
n

n

∑
i=1

(
yi − ypre

i

)2
(8)

where yi is the ith experimental data, ypre
i is the ith predicted value, and ymean is the average

experimental value. The value of R2 must be closer to 1.0, and the MSE value should be as
small as possible to attain better predictability. The MSE values are normalized between 0
and 1 to make the results more precise and logical. Figure 8 displays a plot of the predicted
base pressure outputs of the various ML models, and it is conclusive that the ANN model
performed better than the other models.

Figure 7. (a) Variation of ANN predicted results against experiments, in which all data points lie within
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the three error band with an R2 of 0.892 and MSE of 0.124, (b) Variation of RF predicted results
against experiments, in which four data points lie outside the three error band with an R2 of 0.610
and MSE of 0.771, (c) Variation of SVM predicted results against experiments, in which six data
points lie outside the three error band with an R2 of 0.469 and MSE of 0.99.

Figure 8. Comparison of R2 and MSE values of all the ML models.

6.2. Base Pressure Prediction Using the ANN Model

The current section explains the influence of hidden layers and neurons on the pre-
dicted base pressure values. Initially, the hidden layers are varied from 1 to 4 to study the
sensitivity of the ANN model. The first hidden layer is acquainted with 25 neurons. The
details of neurons in various hidden layers have been summarized in Table 4. It is shown
in Figure 9 for the plot of predicted base pressure against experimental data that most of
the predicted base pressure for all the ANN models lies inside the three error bands. Only
one set of predicted base pressure data was found to lie outside the three error bands, and
this was for the ANN model with three hidden layers. This meant that the ANN model
with three hidden layers performed better and was optimal for the data within the ranges
(Refer Table 1), shown in Table 4 (R2 = 0.635). The version of each of the ANN models with
different hidden layers is also shown in Table 4.

Second, ANN models’ sensitivity is examined by varying the neuron numbers. De-
pending on the optimal results obtained, a three hidden layer ANN model is proposed.
Generally, the precision and accuracy of predicted base pressure appear to rely more upon
the neurons in the first hidden layer only [11]. The neuron numbers in the first layer are
varied from 15 to 30. The neurons in the second and third layers are unaltered. Table 5
provides a description of the comprehensive architectures for various ANN models.

Table 4. Predicted performances of all ANN models with variant hidden layers.

ANN Model with
Hidden Layers

Neuron Numbers Metrics

Layer 1 Layer 2 Layer 3 Layer 4 R2 MSE

1 25 0.52 1.000

2 25 15 0.558 0.922

3 25 15 10 0.635 0.903

4 25 15 10 5 0.540 0.939
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Table 5. Predicted performances of all ANN models with variant neuron numbers.

ANN Model with
Hidden Layers

Neuron Numbers Metrics

Layer 1 Layer 2 Layer 3 R2 MSE

1 15 15 10 0.54 1.00

2 20 15 10 0.578 0.966

3 25 15 10 0.621 0.913

4 30 15 10 0.588 0.925

Figure 9. Variation of ANN predicted base pressure (β) against experiments: (a) One hidden layer, (b) two hidden layers,
(c) three hidden layers, (d) four hidden layers.

The same database was used to train these ANN models. The plot for predicted
base pressure versus experimental base pressure has been shown in Figure 10, and the
ANN model predicted results had agreed well with the experiments. Table 5 shows all
the ANN models’ performance, and it is pretty evident that an increase in the neuron
number increases the prediction accuracy. However, there is hardly any significance once
the neuron number is increased beyond 25.
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Figure 10. Variation of ANN predicted base pressure (β) against experiments: (a) 15 neurons, (b) 20 neurons, (c) 25 neurons,
(d) 30 neurons.

Third, the neuron numbers only in the hidden layer are varied, leaving out the first
layer, and the sensitivity is studied. Subsequently, for this particular case, the neuron
numbers in the first hidden layer are not modified, and the architecture with three hidden
layers has been proposed for all models. The second hidden layer consists of neurons in
the range of 15 to 35, and the third hidden layer has neurons ranging from 10 to 30. The
details of the ANN models have been shown in Table 6.

