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ABSTRACT
In this paper, a new algorithm is proposed for the two-dimen-
sional non-guillotine non-oriented cutting stock problem. The
considered problem consists of cutting small rectangular
pieces of predetermined sizes from large but finite rectangular
plates. The objective is to generate cutting patterns that mini-
mize the unused area and fulfill customer orders. The proposed
algorithm is a combination of a new particle swarm optimiza-
tion approach with a heuristic criterion inspired from the lit-
erature. The algorithm is tested on twenty-two instances
divided into two sets. Corresponding results show the algo-
rithm efficiency in optimizing the trim loss that is comprised
between 2.6% and 7.8% for all considered instances.

Introduction

The cutting stock problem (CSP) is encountered in many production pro-
cesses in different industrial sectors. Different variants of CSP can be defined
according to the considered constraints and objectives e.g. the assortment
problem which consists of identifying optimal dimensions of large objects
from which small items (pieces) are to be cut, trim loss problem which
consists of finding patterns optimizing materiel wastage for predefined pieces
and large objects dimensions, etc. Four characteristics should be defined for
each considered CSP (Dyckhoff 1990):

● Dimensionality: The literature deals with three categories of dimensions:
1D, 2D, and 3D CSPs.

● Kind of assignment: all stock material will be used but not all the orders
must be fulfilled, or every order must be fulfilled but only a portion of
stock will be used.
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● Assortment of large objects: One large object to be cut, many identical
large objects with similar dimensions, or different large objects with
different dimensions.

● Assortment of small items to be cut: Few items of different dimensions,
many items of many different dimensions, many items of relatively few
different dimensions, or many identical items.

In case of two-dimensional cutting procedure, two variants are considered
in the literature: The guillotine or edge to edge cutting when cutter must pass
throughout the cutting plate without changing its direction, and the non-
guillotine when the cutting tool may change direction before crossing the
edge of the plate. The latter is provided in steel industry by modern cutting
technologies such as laser resonator and rapid erosion.

Additional specifications are identified to characterize a two-dimensional
cutting stock problem (2D-CSP), such as the raw material dimension: a CSP
can be considered as a bin-packing problem when the raw material is
presented as sheets with limited dimensions, or strip packing problem
when pieces are to be cut from rolls with infinite height, and the possibility
of pieces rotation when designing a pattern: called oriented if the orientation
is not allowed, and or non-oriented if it is allowed.

In this paper, we focus on the trim loss problem and look for the cutting
patterns that minimize the unused area. The considered problem is the 2D
non-guillotine, non-oriented CSP with fixed identical plates’ dimensions,
denoted in the literature as 2BP|R|F, while 2 for 2D, BP for Bin Packing, R
for non-oriented, and F for Free that means non-guillotine. Many ordered
items of relatively few dimensions must be totally fulfilled, and only a portion
of stock sheets will be used with the assumption of an infinite number of
available sheets.

