
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: 0883-9514 (Print) 1087-6545 (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

An Application on Mobile Devices with Android
and IOS Operating Systems Using Google Maps
APIs for the Traveling Salesman Problem

İlhan İlhan

To cite this article: İlhan İlhan (2017) An Application on Mobile Devices with Android and IOS
Operating Systems Using Google Maps APIs for the Traveling Salesman Problem, Applied
Artificial Intelligence, 31:4, 332-345, DOI: 10.1080/08839514.2017.1339983

To link to this article: https://doi.org/10.1080/08839514.2017.1339983

Published online: 05 Jul 2017.

Submit your article to this journal

Article views: 1055

View related articles

View Crossmark data

Citing articles: 2 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2017.1339983
https://doi.org/10.1080/08839514.2017.1339983
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2017.1339983
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2017.1339983
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2017.1339983&domain=pdf&date_stamp=2017-07-05
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2017.1339983&domain=pdf&date_stamp=2017-07-05
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2017.1339983#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2017.1339983#tabModule

An Application on Mobile Devices with Android and IOS
Operating Systems Using Google Maps APIs for the
Traveling Salesman Problem
İlhan İlhan

Department of Mechatronic Engineering Faculty of Engineering and Architecture, Necmettin Erbakan
University, Konya, Turkey

ABSTRACT
Nowadays, the Traveling Salesman Problem (TSP) is one of the
most studied combinational optimization problems that
researchers study. Although it is easy to define, its solution is
hard. Therefore, it is one of the NP-hard problems in the
research literature. It can be used to solve real-life problems
such as route planning and scheduling, and transportation and
logistics applications. In this study, for TSP, an interface that
can run on mobile devices using Android and IOS operating
systems is developed. Real-world data are used online by the
interface. Locations, and the distance between them, are
obtained instantly by Google Maps APIs. Genetic (GA) and
ant colony optimization (ACO) algorithms are used to solve
the TSP. Furthermore, users have also been allowed to conduct
trials for different parameter values. The application developed
has been tested on two different datasets. The test results
show that for the determination of the optimum route, the
ACO algorithm is better than the GA. However, when consider-
ing the run times, GA works much faster than ACO.

Introduction

The Traveling Salesman Problem (TSP), first proposed by Eular in 1759, is quite
an old problem. It was first defined mathematically by Menger (1932) in the
early 1930s. Nowadays, this problem is one of the most studied combinational
optimization problems that researchers study. Although it is easy to define, its
solution is hard. Therefore, it is one of the NP-hard problems in the research
literature (Garey and Johnson 1979). It can be used to solve real-life problems
such as route planning and scheduling, and transportation and logistics applica-
tions. Consequently, it provides an ideal test environment, especially for
researchers conducting studies on optimization techniques (Johnson 1990).

The specific solution algorithms (dynamic programing, branch and bound,
branch and cut, etc.) proposed for TSP give successful results to some extent

CONTACT İlhan İlhan ilhan@konya.edu.tr Department of Mechatronic Engineering Faculty of Engineering
and Architecture, Necmettin Erbakan University, Konya 42090, Turkey.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/UAAI.

APPLIED ARTIFICIAL INTELLIGENCE
2017, VOL. 31, NO. 4, 332–345
https://doi.org/10.1080/08839514.2017.1339983

© 2017 Taylor & Francis

http://www.tandfonline.com/UAAI
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2017.1339983&domain=pdf&date_stamp=2017-10-26

(Applegate et al. 2011; Ascheuer, Fischetti, and Grötschel 2001; Arora, 1998;
Held and Karp 1962; Johnson and McGeoch 1997; Miller and Pekny 1991).
However, the problem size and execution times increase as the number of
points increases, and as a result, obtaining the optimum results becomes
impossible. For that reason, researchers who are studying this issue have
concentrated more on heuristic and metaheuristic methods. Although they
do not guarantee the optimum result, these methods can produce satisfying
results because of the short running times.