From Figure 11, it can be seen that the best R2 value was 1.0, and the smaller the MSE
value, the better was the prediction of the result. It can be seen that an increase in the
neuron numbers in the second and third hidden layer increases the R2 and subsequently
decreases the MSE value. The predicted result did not show much difference as the neuron
numbers in the second hidden layer increased beyond 30. However, as the neuron numbers
in the third hidden layer were raised, a higher accuracy level in the prediction was observed.
There was no difference in the predicted results once the neuron numbers crossed 25 for the
third hidden layer. The above discussions mark some crucial conclusions on base pressure
prediction by the ANN model. Primarily, the prediction accuracy of the ANN model does
not change if there are more than three hidden layers in the ANN architecture. Secondly, an
increase in the neuron number for the first hidden layer yields improved accuracy. Finally,
the number of hidden layers and neuron numbers in the first hidden layer must be set to 2
and 25, respectively, to improve prediction accuracy.
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Figure 11. The predicted metric value versus ANN models, (a) 1–5, (b) 5–10 with variant neuron numbers.

6.3. Base Pressure Prediction Using the RF Model

The RF model involves two critical features that are needed to be investigated. The
features include (i) number of training data ( ´ndata), number of trees ( ´ntree), number of
sensitive parameters ( ´nvar), and tree depth

(
´ndep

)
, (ii) base pressure prediction variations

versus ( ´ndata), ( ´ntree), ( ´nvar), and
(

´ndep

)
. The RF model variables and their descriptions

have been mentioned in Table 7.

Table 6. ANN architecture of models with variant neuron numbers.

ANN Model
Neuron Numbers

Layer 1 Layer 2 Layer 3

1 25 15 10

2 25 20 10

3 25 25 10

4 25 30 10

5 25 35 10

6 25 15 10

7 25 15 15

8 25 15 20

9 25 15 25

10 25 15 30

Table 7. RF variables and their descriptions.

RF Variables Number

Training data 104, 208, 415, 623, 1038

Trees 10, 20, 50, 100, 200

Sensitive parameters 1, 2, 3, 4, 6

Depth of trees 2, 4, 8, 10, 20

Figure 12 shows the variation of prediction accuracy concerning the RF variables. The
MSE values obtained here again have been normalized for a better understanding of the
results. The metric value versus ´ndata has been shown in Figure 12a. It shows that, for
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an increase in the ´ndata, the R2 increases, and MSE decreases. Typically, the prediction
accuracy increases with a higher ´ndata. Hence, it is imperative to have ample training
data to achieve higher accuracy for the predicted results. Figure 12b shows the variation
of metric value versus ´ntree for a constant ´ndata, ´nvar and ´ndep. It is seen that very little
change in R2 is observed, and the MSE has almost decreased by 20% when ´ntree has been
varied from 10 to 100, and thus ´ntree = 100, is preferred. In Figure 12c, variation of metric
value versus ήvar has been shown at constant ´ndata, ´ntree, and ´ndep. It is seen that the R2

and MSE values almost converge when ήvar is greater than 2. Figure 12d shows metric
value variation versus ´ndep when ´ndata, ´nvar, and ´ntree are kept constant. A considerable
difference in the values of R2 and MSE was observed when the value of ήdep was lesser
than 8. Hence, the value of ´ndep must be maintained at eight or higher to predict base
pressure values accurately.

Figure 12. Variations in predicted base pressure (β) for different variables of the RF model: Metric value versus (a) ( ´ndata),

(b) ( ´ntree), (c) ( ´nvar), and (d)
(

´ndep

)
.