It is worth to notice that CSP should be distinguished from cutting
problem (CP). In fact, CP consists of finding the best cutting pattern that
maximizes the sum of the profit of small items obtained from a large
rectangle, whereas the CSP is the problem of cutting all required number
of small rectangular pieces of different sizes from a set of rectangular sheets
at a minimum sheet cost (Young-Gun and Kang 2002). Different heuristics
and meta-heuristics have been developed in the literature to solve CSPs and
related CPs since these problems belong to the category of NP-hard problems
(Chu and Antonio 1999): Ayadi et al. (2009) and Ayadi, Cheikhrouhou, and
Masmoudi (2012) proposed a hybrid heuristic based on the combination of
bottom left and shelf algorithms for the guillotine CSP. Morabito and
Arenales (1996) provided several rule-based heuristics to improve the cutting
approach within a branch and bound procedure for non-guillotine CP. Other
heuristics have been proposed in (Bengtsson 1982) and (El-Bouri et al. 1994)
for a non-oriented bin-packing problem. El Hayek, Moukrim, and Nègre
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(2008) developed a heuristic based on the combination of the items maximal
area concept and a heuristic metric for non-guillotine CP. Several meta-
heuristics have been adopted, in particular the simulated annealing
(Lai and Chan 1997), genetic algorithm (Beasley 2004), Tabu search
(Alvarez-Valdes, Parreño, and Tamarit 2007), particle swarm optimization
(PSO) (Barkallah, Ayadi, and Masmoudi 2014) (Ayadi and Barkallah 2016)
(Ben Lagha, Dahmani, and Krichen 2014), etc. Gilmore and Gomory (1965)
proposed a branch-and-price-and-cut algorithm, Beasley (1985) provided a
branch and bound and a lower bound with a Lagrangian relaxation to an
Mixed integer linear programming (MILP). Boschetti, Hadjinconstantinou,
and Mingozzi (2002) provided a new linear mathematical model with new
bounds obtained by relaxation. The reader is referred to (Dyckhoff,
Scheithauer, and Terno 1997) for general surveys on CPs and to (Valério
de Carvalho 2002) for a survey of the most popular Linear Programming
(LP) methods for Bin-packing and CSPs. A review of models and solution
methods included by (Belov 2003) and (Hassler and Sweeney 1991) are
dedicated to 2-D CSPs, and a survey on two-dimensional packing problems
is presented in (Lodi et al. 2010).

In this paper, a new algorithm is proposed for the considered CSP
associated with the resolution of the corresponding CP. The developed
approach is based on the definition of specific PSO operators and an ade-
quate combination with a heuristic metric inspired from (El Hayek,
Moukrim, and Nègre 2008). This approach is considered for patterns gen-
eration following an iterative procedure that is designed to solve the whole
CSP. The algorithm efficiency is evaluated through its application to two sets
of instances. The next section describes the proposed algorithm and the
section following that reports the numerical results and corresponding dis-
cussions. The final section draws the conclusions and perspectives.

Developed algorithm for CSP

The proposed algorithm is based on dividing the problem into several sub-
problems formulated as CPs. A corresponding approach is developed in
order to solve each sub-problem and is iterated until reaching the optimized
solution of considered SCP. The proposed approach for the CP is first
presented; then, the global algorithm is addressed.

Proposed approach for CP

The proposed approach represents an adequate procedure to find a pattern with
a minimized waste rate. It consists of defining optimal couples of pieces to be cut
and corresponding placements in vacant rectangles in the pattern. A new PSO
approach is developed in order to define the optimal order of pieces allocation;
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and a heuristic criterion inspired from (El Hayek, Moukrim, and Nègre 2008) is
adopted in order to select the suitable vacant rectangle for each piece to be
allocated.

PSO-based approach
PSO is a stochastic population-based meta-heuristic inspired from swarm
intelligence. Its first application to optimization problems was proposed by
(Kennedy and Eberhart 1995). In the basic formulation, a swarm consists of
N particles flying around in a D-dimensional search space. The basis of the
optimization process consists of evolving from a swarm to another by taking
advantage from the cooperation between the particles. The success of some
particles will influence the behavior of their peers.

Each particle is a candidate solution to the problem. In the adapted approach,
a particle represents a specific order of the pieces references. This order is to be
followed when designing a pattern by the allocation of ordered pieces to vacant
rectangles until the saturation of the pattern. The proposed particle size is equal

to 2.m.Nmax components, where Nmax ¼ H= min
j2f1;:::;mg

ðwjÞ
� �

, H is the sheet

height, wj is the width of the jth piece and m is the number of pieces references.
Each reference appears in the reading vector of a particleNmax times for the first
orientation and Nmax times for the second orientation, since the considered
problem is non-oriented.

The initial swarm is composed from particles obtained by a random
dispersion of an initialized particle. The initialized particle orders the pieces’
references following the decreasing order of their heights.

