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1.  Introduction

The frequency comb has been proven to be very powerful in 
the field of metrology, such as absolute frequency measure-
ment [1], absolute distance/thickness measurement [2–4], 
and the refractive index measurement [5], etc. The frequency 
comb is a pulse light with a stable time interval in the time 
domain, and comprises a series of discrete and uniform 
spectral lines in the optical domain, which can be traceable 
to a time/frequency standard once the repetition frequency 
and the carrier envelop offset frequency are well locked [6].  

In 1983, the speed of light in vacuum was strictly defined as 
c  =  299,792,458 m s−1, and the meter is thus defined as the 
length light travels in vacuum in 1/c s, truly uniting distance 
ranging and time keeping.

A frequency comb-based ranging system can determine 
long distances in air, with a high-precision, large non-ambi-
guity range, and a high up-date rate. During the past decade, 
researchers have proposed many methods for distance 
metrology using the frequency comb. First, the distance can 
be determined by the mode phases, which can be obtained by 
the inter-mode beat with one single comb laser [7], or multi-
heterodyne with dual combs [8]. Second, a technique based on 
pulse cross correlation can measure distances by Hilbert trans-
form to evaluate the peak position of the fringe packet [9–12], 
Fourier transform to get the slope of the unwrapped spectral 
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phase [13], the stationary phase of the chosen wavelength in 
the spectral range of the comb laser [14–16], the peak shift 
of the cross-correlation patterns [17, 18], and the interfered 
intensity [19, 20]. Third, pulse-to-pulse alignment [21–24] 
can make the pulses in space align with each other precisely, 
where the unknown distances are strictly the integer multi-
ples of the pulse-to-pulse length. Fourth, dispersive interfer-
ometry can determine distances through the derivative of the 
unwrapped phase of the spectrograms [25–29], which are usu-
ally captured by a CCD camera. In addition, a frequency comb 
can calibrate continuous wave lasers, to improve the accuracy 
of distance measurement dramatically [30, 31].

We focus on the method of dispersive interferometry, which 
has already been used in long distance measurement up to 50 
m with micrometer precision [27], nanometer resolution [26], 
and fast responding speed [25]. Despite these advantages, the 
practical measurement range is actually only tens of millime-
ters in the vicinity of the multiples of the pulse-to-pulse length 
due to the limited resolution of the spectrometer, as mentioned 
in [27], which means previous methods based on only disper-
sive interferometry can not measure arbitrary distances, leading 
to a wide dead zone. In addition, there is no discussion about 
the measurement of the integer number of the pulse-to-pulse 
length using dispersive interferometry, which can potentially 
extend the non-ambiguity range of our measurement.

In this paper, a short description of the theory of dispersive 
interferometry is demonstrated first. After that, we introduce 
the principles of distance measurement and the measurement 
of the integer number of pulse-to-pulse length. In the experi-
ments, a combined system is proposed, which is composed of 
a Michelson interferometer and a highly unbalanced Mach–
Zehnder interferometer, which truly enables arbitrary distance 
measurement only using dispersive interferometry without 
any dead zones. Our experiment results show an agreement 
within 1.5 μm in a range of 1 m. The integer number of pulse-
to-pulse length can be measured by tuning the repetition 
frequency of the comb laser. In long distance measurement, 
an agreement well within 25 μm in a range up to 75 m is 
achieved, corresponding to a relative precision of 3.3  ×  10−7. 
Finally, we perform theoretical and experimental optimization 
of the measurement uncertainty for this widely used method 
using dispersive interferometry.

2.  Measurement principle

2.1.  Principle of dispersive interferometry for distance meas-
urement

First, we give a short description of the principle of dispersive 
interferometry using an unbalanced Michelson interferom-
eter, as shown in figure 1. The pulse train emitted by the comb 
source is split into two beams, which are recombined after 
travelling through various optical delays. A spectrometer is 
used to detect and record the spectrum. The measured distance 
L is the length difference between the reference beam and the 
measurement beam.