To further understand the prediction of base pressure with the given parameters
(M = 2.5, η = 7, α = 6.25, ϕ = 7), the plots of predicted base pressure for different RF models
are shown in Figure 13. For the given input combination, the experimental base pressure
is β = 0.395. It can be observed that the RF predicted base pressure and experimental
base pressure have a minimum error when ´ndata = 623, ´ntree = 20, ´nvar = 3, and ´ndep = 20.
Figure 13a indicates that the predicted base pressure is inaccurate when the training data
ήdata is small. Similarly, Figure 13b observes that the value of predicted base pressure
converges when the number of trees ´ntree is above 50. The curve of predicted base pressure
versus ´nvar is shown in Figure 13c. Here, the predicted base pressure does not vary much
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with the change in ´nvar. All the predicted values lie in the range of 0.7 to 0.8. Hence
´nvar does not influence the predicted base pressure. Finally, the effect of depth of trees
´ndep on predicted base pressure is presented in Figure 13d. The predicted base pressure

(β) decreased with an increase in ´ndep beyond 4. From the above discussions, it can
be concluded that ´ndata and ´ndep significantly influence the prediction accuracy of base
pressure. The values of ´ndata and ´ndep must be maintained at a value greater than 600 and
4, respectively, to obtain an accurate prediction. Additionally, ´nvar hardly influences the
predicted base pressure, and the prediction accuracy is much higher when ´ntree is above 50.

Figure 13. Variations in predicted base pressure (β) for different variables of the RF model: (a) Predicted (β) versus ´ndata,
(b) predicted (β) versus ´ntree, (c) predicted (β) versus ´nvar, and (d) predicted (β) versus ´ndep.

6.4. Base Pressure Prediction Using the SVM Model

The SVM model investigates two crucial aspects for the prediction of base pressure.
They include (i) variations in prediction accuracy and predicted base pressure with ´ndata
and (ii) variation of predicted base pressure concerning input parameters. Figure 14a shows
the variation of metric values versus ´ndata. Here, it can be seen that for the training data
between 400 to 600, the R2 value increases, and the MSE value decreases. However, as the

´ndata increases beyond 600, both R2 and MSE values show consistency. This implies that
an increase in the training data does not improve the prediction accuracy of base pressure.
Figure 14b shows the variation of predicted base pressure versus ´ndata. Figure 14c shows
the variation of error (%), i.e., (percentage error between the predicted base pressure and
experimental base pressure) concerning ´ndata. Here, the minimum error is observed when
the ´ndata is slightly higher than 600.
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The predicted base pressure is further studied for input parameters to validate the
SVM model. For this, variation of predicted base pressure versus Mach number (M), nozzle
pressure ratio (η), and area ratio (α) has been plotted in Figure 15a–c. Figure 15a shows a
linear increase in the predicted base pressure when the (M) is increased from 2.1 to 3.0. A
significant increase from 0.4 to 0.9 is observed. This shows that the predicted base pressure
is highly sensitive to Mach number changes [7]. Figure 15b shows a decline in the predicted
base pressure results when the (η) is increased from 3 to 7 [3]. However, the decline is not
as steep as it was for (M). Hence the effect of (η) on the improvement of predicted base
pressure is not apparent.

Furthermore, the predicted base pressure showed a significant increase for α up to
5, as shown in Figure 15c. Beyond this value, the predicted output did not show much
variation. Therefore, it is imperative to design suitable base pressure models to reduce base
drag for aerodynamic vehicles. The conclusions drawn from the SVM model are

• The accuracy of predicted base pressure highly reliable on the ´ndata. The relative error
(%) shows a significant decrease for ´ndata between 400 and 600. However, for ´ndata
above 600, a trivial change in error (%) is seen.

• The Mach number (M) is found to have a more significant impact on base pressure
when compared to the other parameters. Specifically, base pressure can be improved
by increasing the (M), reducing the base drag.

Figure 14. Variations in (a) metric value, (b) predicted base pressure (β), (c) relative error (%) versus training data of the
SVM models.
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Figure 15. Variations in (a) metric value, (b) predicted base pressure (β), (c) relative error (%) versus training data of the
SVM models.

7. Conclusions

The present study developed a platform for data-driven analysis of base pressure
prediction. Additionally, the predicted base pressure values are analyzed in-depth to
determine the essential characteristics of various machine learning models. Parametric
studies are also performed to decide how expected accuracy and base pressure vary as
independent variables in the machine learning models are modified. As a result, some
conclusions are reached, outlined below.

• Compared to the RF and SVM models, the ANN model best predicted base pressure
as it had the highest accuracy. Additionally, the RF model showed better performance
than the SVM model.