Each particle is associated to a reading vector xd representing its position
in the decision space and a velocity vector vd is used to update the particle
position during the optimization. The position update is expressed in for-
mulas (1) and (2):

vd  c1vd þ c2ðpd � xdÞ þ c3ðgd � xdÞ : (1)

xd  xd þ vd (2)

where c1, c2 and c3 are real parameters comprised between 0 and 1, pd is the
best known position of particle d, and gd is the best known position of the
entire swarm.

The comparison between particles follows their corresponding waste rates.
Several specific operators have been considered to improve the particles. To
illustrate the operator definitions, we consider an illustrative example of two
particle positions x1 and x2 (Equations (3) and (4)) characterized by three
pieces references for a CP with Nmax = 1:

x1 ¼ 1; 2; 1þ 90i; 3þ 90i; 3; 2þ 90ið Þ (3)
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x2 ¼ 1; 2þ 90i; 2; 3þ 90i; 3; 1þ 90ið Þ (4)

● Adapted subtraction operator

The subtraction of two particle positions is obtained through the subtrac-
tion of their components following formula (5):

pdi � xdi ¼ 0 if pdi ¼ xdi
pdi else

�
(5)

The application of this operator to the illustrative example yields to particle
x3 expressed by Equation (6).

x3 ¼ x1 � x2 ¼ 0; 2; 1þ 90i; 0; 0; 2þ 90ið Þ (6)

● Adapted velocities addition operator

The addition of two velocities v1d and v2d multiplied by corresponding cj
parameters is encountered in the definition of the particle velocity. The
principle of this addition is given by formula (7):

c1v1d þ c2v2d ¼ v1d if c1 � c2
v2d else

�
(7)

● Adapted addition of a position and a velocity operator

The principle of adding a position to a velocity, as in formula (2), is given
by formula (8):

xdi þ vdi ¼ xdi if xdi ¼ vdi or vdi ¼ 0
vdi else

�
(8)

Let us consider velocity vd = x3. The application of this operator to the
illustrative example yields to the position x4 expressed by Equation (9):

x4 ¼ x1 þ vd ¼ 1; 2; 1þ 90i; 3þ 90i; 3; 2þ 90ið Þ (9)

Pieces allocation procedure (PAP)
When designing the pattern corresponding to a particle, each piece is to
be allocated to one of the pattern’s vacant rectangles. Thus, a list of vacant
rectangles is considered, and contains all available spaces that can receive
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at least one of the ordered pieces. Vacant rectangles are identified with
their bottom left corner coordinates (xj,yj) as well as their widths wj and
heights hj. This list is initialized by the rectangle representing the whole
sheet, and after each update, it is ordered following a heuristic criterion
inspired from (El Hayek, Moukrim, and Nègre 2008). This criterion is a
weighted sum of ratios that compare the dimensions of rectangles with
the dimensions of the piece to be allocated as described in Equation (10).
For each piece i, the candidate available rectangles are selected in the
decreasing order of their criterion value o(i,j):

o i; jð Þ ¼ q1
wihi
wjhj
þ q2

xj þ wi

wj
þ q3

yj þ hi
hj
þ q4

w2
i þ h2i

w2
j þ h2j

(10)

where
i: piece reference;
j: vacant rectangle reference;

qk: Weights; 0 ≤ qk≤ 1; k = 1,. . .,4 and
P4
k¼1

qk ¼ 1.

When a piece is allocated to a vacant rectangle, the list of rectangles is
updated following these PAP steps:

Step 1. Remove the vacant rectangle to which the piece is allocated.
Step 2. Create two new rectangles limited by the attributed piece and the

removed rectangle, as shown in Figure 1: one rectangle on the right of the
piece (R1), and one above it (R2).

Step 3. Check the inclusion of the created rectangles in the existing ones
and remove included rectangle(s) if necessary.