The comb can be expressed as E(t) in the time domain and 
E(ω) in the frequency domain. The center frequency of the 

frequency comb is ωc. We record the reference pulse that goes 
into the reference beam and is reflected by reference mirror 
MR as Eref(t), whose spectrum is Eref(ω) correspondingly. The 
measurement pulse that goes into the measurement beam and 
is reflected by target mirror MT is recorded as Epro(t), and 
the spectrum is Epro(ω). The time delay between the refer-
ence pulse and the measurement pulse is τ, and the unknown 
distance L can be thus calculated as L  =  cτ/(2ng). c is the 
speed of light in vacuum, and ng is the group refractive index. 
ng  =  n(λ)  −  λ∂n(λ)/∂λ.

The spectrum of the reference pulse can be expressed as:

( ) ( )ω α ω=E E .ref� (1)

Based on the Fourier transform, the spectrum of the meas-
urement pulse can be expressed as:

ω β ω τω= −E E exp i .pro( ) ( ) ( )� (2)

Therefore, the power ratio of the reference pulse and the 
measurement pulse can be expressed as α2/β2. Please note that 
α and β are not constant here, which are spectrally dependent 
and distance-dependent.

The spectral intensity detected by the spectrometer can be 
calculated as:
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From equation (3), it can be found that the spectral inter-
ference fringe consists of two parts: a dc term and an inter-
fered term. The dc intensity of the interference fringe is 
(α2  +  β2)E2(ω), and the interfered term is 2αβcos(τω)E2(ω). 
The values of α and β (i.e. the power ratio of the reference 
pulse and the measurement pulse) contribute to the modula-
tion depth (contrast) of the spectrograms. The fringes can 
always reach zero when α equals β, and the modulation depth 
becomes shallower with increasing the difference between α 
and β, where a deeper modulation depth is preferred in the data 
process. From the interfered term, the modulation frequency 

Figure 1.  Schematic of the experimental setup.

-
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of the interferogram is the time delay τ between the reference 
pulse and the measurement pulse in fact.

In long-range distance measurement, where L is larger than 
Lpp/2 in a Michelson interferometer, the unknown distances 
can be calculated as:

τ= ⋅ + ⋅
⎛

⎝
⎜

⎞

⎠
⎟L N L

c

n

1

2 g
pp� (4)

where N is the integer number of Lpp, and Lpp is the pulse-to-
pulse length, Lpp  =  c/(  frepng), frep is the repetition frequency 
of the comb laser, and ng  =  n(λ)  −  λ∂n(λ)/∂λ. According to 
equation (4), the distance can be determined by precisely mea-
suring N and τ, and τ can be obtained by Fourier transforming 
the spectrograms.

2.2.  Determination of N

In long distance measurement, it is very important to determine 
the value of the integer number of the pulse-to-pulse length. We 
can easily determine the value of N by changing the repetition 
frequency. Here we consider three situations when we tune the 
repetition frequency slightly, which are shown in figure 2.

Assuming the repetition frequency is increased from frep to 
frep  +  ∆f, in the case of figure 2(a) the shift displacement of 
the measurement pulse can be expressed as:

⎛

⎝
⎜⎜

⎞

⎠
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n f f f
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.
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According to equation (4), the distance variation we measured 
by the frequency of the interferogram can be expressed as:

( )τ τ= ⋅ −d
c

ng
1 2� (6)

where τ1 and τ2 are the time delays between the reference 
pulse and the measurement pulse before and after increasing 
the repetition frequency, respectively, which can be obtained 
through the frequency of the spectral modulation. Uniting 
equations (5) and (6), N can be calculated as:
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where round indicates the nearest integer.