A set of studies has been conducted by the researchers using different
heuristic and metaheuristic algorithms for TSP. In the first group of studies,
various benchmark data were used, and the experiments were performed by
computers (Hingrajiya, Gupta, and Chandel 2012; Hlaing and Khine 2011;
Király and Abonyi 2015; Li, Wang, and Song 2008; Mohammed 2013; Osaba
et al. 2016; Silva and Runkler 2004). In the second group of studies, real-
world data have been used and the applications have been developed for use
on mobile devices (Aydin and Telceken 2015; Fajardo and Oppus 2010;
Helshani 2015; Jana and Chattopadhyay 2015). The first of these applications
was MyDisasterDroid, which can operate on devices using the Android
operating system (Fajardo and Oppus 2010). This system was designed as a
disaster management system for the Philippines. In case of a natural disaster,
it was used to determine the optimum route so that rescue and help assis-
tance can reach to the affected regions as effectively as possible. The distances
between geographic locations were calculated by Euclidean distance, and a
genetic algorithm (GA) was used to determine the optimum route. In the
second application, a client–server system was developed (Helshani 2015).
An Android application is built on the client side. The location data to be
visited are determined by the Android application and sent to the server.
There is GA code developed in Java on the server. The location data are
processed by this code, and the optimum route is calculated using Google
APIs. The route obtained is sent to the Android application built on the
client side. In another study, a mobile trip planner for the city of Eskişehir
was developed (Aydin and Telceken 2015). First, 30 points and 150 subpoints
in this city were determined as the locations to be visited, and then the
location data were saved to the application. The application was tested
separately for two different scenarios by choosing five and 10 locations to
be visited. During the test, both A* and ant colony optimization (ACO)
algorithms were used to find the optimum route. The results obtained have
shown that both algorithms can determine the same optimum route. In a
later study, a navigation system was developed for the campus of Jadavpur
University (Jana and Chattopadhyay 2015). It was aimed at helping students,
faculty members, and staff to travel from their current location to their
required destination as fast as possible. An Android application for users
was developed with this aim. A web interface was also developed to update

APPLIED ARTIFICIAL INTELLIGENCE 333

event and location data. The shortest route from users’ current location to
the requested destination was calculated and sent to the user interface
through the interface used by the map manager.

In this study, an interface that can operate on devices with Android and IOS
operating systems has been developed for TSP. Real-world data are used online
by the interface. The users can determine the locations they want to visit. The
locations and the distance between them are obtained instantly by Google Maps
APIs. GA and ACO algorithms are used to solve the TSP. Furthermore, users
have also been allowed to conduct trials for different parameter values. The
results obtained from trials can be displayed as a table and graphic for each
algorithm. Furthermore, the locations, trip order, and the route can be examined
on the map. The results obtained can be displayed and examined comparatively
at the same time for both algorithms.

TSP

In the TSP, a salesman or a vehicle is asked to visit all the locations in the
system only once by starting from a certain location and return to the initial
location. In the meantime, the aim is to keep the total tour length to a
minimum. In order to solve the problem, distances between all points should
be known. If n is the total number of points, then for the first point, there are
n – 1 alternative points to go to, and for the second point, there are n – 2
alternative points to go to. Here, n expresses the size of the problem, and the
number of possible tours involved is (n – 1)! As stated previously, reaching
the exact solution is possible when there are a fewer number of points.
However, as the number of points increases, the number of alternative
solutions increases quickly and much more time is needed to find the
optimum solution. TSP is expressed mathematically as follows (Dantzig et
al. 1954):

y ¼
Xn
i¼1

Xn
j¼1; i�j

x i; jð Þd i; jð Þ (1)

Xn
j¼1; j�i

x i; jð Þ ¼ 1; i ¼ 1; 2; :::; n (2)

Xn
i¼1; i�j

x i; jð Þ ¼ 1; j ¼ 1; 2; :::; n (3)

Xn
i; j2S; i�j

x i; jð Þ � Sj j � 1;"S � 1; 2; :::; nf g (4)

334 İ. İLHAN

x i; jð Þ ¼ 1; if the path goes from point i to point j
0; Otherwise

� �
(5)

The objective function of the TSP is shown in Equation (1). Here, d(i, j)
shows the distance between points i and j. Term x(i, j) shows whether it goes
from point i to point j. Equations (2) and (3) are aimed at guaranteeing that
each point will be visited only once. According to Equation (2), each point is
left only once, and according to Equation (3), each point is visited only once.
Equation (4) states a subtour elimination limit to prevent subtours being
created. In Equation (5), the fact that x(i, j) is equal to 1 shows that there was
a tour from i to j; if it is equal to 0, it means there was no tour.