Step 4. Update the list of vacant rectangles in order to avoid the overlaps
between allocated piece and the rectangles. Table 1 represents an exhaustive
enumeration of the fifteen possible overlapping configurations. The table
shows an illustrative figure for each configuration, as well as a corresponding
example and the new rectangles to be created for the update list. Added
rectangles are referred as Raj(xj,yj,wj,hj), where (xj,yj) are the coordinates of
the rectangle’s bottom left corner and (wj,hj) are the rectangle’s width and
height, respectively.

Step 5. Check inclusions between created rectangles and existing ones and
remove included ones.

Figure 1. Step 2 of piece allocation.
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Table 1. Rectangles’ list updating.
N° Configuration example Creation of new rectangles

1 ● Rectangle above the piece
Case 1: yr4 > yc4→ Ra1 (x, yp + hp, l, y + h—yp—hp)
Case 2: yr4 ≤ yc4 → no creation of new rectangle

● Rectangle on the right
Case 1: xr2 > xc2→ Ra2 (xp + lp, y, x + l—xp—lp, h)
Case 2: xr2 ≤ xc2 → no creation of new rectangle

● Rectangle below the piece
Case 1: yc1 > yr1 → Ra3 (x, y, l, yp—y)
Case 2: yc1 ≤ yr1 → no creation of new rectangle

2 ● Rectangle above the piece
Case 1: yr4 > yc4→ Ra1 (x, yp + hp, l, y + h—yp—hp)
Case 2: yr4 ≤ yc4 → no creation of new rectangle

● Rectangle on the right
Case 1: xr2 > xc2 → Ra2 (xp + lp, y, x + l—xp—lp, h)
Case 2: xr2 ≤ xc2 → no creation of new rectangle

● Rectangle on the left
Case 1: xc1 > xr1 → Ra3 (x, y, xp—x, h)
Case 2: xc1 ≤ xr1 → no creation of new rectangle

3 ● Rectangle on the right
Case 1: xr2 > xc2→ Ra1 (xp + lp, y, x + l—xp—lp, h)
Case 2: xr2 ≤ xc2 → no creation of new rectangle

● Rectangle on the left
Case 1: xc1 > xr1 → Ra2 (x, y, xp—x, h)
Case 2: xc1 ≤ xr1 → no creation of new rectangle

4 ● Rectangle on the right
Case 1: xr2 > xc2→ Ra1 (xp + lp, y, x + l—xp—lp, h)
Case 2: xr2 ≤ xc2 → no creation of new rectangle

● Rectangle on the left
Case 1: xc1 > xr1 → Ra2 (x, y, xp—x, h)
Case 2: xc1 ≤ xr1 → no creation of new rectangle

● Rectangle below the piece
Case 1: yc1 > yr1 → Ra3 (x, y, l, yp—y)
Case 2: yc1 ≤ yr1 → no creation of new rectangle

5 ● Rectangle above the piece
Case 1: yr4 > yc4→ Ra1 (x, yp + hp, l, y + h—yp—hp)
Case 2: yr4 ≤ yc4 → no creation of new rectangle

● Rectangle on the left
Case 1: xc1 > xr1 → Ra3 (x, y, xp—x, h)
Case 2: xc1 ≤ xr1 → no creation of new rectangle

● Rectangle below the piece
Case 1: yc1 > yr1 → Ra3 (x, y, l, yp—y)
Case 2: yc1 ≤ yr1 → no creation of new rectangle

(Continued )
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Table 1. (Continued).

N° Configuration example Creation of new rectangles

6 ● Rectangle on the right
Case 1: xr2 > xc2→ Ra1 (xp + lp, y, x + l—xp—lp, h)
Case 2: xr2 ≤ xc2 → no creation of new rectangle

● Rectangle below the piece
Case 1: yc1 > yr1 → Ra3 (x, y, l, yp—y)
Case 2: yc1 ≤ yr1 → no creation of new rectangle

7 ● Rectangle on the left
Case 1: xc1 > xr1 → Ra3 (x, y, xp—x, h)
Case 2: xc1 ≤ xr1 → no creation of new rectangle

● Rectangle below the piece
Case 1: yc1 > yr1 → Ra3 (x, y, l, yp—y)
Case 2: yc1 ≤ yr1 → no creation of new rectangle