For the situations in figures  2(b) and (c), N can be pre-
cisely calculated similarly to that in figure 2(a). We can thus 
express N as:
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It can be found that we do not need to consider the influence 
of the air refractive index when determining the value of N. 
We can also measure N by decreasing the repetition frequency 
of the comb source, according to the derivation shown above. 
The only difference is that the measurement pulse will go fur-
ther when the repetition frequency is decreased. We find that, 
based on the modulation frequency, both the integer and the 
fractional part of the unknown distances can be determined.

2.3.  Principle of distance measurement in an unbalanced 
Mach–Zehnder interferometer

Due to the limited resolution of the dispersive interferom-
eter, the practical measured length/displacement is only tens 
of millimeters in the vicinity of the integer multiples of Lpp, 
which is the biggest limitation for the previous schemes based 
on dispersive interferometry. The key point is to make the 
time delay between the reference pulse and the measurement 
pulse small enough in space. We use a greatly unbalanced 
Mach–Zehnder interferometer to adjust the relative position 
of the reference pulse and the measurement pulse by tuning 
the repetition rate of the frequency comb. A sufficiently small 
time delay between the reference pulse and the measurement 
pulse can be obtained, which can be reconstructed by a simply 
dispersive spectrometer. The schematic is shown in figure 3.

In figure 3, the pulse light emitted from the comb source is 
split into two beams, and one of them travels through an addi-
tional delay fiber. We name the beam without the delay fiber 
Beam A, and that with the delay line Beam B. Beams A and B 
are combined at the coupler, and finally the interfered fringes 

Figure 2.  Relative position between the reference pulse and the measurement pulse with increasing repetition frequency. (a) The 
measurement pulses are always forward; (b) the measurement pulses are shifted backward; (c) the measurement pulses are always 
backward compared with the reference pulses.
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are displayed on the spectrometer. We define the index of the 
closest pulses of Beam A and B as p and q, where we find that 
the difference m between p and q can be very large, m  =  |p–q|.

When we slightly change the repetition frequency of the fre-
quency comb, i.e. give a small variation to the pulse-to-pulse 
length, the pulse positions in space will be shifted correspondingly 
in Beams A and B. Considering the pth pulse in Beam A and the 
qth pulse in Beam B, when the repetition frequency is changed 
from frep1 to frep2, the respective length shift can be expressed as:

d
f f

f f

c

n
pA

g

rep1 rep2

rep1 rep2

=
−

⋅ ⋅� (9)
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−

⋅ ⋅d
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f f
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q.B

g
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dA and dB express the length shift corresponding to the pth 
pulse in Beam A and the qth pulse in Beam B, respectively. Let 
us consider the case shown in figure 3, the pulse train in Beam 
A is delayed to that in Beam B. The temporal interval χ (here χ 
is the time interval after changing the repetition frequency, and 
τ is the time delay before changing the repetition rate) between 
the closest pulses in Beams A and B, i.e. the pth pulse in Beam 
A and the qth pulse in Beam B, can be calculated as:
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τ is the initial time interval. Similar to the above analysis, when 
Beam A reaches the target later than Beam B before changing the 
repetition frequency, equation (11) can be recalculated as:
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According to equations (11) and (12), it can be found that 

the interval between the pth pulse in Beam A and the qth pulse 
in Beam B can be changed in a tunable range Ls, which can 
be calculated as:

=
−

⋅ ⋅L
f f

f f

c

n
m.S

g

rep1 rep2

rep1 rep2

� (13)

In equation  (13), this tunable range is proportional to the 
repetition frequency variation and the index difference of the 
closest pulses in Beams A and B, which also implies that a suf-
ficiently small time delay between the pulses can be obtained 
by changing the repetition frequency for a small amount with a 
larger m. The tunable range can be easily up to Lpp, and arbitrary 
distances can be measured using equations (4), (8), and (13).