In this study, assuming that a vehicle is going to be used, the distances
between points are obtained by using real-world data. For this process, Google
Directions and Places APIs are used. Because d(i, j) ≠ d(j, i) in asymmetric TSP
(due to traveling by vehicle), distances from i to j and from j to i are calculated
separately in this study as well (Zhang and Korf 1996). When finding the d(i, j)
value, the shortest route is taken into consideration if there are more than one
alternative routes from point i to point j.

Algorithms

In order to determine the optimum route between locations, GA and ACO
algorithm were used in this study. The details of the GA and ACO algorithm
specifically proposed for the development of this application are given in
subsections.

GAs

GAs are one of the heuristic optimization algorithms applied by researchers
to many problems and were first proposed by Holland (1975). In this study,
they have been used with real-world data for the solution of TSP on mobile
devices with Android and IOS operating systems. First, the random initial
population is created according to the population size determined by the
user. Each gene forming the chromosomes corresponds to the points to be
visited. For example, assuming that the number of points to be visited is 8,
81275463 represents an example of a chromosome. After creating the initial
population, the fitness value for each chromosome is calculated. For this,
data for the distance between points are used. The fitness value of each
chromosome is calculated by adding distance data.

After calculating the fitness value, natural selection for the chromosomes
begins. In this process, different methods are used. Because of its quite
common use, a roulette wheel selection method has been chosen for this
study. In natural selection, the process of the production of a new generation

APPLIED ARTIFICIAL INTELLIGENCE 335

from the selected chromosomes is defined as “crossover.” Crossover is
carried out according to the crossover rate given to the algorithm as an
input. The one-point crossover method is a commonly used method, so it has
been used in this study. However, for TSP, some standardization operations
need to be applied after crossover, because the salesman is asked to visit all
the cities only once. In the population obtained from crossover, this situation
falls into decay. In this study, standardization is applied with the condition
that the first repeating city in the chromosome is replaced with the unvisited
city having the smallest number (see Table 1).

A mutation process is applied by changing the location of the genes in the
randomly selected chromosomes according to the mutation rate given to the
algorithm as an input by the user. Which genes will be replaced are deter-
mined randomly. After this operation, the fitness value of the population
obtained is calculated, and hence the initial population is obtained for the
next generation (iteration). The process continues up to the iteration number
given to the algorithm as an input by the user.

ACO algorithm

The ACO algorithm was developed by Dorigo (1992) in order to solve
combinational optimization problems. This algorithm starts with the
determination of the initial pheromone value of the routes between
points. In this study, initial pheromone values for each route were taken
as 10–4. The ant population should be created according to the size of the
population input to the algorithm by the user. To do this, each ant should
be placed randomly to the locations first. Then, Equation (6) is used to
determine to which location the ant k at i location will go out of u
alternative locations.

j ¼ maxu2Jk ið Þ τ i; uð Þ½ �α � η i; uð Þ½ �β if q � q0
use Equation 8ð Þ Otherwise

� �
(6)

Here, τ(i, u) is the pheromone trail on the (i, u) path. The term η(i, u) = 1/δ
(i, u) is the reverse of the distance from point i to point u. The term Jk(i)
represents the nodes that have not yet been reached by ant k at point i. The α
value (α > 0) indicates the importance of the pheromone amount of the
related path, and the β value (β > 0) indicates the effect of path lengths in the
selection of the next point. This parameter is entered into the algorithm as an
input by the user. The term q0 (0 ≤ q0 ≤ 1) is the parameter that shows the

Table 1. Crossover and standardization processes.
Before crossover After crossover After standardization

Parent 1 81275463 Offspring 1 81275615 Offspring 1 81275634
Parent 2 32478615 Offspring 2 32478463 Offspring 2 32478165

336 İ. İLHAN

relative importance of searching the solution space. If q > q0, the second
transition rule is operated and the probability of the selection of paths to be
followed is calculated according to Equation (7).

Pk i; jð Þ ¼
τ i; jð Þ½ �α� η i; jð Þ½ �βP

u2Jk ið Þ τ i; uð Þ½ �α� η i; uð Þ½ �β if j 2 Jk ið Þ
0 Otherwise

8<
:

9=
; (7)

Once all the ants have completed their tour, the local pheromone is updated
according to Equations (8) and (9).