8 ● Rectangle above the piece
Case 1: yr4 > yc4→ Ra1 (x, yp + hp, l, y + h—yp—hp)
Case 2: yr4 ≤ yc4→ no creation of new rectangle

● Rectangle on the right
Case 1: xr2 > xc2→ Ra2 (xp + lp, y, x + l—xp—lp, h)
Case 2: xr2 ≤ xc2 → no creation of new rectangle

9 ● Rectangle above the piece
Case 1: yr4 > yc4→ Ra1 (x, yp + hp, l, y + h—yp—hp)
Case 2: yr4 ≤ yc4 → no creation of new rectangle

● Rectangle on the left
Case 1: xc1 > xr1 → Ra3 (x, y, xp—x, h)
Case 2: xc1 ≤ xr1 → no creation of new rectangle

10 ● Rectangle above the piece
Case 1: yr4 > yc4→ Ra1 (x, yp + hp, l, y + h—yp—hp)
Case 2: yr4 ≤ yc4 → no creation of new rectangle

● Rectangle below the piece
Case 1: yc1 > yr1 → Ra3 (x, y, l, yp—y)
Case 2: yc1 ≤ yr1 → no creation of new rectangle

11 ● Rectangle on the right
Case 1: xr2 > xc2→ Ra2 (xp + lp, y, x + l—xp—lp, h)
Case 2: xr2 ≤ xc2 → no creation of new rectangle

12 ● Rectangle on the left
Case 1: xc1 > xr1 → Ra3 (x, y, xp—x, h)
Case 2: xc1 ≤ xr1 → no creation of new rectangle

13 ● Rectangle below the piece
Case 1: yc1 > yr1 → Ra3 (x, y, l, yp—y)
Case 2: yc1 ≤ yr1 → no creation of new rectangle

(Continued )
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Global algorithm for CSP

The provided algorithm iterates the approach described in the last section
with updating the ordered pieces to be cut. The details of this algorithm
are shown in Figure 2. The first step consists of reading the problem
parameters (pieces dimensions and ordered quantities as well as sheet
dimensions) and fixing the PSO parameters (c1, c2, c3, swarm size, and
maximum number of iterations). The second step concerns the design of
optimal patterns by combining the PSO-based approach and the PAP.
After initializing the first particle (Step 2.1), the first swarm is created
through a random dispersion of this particle (Step 2.2). Patterns corre-
sponding to the swarm’s particles are then generated using the described
PAP (Step 2.3) and corresponding waste rates are identified in order to
select the best pattern to be considered (Step 2.4). The particle swarm is
updated using formulas (1) and (2) (Step 2.5), until reaching one of the
two stopping criteria: the maximum number of iterations and no
improvement of the waste rate for all particles. Step 3 corresponds to
the calculation of sheets number to be cut following the optimal designed
pattern without violating demand limitation constraints. After that, net
orders are updated in Step 4, and the procedure is iterated until satisfying
ordered quantities.

Table 1. (Continued).

N° Configuration example Creation of new rectangles

14 ● Rectangle above the piece
Case 1: yr4 > yc4→ Ra1 (x, yp + hp, l, y + h—yp—hp)
Case 2: yr4 ≤ yc4 → no creation of new rectangle

15 ● Rectangle above the piece
Case 1: yr4 > yc4→ Ra1 (x, yp + hp, l, y + h—yp—hp)
Case 2: yr4 ≤ yc4 → no creation of new rectangle

● Rectangle on the right
Case 1: xr2 > xc2 → Ra1 (xp + lp, y, x + l—xp—lp,
h)
Case 2: xr2 ≤ xc2 → no creation of new rectangle

● Rectangle on the left
Case 1: xc1 > xr1 → Ra2 (x, y, xp—x, h)
Case 2: xc1 ≤ xr1 → no creation of new rectangle