Here we would like to give a theoretical description of the 
unknown distances based on the simplified schematic shown 
in figure  4. The comb output is split evenly into two parts. 
One part emits into an unbalanced Michelson interferometer, 
which means this beam carries all the distance information. 
The output of the Michelson interferometer and the other part 
of the comb source are combined at BS2 before being cap-
tured by a spectrometer. Please note that the length difference 
of the beams in the Michelson interferometer is not the integer 
multiples of Lpp any more. For convenience of explanation, we 
name the pulse train reflected by the reference mirror and the 
target corner cube in the Michelson interferometer as PTR and 
PTT, respectively, and the pulses propagating through the long 
fiber link as PTS (scanning pulse train). Assuming that when 
the repetition frequency of the frequency comb is fr1, PTR and 
PTS fully interfere with each other, and we can obtain a dis-
tance of LR by equation (4), which is usually several millim-
eters. We increase the repetition rate to fr2, to make PTT and 
PTS overlap in space, and we correspondingly get a result of 
LT. Please note that PTR, PTT, and PTS can be distinguished 
by using three shutters in the experiments.

We consider three situations where we make the pulses 
overlap by changing the repetition frequency, as shown in 
figure 5. It is immediately clear that the unknown distance can 
be expressed as:
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Figure 3.  Schematic of tuning the time delay by changing the repetition rate.
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3.  Experimental setup

Figure 6 shows the experimental setup. We develop a com-
bined ranging system to measure arbitrary distances using 
a dispersive interferometer. The laser source (for short dis-
tance, we use Menlo System FC1500-250-WG; for long 
distance range, we use Onefive Origami-15) locked to a Rb 
clock (Stanford FS725) that emits a pulse light into the inter-
ferometer from Ports A and B. The beam of Port A is colli-
mated into a Michelson interferometer. The beam of Port B 
externally propagates through a 2 km extra fiber delay line 
(1.8 km simple fiber and 0.2 km dispersion compensating 
fiber DCF), where careful design should be performed to 
suppress the fiber noise. We use a compact vibration isola-
tion platform (minus-k 25BM-10) and a hermetically sealed 
enclosure with dual stage temperature stabilization to elimi-
nate the vibration and the thermal change in the environ-
ment. The output of the Michelson interferometer and the 
beam of Port B are combined at BS2. S1, S2, and S3 are 

three shutters, which can change the working mode of the 
system. A frequency counter (Agilent 53220A) is applied to 
measure the repetition frequency of the frequency comb, and 
a dispersive spectrometer (YOKOGAWA AQ6370D-20) is 
used to detect and record the spectral interferograms. The 
interfered fringe packets are Fourier transformed to obtain 
the spectrogram frequency, and to determine the distances. 
We use a cw counting interferometer (Agilent 5519B) to 
verify the distance measurement results. The target corner 
cubes of our dispersive interferometer and the He-Ne laser 
are fixed on a small PC-controlled carriage. Both the mea-
surement beams of the dispersive interferometer and the cw 
counting distance meter are aligned to be strictly parallel 
to the long rail. Since the distance meter can only measure 
distances incrementally, we first reset the cw counting inter-
ferometer at the initial position (reference zero position of 
He-Ne), giving the absolute distance of L0 for the disper-
sive interferometer, and then move the target mirror to the 
next position of the distance of L, providing changing length 

Figure 4.  Schematic of the distance measurement system.

Figure 5.  Relative positions between PTR, PTT, and PTS before and after changing the repetition frequency. (a) PTS is always ahead of 
PTR and PTT; (b) PTS is ahead of PTR, and behind PTT; (c) PTS is always behind PTR and PTT.

Meas. Sci. Technol. 27 (2016) 015202
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∆L  =  L–L0. Then we can compare the measurement results 
of He-Ne and our dispersive interferometer.

4.  Experimental results

4.1.  Short distance measurement

We carry out short distance measurement only up to 1 m due 
to the limited space in our lab. Our objective is to show that 
this system can measure arbitrary distances. Figure 7 denotes 
the spectrum of the laser source with a center wavelength 
of about 1560 nm and a spectral width of about 50 nm. The 
environment conditions are 24.1 °C, 1001.4hPa, and 72.3% 
humidity. The group refractive index of air can be calculated 
to be 1.000 2622 based on the Ciddor formula [32].