τij t þ 1ð Þ ¼ 1� ρð Þτij tð Þ þ
Xm
k¼1

Δτkij t þ 1ð Þ (8)

Δτkij t þ 1ð Þ ¼ 1=Lk t þ 1ð Þ if ant k used the path ij
0 Otherwise

�
(9)

Here, τij tð Þ is the initial pheromone level, and ρ is the pheromone
evaporation parameter determined by the user. The term Lk t þ 1ð Þ is the
total tour length for ant k. Once all the ants have completed their tour,
the global pheromone is updated. The pheromone amount on the paths
followed by the ant using the shortest path is increased according to
Equations (10) and (11).

τij t þ 1ð Þ ¼ 1� ρð Þ τij tð Þ þ Δτkij t þ 1ð Þ (10)

Δτkij t þ 1ð Þ ¼ 1=Lbest t þ 1ð Þ if ij belongs to the best tour
0 Otherwise

�
(11)

Lbest t þ 1ð Þ is the best tour length obtained globally. These processes in the
ACO algorithm are repeated until the iteration number determined by the
user has been reached.

The developed interface

A large majority of the operating system market for smart mobile devices
(phones, tablets, etc.) is dominated by Google Android and Apple IOS
(Strategy Analytics 2015). Therefore, these two platforms are aimed for the
applications developed. Embarcadero Delphi 10 Seattle has been used as the
application development interface due to its cross-platform quality. TMS
WebGMaps for FireMonkey component compatible with Delphi 10 Seattle
was preferred for the use of Google Maps APIs such as Directions and Places.
The SQLite database was used to store all the data entered into the applica-
tion and the results obtained.

Figure 1 shows the main window of the developed interface. In this
window, the related data-entering window will be opened if the Data Input

APPLIED ARTIFICIAL INTELLIGENCE 337

button is clicked (Figure 2). This window is used to enter location informa-
tion, to show locations on the map, and to calculate the distances between
these locations for TSP. As can be seen in Figure 2a, the location information
can be entered both as a name and as a latitude–longitude. When it is entered
as a name, its correspondence to a latitude–longitude is found and when it is
entered as a latitude–longitude, its correspondence to a name is found using
Google Places API, and then saved to the database. Moreover, the location
information entered can be displayed on the map (Figure 2c). The distances
between locations are calculated by using Google Directions API. When
more than one routes are found between two locations, the shortest one is
taken as the distance between these two locations. Distances between loca-
tions are calculated separately as bidirectional, because in asymmetric TSP,
the distance from point i to point j can differ from the distance from point j
to point i (Figure 2b).

Windows providing parameter adjustment for the GA and for the ACO
algorithm are shown in Figure 3a and b, respectively. These windows are
reached with the help of related buttons from the main window. After
entering the parameter values, the algorithms are activated by clicking the
Run button. The algorithms use the location and distance information
determined by the Data Input window. The details of the algorithms were
given in previous sections. The results obtained by the GA and ACO algo-
rithm are recorded along with the parameter values, and are displayed
graphically. The window showing the results related to that algorithm as a
list is opened by clicking the Results button (Figure 3c). This window shows
how much distance has been covered for which route in which iteration.
Furthermore, by choosing any iteration, the route of that iteration can be

Figure 1. Main window of the interface.

338 İ. İLHAN

displayed on the map along with the order of the locations visited
(Figure 3d).

When the Comparison of Results button is selected on the interface window
shown inFigure 1, awindow is openedwhere the results obtained canbe compared
in different ways. Figure 4a shows the comparison the results obtained for two
algorithms in a list. The comparison is made on the basis of the route followed,
distance obtained, and elapsed time for each iteration. In Figure 4b, the

(a) (b)

(c)

Figure 2. (a) Entering location information in the IOSoperating system. (b) Listing the distance between
locations in the Android operating system. (c) Showing the locations on the map in the IOS operating
system.

APPLIED ARTIFICIAL INTELLIGENCE 339

comparison between the results obtained for two algorithms is shown as a graphic.
The comparison between the routes followed by two algorithms is given in
Figure 4c. The comparison operation shown here can be created by the results
obtained from each iteration (by choosing the related iteration from the list).