● Rectangle below the piece
Case 1: yc1 > yr1 → Ra3 (x, y, l, yp—y)
Case 2: yc1 ≤ yr1 → no creation of new rectangle
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Numerical results

The proposed approach is applied to two sets of instances: the first one
contains four designed instances for which the optimal solutions are
known. This set serves for validation tests by comparing the perfor-
mance of algorithm results with optimal ones. The second set consists

No

STEP 2: Design an optimal pattern using PSO-

based approach

STEP 3: Calculate the number of sheets to be cut 

following the optimal designed pattern 

STEP 4: Update the net orders 

All firm orders are 

allocated

STEP 5: Calculate the total waste rate

End

2.1. Initialize the first particle

Yes

No

Yes

2.2. Create the first swarm

2.3. Generate patterns corresponding 

to swarm particles using the PAP 

Stop criterion reached?

Start

2.5. PSO update

STEP 1: Read the problem parameters and define PSO ones

2.4. Evaluate waste rates 

corresponding to generated patterns 

and select the best particle

Figure 2. Proposed algorithm for solving CSP.
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of 18 instances for which optimal solutions are unknown. These
instances are randomly generated with respect to real life bounds in
order to evaluate the algorithm based on cases encoding real-world
problems.

First set of instances

The patterns corresponding to each of the four instances are manually
designed with specific pieces’ and sheets’ dimensions so that the corre-
sponding optimal solutions are characterized with a null trim loss value.
Corresponding patterns are reported in Appendix 1, and the number of
used sheets following these optimal solutions are reported in Table 2 and
labeled as NUSmin. Table 2 shows also pieces’ and sheets’ characteristics.
For each piece type Pi to be cut, related data are represented as following:
(height, width, demand). The number of piece types is equal to 8, 17, 16,
and 12 for instances #1, #2, #3, and #4, respectively.

The proposed approach is applied to each of the considered instances.
Corresponding results (number of used sheets “NUSPSO” and obtained
trim loss) are reported in the last two rows of Table 2. Results show that
the trim loss varies from 4% to 6% with respect to the considered
instance, with a total trim loss for this first set equal to 4.8%. These

Table 2. First-set instance data and corresponding results.
Instance # 1 2 3 4

Sheet
dimensions

1843 × 1400 1611 × 1550 1918 × 1660 1924 × 1568

Pieces related data
P1 (586, 350, 13956) (431, 190, 7877) (548, 442, 11857) (481, 280, 18768)
P2 (415, 245, 10467) (441, 342, 659) (334, 274, 19009) (524, 448, 6438)
P3 (340, 174, 10467) (445, 301, 1977) (490, 256, 2634) (224, 219, 13384)
P4 (274, 220, 6978) (366, 177, 2636) (411, 221, 2496) (262, 224, 7960)
P5 (645, 174, 10467) (532, 251, 5471) (216, 190, 17796) (392, 352, 10870)
P6 (197, 187, 17445) (389, 342, 659) (398, 190, 5222) (393, 336, 17844)
P7 (415, 214, 17445) (573, 526, 659) (586, 548, 4275) (569, 504, 2712)
P8 (548, 350, 3489) (221, 190, 659) (668, 374, 3937) (352, 140, 2172)
P9 (521, 269, 659) (293, 282, 19904) (588, 305, 5440)
P10 (437, 187, 659) (373, 282, 11068) (196, 244, 12200)
P11 (541, 343, 659) (407, 373, 2232) (448, 420, 1266)
P12 (324, 214, 4812) (221, 274, 1506) (392, 305, 1440)
P13 (373, 187, 659) (374, 392, 1749)
P14 (546, 266, 2406) (274, 255, 11736)
P15 (555, 199, 659) (548, 222, 1604)
P16 (648, 374, 4268) (432, 361, 5640)
P17 (431, 205, 2406)
NUSmin 3489 1862 4430 3939
NUSPSO 3634 1908 4665 4191
Trim loss (%) 3.99 4.67 5.47 6.09
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results show the performance of the proposed algorithm in solving non-
guillotine CSPs.