We estimate the value of m. In our experiments, before 
combined at BS2, the light beam reflected by the reference 
mirror in the Michelson interferometer has passed through 
about 3 m optical path in air, and the pulse train travelling 
through the 2 km fiber link takes a total optical path length of 
about 2939.7 m. m can be thus estimated to be:

⎛

⎝
⎜

⎞

⎠
⎟=

−
=m

L
round

2939.7 3
2447.

pp
� (15)

In equation (15), Lpp is approximately 1.2 m. In our experi-
ments, we first close S1, open S2 and S3, and increase the 
repetition frequency with 200 Hz step size to observe the 
spectrograms, where it is easy to judge the relative position 
between the pulses. When the spectrogram can be observed on 
the spectrometer, we can find that the spectrogram frequency 
decreases first and then increases again with increasing 

repetition frequency until the modulation disappears. Based 
on the analysis in section 2.1, the spectrogram frequency is 
proportional to the time interval of the pulses. We can thus 
say, when we increase the repetition frequency, a rising spec-
trogram frequency denotes that PTS is behind PTR, while a 
dropping frequency indicates that PTS is ahead of PTR. In 
our experiments, we carefully tune the repetition frequency to 
make sure that PTS is always ahead of PTR and PTT, which 
means we should use the first case in equation (14) to deter-
mine the distances.

After recording the current repetition frequency and 
the spectrograms, S2 is closed, and S1 and S3 are open. 
The measurement beam is initially set to be a little longer 

Figure 6.  Experimental setup.

Figure 7.  Spectrum of the pulse source.

Meas. Sci. Technol. 27 (2016) 015202
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than the reference beam in the Michelson interferometer in 
our case. Hence, we increase the repetition frequency until 
the interference fringes can be observed again. We cor-
respondingly record the current repetition frequency and 
the spectrograms. The spectrograms are processed to get 
the modulation frequency, and finally the distance can be 
measured using equation (14). Figure 8 shows the spectro-
gram generated by PTR and PTS, and the result of Fourier 
transform. Figure  9 shows the spectrogram generated by 
PTT and PTS at the position of the equal arm, and the cor-
responding result of the Fourier transform. According to 
equation  (4), the initial distance can be calculated to be 
1.423 mm.

We move the target corner cube by about 0.1 m, increase 
the repetition frequency, and observe the spectrogram. The 
spectral modulation and the result of the Fourier transform 
are shown in figure  10. The distance can be calculated to 
be 98.462 mm using equations  (4) and (14), indicating a 
length increment of 97.038 mm. Finally an agreement of  
0.304 μm is achieved, compared with a reference cw counting 
interferometer.

Due to the limited space in our lab, we move the stage 9 
times with a step size of about 0.1 m. At each position, we 
quickly measure the distance 5 times, and record the current 
repetition frequency and the spectrograms. One single meas-
urement needs 2 s measuring time. The comparison between 
our dispersive ranging system and the reference incremental 
interferometer is shown in figure 11, where the midpoints are 
the average of 5 measurements, and the errorbars denote the 
standard deviation with a 2 s measuring time. We find that an 
agreement within 1.5 μm is achieved, corresponding to a rela-
tive precision of 1.6  ×  10−6.

4.2.  Measurement of N

As a proof of principle, we carry out experiments corre-
sponding to the three situations, as shown in figure 2, respec-
tively. In this section, we close S3, and open S1 and S2, which 
means the Michelson interferometer can work well. The target 
is moved to the location where the arm length difference of the 

Michelson interferometer is about 1.2 m, i.e. N equals to 2. 
Table 1 shows the experimental results.