Results

The developed application was tested for the solution of TSP on two
mobile devices with Android and IOS operating systems. The first device
is an LG G3 D855 and the other is an IPad Mini 3. The LG G3 D855 has
a quad-core 2.5 GHz Krait 400 processor architecture and 3 GB RAM. It
has the Android 4.4.2 KitKat operating system. The IPad Mini 3 has an
ARMv8 processor architecture and 1 GB RAM and the IOS 8.0 operating
system.

The application developed for the smart mobile devices was tested for
two different datasets. The first dataset was formed in a way that covered
seven different geographic regions of Turkey by selecting 20 different
cities. In the second dataset, the districts of Konya were taken into
consideration. Twenty districts were selected to be located across the
entire city. Table 2 shows the cities and districts in the datasets, with
their locations.

(a) (b)

(c) (d)

Figure 3. (a) GA window in the Android operating system. (b) ACO algorithm window in the IOS
operating system. (c) Listing the GA results in the Android operating system. (d) Showing the
ACO results on the map in the IOS operating system.

340 İ. İLHAN

Table 2. The locations of the cities and districts in the datasets.
The first dataset The second dataset

City Latitude Longitude District Latitude Longitude

Konya 37.8746429 32.4931554 Cihanbeyli 38.656883 32.923303
Ankara 39.9333635 32.8597419 Kulu 39.090245 33.080528
Antalya 36.8968908 30.7133233 Kadınhanı 38.240871 32.207868
Adana 36.9914194 35.3308285 Yunak 38.813456 31.735652
Kayseri 38.7204890 35.4825970 Ilgın 38.281724 31.913950
Gaziantep 37.0659530 37.3781100 Doğanhisar 38.145955 31.676750
Samsun 41.2797031 36.3360667 Beyşehir 37.679796 31.724299
Uşak 38.6742286 29.4058825 Seydişehir 37.419260 31.848216
Denizli 37.7830159 29.0963328 Akören 37.452598 32.371139
İzmir 38.4237340 27.1428260 Bozkır 37.188912 32.245393
Bursa 40.1885281 29.0609636 Çumra 37.573899 32.781038
İstanbul 41.0082376 28.9783589 Karapınar 37.715320 33.546570
Kastamonu 41.3766250 33.7764970 Halkapınar 37.433643 34.186855
Sivas 39.7505450 37.0150217 Akşehir 38.360258 31.417991
Siirt 37.9274040 41.9419780 Hadim 36.986063 32.455875
Diyarbakır 37.9249733 40.2109826 Güneysınır 37.267923 32.727420
Erzurum 39.9054993 41.2658236 Sarayönü 38.264661 32.407075
Van 38.5012085 43.3729793 Altınekin 38.308274 32.868888
Trabzon 41.0026969 39.7167633 Çeltik 39.023429 31.790552
Kars 40.6013378 43.0974525 Hüyük 37.951279 31.599333

(a) (b)

(c)

Figure 4. The comparison between the algorithm results obtained from the Android and IOS
operating systems. (a) As a list. (b) As a graphic. (c) On the map.

APPLIED ARTIFICIAL INTELLIGENCE 341

The developed application was tested using the GA and ACO algo-
rithm on each of the two datasets. Test operations was carried out for
different iteration and population size values. The crossover rate was
taken as 0.9 and the mutation rate as 0.1 for the GA. For the ACO
algorithm, α and β parameters were taken as 2 and the pheromone
evaporation value as 0.5. Trials were carried out separately on both
mobile devices with Android and IOS operating systems. The results
obtained are provided with details in Tables 3 and 4. As seen in both
tables, ACO produces better results than GA regarding the length of the
route. For example, using the dataset of cities for an iteration number of
100 and a population size of 50, while the result was 7588 km for GA, it
was 5630 km for ACO, when the Android device was used. Similarly,
using the same dataset for the same iteration number and population
size, while the result was 7479 km for GA, it was 5637 km for ACO,
when the IOS device was used. With regard to their elapsed time, it was
observed that GA works much faster than ACO. For example, using the
dataset of districts for an iteration number of 100 and a population size
of 50, while the result was 198 ms for GA, it was 5074 ms for ACO,
when the Android device was used. Similarly, using the same dataset for
the same iteration number and population size, while the result was
47 ms for GA, it was 3568 ms for ACO, when the IOS device was
used. These results show that ACO works better than GA in determining

Table 3. The results obtained for the dataset of cities.
Android IOS

Distances (km) Times (ms) Distances (km) Times (ms)