It is worth to notice that the proposed approach is the first heuristic
adapting PSO technique with the proposed specific operators to the non-
guillotine CSPs. This initiative shows that the issue of developing PSO-based
algorithms considering the proposed operators for non-guillotine CSPs
seems to be promising.

Second set of instances

The second set concerns 18 instances that are randomly generated with a
number of piece types between 2 and 18 as shown in Table 3. Piece
heights and widths are randomly generated between 150 and 600 mm
and demand between 1000 and 20000. Sheet dimensions are fixed to
2500 mm × 1850 mm.

The instances are tested with the proposed approach and results are
reported in Table 3. For each instance, the number of designed patterns,
NUSPSO, and corresponding trim loss are given. Results show that the trim
loss is less than 7.8% for all instances with an average value equal to 6%. For
five of the tested instances (#1, #2, #4, #7, and #9), the trim loss remains less
than 5% with a specific low value for instance #1 equal to 2.6%. These
results show a significant efficiency of the proposed approach in optimizing
trim loss and consequently the use of raw materials for randomly generated
instances inspired from real-world cases.

It is worth to note that instance #1—that is characterized by the
lowest obtained trim loss—has the minimal problem dimension (with
NUSPSO = 540 sheets and only two pieces types) in comparison to all
tested instances. However, we cannot say that the solution optimality
depends on the problem dimension, based on the results of the other
instances. Let’s consider instances #2 and #15 for example: results show
that trim loss corresponding to instance #2 is equal to 4.54% counter a
trim loss of 7.83% for instance #15 although the dimension of instance
#2 is higher than the dimension of instance #15. In fact, the number of
pieces types is equal to 16 and NUSPSO = 5029 sheets for instance #2,
while the number of pieces types is equal to 6 and NUSPSO = 2636 sheets
for instance #15 Thus, solution optimality depends on the adequacy
between pieces and sheets dimensions.

Although results show the efficiency of the algorithm in reaching low
trim loss, the number of generated patterns yielding to the optimized
results can reach important values (c.f. 40 patterns for instance #16).
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From industrial practical perspective, this can generate additional set up
costs related to necessary number of pattern changes in the cutting
process.

Conclusions and perspectives

In this paper, a PSO-based approach with specific operators is provided to
solve non-guillotine non-oriented CSP. The CSP is divided into several
CPs that are solved iteratively. Computations are provided on two sets of
instances showing and validating the efficiency of the algorithm. Results
show a trim loss comprised between 2.6% and 7.8% for all considered
instances, which confirms that algorithms adopting the PSO techniques
are promising issues that should be well investigated for CSPs.

As future work, we propose to adapt the proposed approach to the case
of multi-period non-guillotine CSP in a rolling planning horizon context.
In addition, considering the problem as a bi-objective one in order to find
a compromise between optimized trim loss and number of generated
patterns can represent an interesting issue that meets real world industrial
perspectives.
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Appendix 1

For each instance from the first set, optimal patterns are represented and corresponding
sheets’ width (W) and height (H) as well as number of sheets (NS) to be cut following each
pattern are reported above the represented pattern as following: (W,H,NS).

(1) Optimal patterns of instance #1:

(1843, 1400, 3489)

(2) Optimal patterns of instance #2:

(1611, 1550, 659) (1611, 1550, 1203)
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(3) Optimal patterns of instance #3:

(1918, 1660, 208) (1918, 1660, 439) 

)152,0661,8191()855,0661,8191(

(1918, 1660, 339) (1918, 1660, 802) 

(1918, 1660, 1128) (1918, 1660, 705) 
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(4) Optimal patterns of instance #4:

(1568, 1924, 273) 

(1568, 1924, 320) (1568, 1924, 450) (1568, 1924, 720) 

(1568, 1924, 543) (1568, 1924, 678) (1568, 1924, 411) 

(1568, 1924, 201) (1568, 1924, 67) (1568, 1924, 276) 
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