• The prediction accuracy of the ANN model increased with an increase in the neuron
numbers for the first hidden layer. Additionally, the architecture comprising three
hidden layers and 25 neurons in the first hidden layer is prescribed to predict base
pressure with high accuracy.

• The RF model parameters, ´ndata, and ´ndep, affected the predicted base pressure con-
siderably. Values of ´ndata ≥ 600 and ´ndep ≥ 4 are recommended to achieve a higher
prediction accuracy. The prediction accuracy was also said to improve when the value
of ´ntree was maintained above 50.

• A rapid decrease in the relative error (%) with the rise in training data, ´ndata, was
observed for the SVM model. Additionally, predicted base pressure is susceptible to
changes in Mach number. In this way, it is helpful to increase the Mach number (M) to
increase the base pressure, thereby reducing base drag.
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Appendix A. Output for Various Combinations of Input Data for CCD and BBD

S.I. No.

Central Composite Design Box-Behnken Design

Parameters
Response (β)

Parameters
Response(β)

M η α ϕ M η A ϕ

1 2.0 3 3.25 3 0.248 2.5 11 6.25 6 0.461

2 3.0 3 3.25 3 0.567 2.5 7 4.75 6 0.434

3 2.0 11 3.25 3 0.411 2.0 11 4.75 6 0.494

4 3.0 11 3.25 3 0.721 2.5 7 4.75 6 0.434

5 2.0 3 6.25 3 0.331 2.0 7 4.75 9 0.496

6 3.0 3 6.25 3 0.655 3.0 11 4.75 6 0.733

7 2.0 11 6.25 3 0.205 2.5 3 6.25 6 0.509

8 3.0 11 6.25 3 0.733 2.5 11 3.25 6 0.480

9 2.0 3 3.25 9 0.305 2.5 3 4.75 9 0.455

10 3.0 3 3.25 9 0.558 3.0 7 4.75 3 0.759

11 2.0 11 3.25 9 0.312 2.5 7 4.75 6 0.434

12 3.0 11 3.25 9 0.788 3.0 7 3.25 6 0.613

13 2.0 3 6.25 9 0.330 2.0 7 6.25 6 0.233

14 3.0 3 6.25 9 0.592 3.0 3 4.75 6 0.523

15 2.0 11 6.25 9 0.336 2.0 7 3.25 6 0.295

16 3.0 11 6.25 9 0.693 2.5 11 4.75 9 0.449

17 2.0 7 4.75 6 0.393 2.5 7 3.25 3 0.373

18 3.0 7 4.75 6 0.611 2.0 3 4.75 6 0.305

19 2.5 3 4.75 6 0.456 2.5 7 6.25 9 0.517

20 2.5 11 4.75 6 0.670 2.5 7 6.25 3 0.489

21 2.5 7 3.25 6 0.436 2.5 3 3.25 6 0.510

22 2.5 7 6.25 6 0.588 2.0 7 4.75 3 0.267

23 2.5 7 4.75 3 0.471 2.5 7 3.25 9 0.451

24 2.5 7 4.75 9 0.502 2.5 3 4.75 3 0.438

25 2.5 7 4.75 6 0.434 2.5 11 4.75 3 0.659

26 2.5 7 4.75 6 0.434 3.0 7 4.75 9 0.625

27 2.5 7 4.75 6 0.434 2.5 7 4.75 6 0.434
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Appendix B. Random Test Cases

S.I. No.
Parameters

Response (β)
M η α ϕ

1 2.5 5 6.25 4 0.519

2 2.5 6 4.75 5 0.490

3 2.0 10 3.25 7 0.371

4 2.5 4 4.75 8 0.404

5 2.0 5 4.75 5 0.298

6 3.0 8 3.25 4 0.575

7 2.5 4 6.25 8 0.488

8 2.5 9 3.25 5 0.565

9 2.5 8 3.25 7 0.532

10 3.0 6 6.25 7 0.669

11 2.5 10 4.75 4 0.409

12 3.0 10 3.25 5 0.524

13 2.0 4 6.25 8 0.247

14 3.0 9 4.75 7 0.606

15 2.0 8 6.25 5 0.272
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