Iteration Population GA ACO GA ACO GA ACO GA ACO

100 20 7588 5891 62 1944 8164 5726 18 1411
100 50 7588 5630 198 4677 7479 5637 47 3517
100 100 6969 5583 292 9742 7049 5596 99 7070
200 50 7436 5475 276 9570 7272 5958 94 7047
200 100 7025 5458 467 39,378 7029 5783 196 14,079
200 200 6698 5458 1281 57,065 6670 5569 427 28,175

Table 4. The results obtained for the dataset of districts.
Android IOS

Distances (km) Times (ms) Distances (km) Times (ms)

Iteration Population GA ACO GA ACO GA ACO GA ACO

100 20 1398 1263 67 3267 1464 1212 19 1424
100 50 1398 1245 198 5074 1448 1210 47 3568
100 100 1376 1183 386 10,101 1446 1198 99 7116
200 50 1449 1224 360 10,589 1447 1213 95 7117
200 100 1331 1206 720 39,500 1394 1205 199 14,223
200 200 1329 1198 1052 79,082 1368 1198 432 28,450

342 İ. İLHAN

the optimum route. However, when comparing the elapsed time, the
result is reversed with GA working better than ACO.

Figure 5a shows the graphical comparison between the results obtained for
GA and ACO with an iteration number and a population size of 100, for the
dataset of cities using the IOS device. For each algorithm, the comparisons of
the best routes obtained are shown in Figure 5b.

Conclusion

In this study, an interface that can operate on mobile devices with Android and
IOS operating systems has been developed. Real-world data have been used

(a)

(b)

Figure 5. (a) Graphical comparison of the results. (b) Displaying the best routes obtained on themap.

APPLIED ARTIFICIAL INTELLIGENCE 343

online in the developed interface and locations are determined by the user. The
locations and the distance between them are obtained instantly by Google
Places and Directions APIs. GA and ACO are used to solve TSP.
Furthermore, users have also been allowed to conduct trials for different
parameter values. The results obtained from the trials can be viewed as a
table or a graphic for each algorithm. Moreover, the locations can be analyzed
on the map along with the order and route of the travel. The results can also be
displayed and analyzed comparatively and simultaneously for both algorithms.

The application developed was tested on two different datasets. The test
results show that ACO is better in determining the optimum route, and GA
is better in terms of the running times.

Acknowledgments

This study is supported by Necmettin Erbakan University Scientific Research Projects
Coordinatorship, Konya, Turkey. The authors would like to thank the editors and anon-
ymous reviewers of this manuscript for their very helpful suggestions.

References

Applegate, D. L., R. E. Bixby, V. Chvatal, and W. J. Cook. 2011. The traveling salesman
problem: A computational study. Princeton University Press, 41 William Street, Princeton,
New Jersey, USA.

Arora, S. 1998. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. Journal of the ACM (JACM) 45 (5):753–82. doi:10.1145/
290179.290180.

Ascheuer, N., M. Fischetti, and M. Grötschel. 2001. Solving the asymmetric travelling
salesman problem with time windows by branch-and-cut. Mathematical Programming
90 (3):475–506. doi:10.1007/PL00011432.

Aydin, A., and S. Telceken. 2015. Artificial intelligence aided recommendation based mobile
trip planner for Eskisehir city. In Industrial Electronics and Applications (ICIEA), Auckland,
New Zealand, 15–17 June 2015, 1650–54.

Dantzig, G., R. Fulkerson, and S. Johnson. 1954. Solution of a large-scale traveling-salesman
problem. Journal of the Operations Research Society of America 2 (4):393–410. doi:10.1287/
opre.2.4.393.

Dorigo, M., 1992. Optimization, learning and natural algorithms. Ph. D. Thesis, Politecnico di
Milano, Milano, Italy.

Fajardo, J. T., and C. M. Oppus. 2010. A mobile disaster management system using the
android technology. WSEAS Transactions on Communications 9 (6):343–53.

Garey, M. R., and D. S. Johnson. 1979. Computers and intractability: A guide to the theory of
NP-Completeness. New York: W. H. Freeman And Company, New York, USA.

Held, M., and R. M. Karp. 1962. A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied Mathematics 10 (1):196–210. doi:10.1137/
0110015.