According to equation (8), for all three situations, N can be 
uniquely determined as:

( )

( )

( ) = × − ×

×
× ×
−

= =

− −
⎡
⎣⎢

⎤
⎦⎥

N round 1.267 10 0.5792 10

249.380133 249.5932475 10

249.5932475 249.380133

round 2.0088 2

a
11 11

6� (16)

⎡
⎣⎢

⎤
⎦⎥

N round 1.099 10 0.5792 10

250.116956 249.5932475 10

250.116956 249.5932475

round 2.0005 2

b
11 11

6

( )

( )

( ) = × + ×

×
× ×
−

= =

− −

�

(17)

⎡
⎣⎢

⎤
⎦⎥

= × − ×

×
× ×
−

= =

− −N round 2.431 10 2.107 10

250.116956 250.016956 10

250.116956 250.016956

round 2.0261 2.

c
11 11

6

( )

( )

( )

�

(18)

We find that the integer number of Lpp can be determined 
precisely using our method.

4.3.  Long distance measurement

We carry out long distance measurement on the long optical 
tunnel underground in the National Institute of Metrology. We 
use a compact femtosecond pulse laser (Onefive Origami-15) 
in this case, out of our lab. The environmental conditions are 
well controlled, which are 24.4 °C, 1007.6hPa, and 41.9% 
humidity. The stability of the He-Ne interferometer is below 
0.2 μm for 10 s, and below 0.8 μm for 10 min with a distance 
of 80 m, and below 70 nm at 2 m distance. Figure 12 shows the 
practical experimental photograph.

Figure 8.  Spectrogram generated by PTR and PTS, and the result of the Fourier transform. The current repetition frequency is 250.057 899 MHz,  
and the spectrogram frequency is 1.606  ×  10−11 Hz.

Meas. Sci. Technol. 27 (2016) 015202



H Wu et al

8

Figure 13 shows the spectrum of the light source we use in 
the long distance case, with the center wavelength of 1560 nm 
and the bandwidth of about 55 nm. The group refractive index 
of air is correspondingly calculated to be 1.000 26388 based 
on the Ciddor formula.

We use equation (4) to determine the distances. The meas-
urement process is described simply in section 3. Figure 14 
shows the spectrograms corresponding to positions of 1.8 m 
and 75 m, respectively, which are Fourier transformed to pick 
the frequencies to measure distances.

From figure  14 we find that the total intensity of the 
spectrum and the spectral modulation depth drop dramati-
cally after a distance of 75 m (150 m optical path). We move 
the small car first by 3 m step size with distances less than 
about 28 m, and then by 6 m step size until the end of the 
tunnel. Each distance is quickly measured 5 times, within a 
15 s measuring time for one single measurement, and using 
a fixed setup of the spectrometer. The scatters are plotted in 
figure 15.

The comparison between our ranging system and the 
reference incremental interferometer is shown in figure 16, 
where the midpoints are the average of five single measure-
ments, and the errorbars indicate the standard deviations with 
an averaging time of 15 s. We find that in a range up to 75 m, 
an agreement well within 25 μm is reached, corresponding 
to a relative precision of 3.3  ×  10−7, which is a better result 
below 10−6.

Figure 9.  Spectrogram generated by PTT and PTS, and the result of the Fourier transform. The current repetition frequency is 250.057 899 MHz,  
and the spectrogram frequency is 2.556  ×  10−11 Hz.

Figure 10.  Spectrogram generated by PTT and PTS in the distance of about 0.1 m, and the result of the Fourier transform. The current 
repetition frequency is 250.074 604 MHz, and the spectrogram frequency is 1.941  ×  10−11 Hz.