Helshani, L. 2015. An android application for google map navigation system, solving the
travelling salesman problem, optimization throught genetic algorithm. Proceedings of
FIKUSZ, 89, Óbuda University, Budapest, Hungary.

344 İ. İLHAN

http://dx.doi.org/10.1145/290179.290180
http://dx.doi.org/10.1145/290179.290180
http://dx.doi.org/10.1007/PL00011432
http://dx.doi.org/10.1287/opre.2.4.393
http://dx.doi.org/10.1287/opre.2.4.393
http://dx.doi.org/10.1137/0110015
http://dx.doi.org/10.1137/0110015

Hingrajiya, K. H., R. K. Gupta, and G. S. Chandel. 2012. An ant colony optimization
algorithm for solving travelling salesman problem. International Journal of Scientific and
Research Publications 2 (8):1–6.

Hlaing, Z. C., and M. A. Khine. 2011. Solving traveling salesman problem by using improved
ant colony optimization algorithm. International Journal of Information and Education
Technology 1 (5):404. doi:10.7763/IJIET.2011.V1.67.

Holland, J. H. 1975. Adaptation in natural and artificial systems. Ann Arbor: The University
of Michigan Press, London, England.

Jana, S., and M. Chattopadhyay. 2015. An event-driven university campus navigation system
on android platform. In Applications and Innovations in Mobile Computing (AIMoC),
Kolkata, India, 12-14 February 2015, 182–87.

Johnson, D. S. 1990. Local optimization and the Traveling Salesman Problem. In International
Colloquium on Automata, Languages, and Programming (ICALP), England, 16–20 July
1990, 446–461.

Johnson, D. S., and L. A. McGeoch. 1997. The traveling salesman problem: A case study in
local optimization. Local Search in Combinatorial Optimization 1:215–310.

Király, A., and J. Abonyi. 2015. Redesign of the supply of mobile mechanics based on a novel
genetic optimization algorithm using Google Maps API. Engineering Applications of
Artificial Intelligence 38:122–30. doi:10.1016/j.engappai.2014.10.015.

Li, B., L. Wang, and W. Song. 2008. Ant colony optimization for the traveling salesman
problem based on ants with memory. Natural Computation 7:496–501.

Menger, K. 1932. Das botenproblem. In Ergebnisse eines Mathematischen Kolloquiums, Vol. 2.
Leipzig, Germany: Teubner.

Miller, D. L., and J. F. Pekny. 1991. Exact solution of large asymmetric traveling salesman
problems. Ed., K. Menger, Science 251 (4995):754–61. doi:10.1126/science.251.4995.754.

Mohammed, K. S. 2013. Modified ant colony optimization for solving traveling salesman
problem. International Journal of Engineering & Computer Science 13 (5):1–5.

Osaba, E., X. S. Yang, F. Diaz, P. Lopez-Garcia, and R. Carballedo. 2016. An improved discrete
bat algorithm for symmetric and asymmetric Traveling Salesman Problems. Engineering
Applications of Artificial Intelligence 48:59–71. doi:10.1016/j.engappai.2015.10.006.

Silva, C. A., and T. A. Runkler. 2004. Ant colony optimization for dynamic traveling salesman
problems. In ARCS Workshops, Brussels, Belgium, 22–24 September 2008, 259–66.

Strategy Analytics. 2015. Global smartphone shipments growth slows to 15 percent in Q2 2015.
July,Boston, United States, Strategy Analytics Inc.

Zhang, W., and R. E. Korf. 1996. A study of complexity transitions on the asymmetric
traveling salesman problem. Artificial Intelligence 81 (1):223–39. doi:10.1016/0004-3702
(95)00054-2.

APPLIED ARTIFICIAL INTELLIGENCE 345

http://dx.doi.org/10.7763/IJIET.2011.V1.67
http://dx.doi.org/10.1016/j.engappai.2014.10.015
http://dx.doi.org/10.1126/science.251.4995.754
http://dx.doi.org/10.1016/j.engappai.2015.10.006
http://dx.doi.org/10.1016/0004-3702(95)00054-2
http://dx.doi.org/10.1016/0004-3702(95)00054-2

	Abstract
	Introduction
	TSP
	Algorithms
	GAs
	ACO algorithm
	The developed interface
	Results
	Conclusion
	Acknowledgments
	References