Figure 11.  Ranging results compared with a cw counting 
interferometer.
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5.  Uncertainty evaluation

In this section, we evaluate the measurement uncertainty in 
detail, and experimentally optimize the system setup, aiming 
to minimize the uncertainty. Our analysis starts from equa-
tion (4). Equation (4) can be rewritten as:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟τ= ⋅ ⋅ +L

c

n

N

f

1

2
.

g rep
� (19)

τ is the modulation frequency of the spectral interfero-
grams. Based on the experiments in section 4.2, we get that 
N can be determined precisely with uncertainty below 1. 
According to equation (19), the measurement uncertainty of 
L can be calculated as:

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟= +

⋅
⋅

+ τu
L

n
u

c N

n f
u

c

n
u

2 2
.L

g
n

g
f

g

2

rep
2

2 2

g rep
� (20)

Based on equation  (20), we find that the measurement 
uncertainty of L is mainly related to the refractive index of air, 
the repetition frequency of the laser source, and the modula-
tion frequency of the spectrograms.

The individual contributions of the various sources are 
summarized in table  2. We find that the uncertainty related 
to the modulation frequency contributes dominantly to the 
combined uncertainty, which is observed to be 24.1 μm 
constantly based on our experimental results corresponding 
to 1.6  ×  10−13 Hz uncertainty of the modulation frequency 
of the spectrograms. The uncertainty of the Rb clock is 
2  ×  10−11. Due to the phase-locking frequency transfer and 
possible frequency instability, it is reasonable to assume an 
uncertainty of 10−10. The uncertainty related to the repeti-
tion frequency can be thus expressed as 10−10·L, which can 
be neglected. The uncertainty related to the air refractive 
index is distance dependent. In our experiments, the refrac-
tive index of air for both the reference distance meter and the 
dispersive interferometer is corrected by the Ciddor formula 
based on the same environment sensors. The contribution of 
the air refractive index is finally found to be 6.7  ×  10−8·L with 
the well-measured parameters of temperature, pressure, and 
humidity. Since the experimental results are shown using the 
comparison between the dispersive interferometer and the cw 
counting interferometer, it is necessary to measure the uncer-
tainty related to the long optical rail itself, which is found to 
be below 0.8 μm in the 80 m range. Overall, the combined 
uncertainty with a coverage factor of k  =  1 can be represented 

as ( ) ( )µ + × ⋅−m L24.1 6.7 102 8 2 , corresponding to a rela-

tive precision of 3.3  ×  10−7 in a range of 75 m.
The third term in equation (20) is related to the uncertainty 

of the modulation frequency, measured by a simply dispersive 

Table 1.  Experimental results to determine the value of N.

(a) Always forward

Repetition frequency (MHz) Spectrogram frequency (10−11 Hz)
Before changing After changing Before changing After changing
249.380 133 249.593 2475 1.267 0.5792

(b) Forward to backward

Repetition frequency (MHz) Spectrogram frequency (10−11 Hz)
Before changing After changing Before changing After changing
249.593 2475 250.116 956 0.5792 1.099

(c) Always backward

Repetition frequency (MHz) Spectrogram frequency (10−11 Hz)
Before changing After changing Before changing After changing
250.016 956 250.116 956 2.107 2.431

Figure 12.  Experimental photograph.

Figure 13.  Spectrum of the Onefive Origami-15 pulse laser.
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spectrometer. Generally, the air turbulence, the random vibra-
tion of the optical rail, and the environment mutations can 
all contribute to this term, and can hardly be ultra-perfectly 
controlled. This is also the reason to achieve extremely high 

accuracy (relative precision of below 10−6) in a large range 
(up to tens of meters) is very difficult, even in the laboratory 
environment. Additionally, we are concerned that the width of 
the slit in the spectrometer, the scanning speed, the data inte-
gration time, and the beam intensity can all affect the uncer-
tainty of the measured spectrogram frequency, further to the 
uncertainty of the distance measurement.

We carry out experiments at a position of about 1.2 m in 
our lab. First we examine the contribution of the slit width 
to the uncertainty. The scanning speed and the integration 
time of the curve are set to be 15 s/100 nm, and 15 s/5000 
samples. Figure  17 shows the experimental results with 5 
single measurements corresponding to different slit widths 
of the spectrometer, where we find that the standard devia-
tions can be below 1 μm when the slit width is narrower 
than 0.2 μm.

Figure 18 indicates the results with five measure-
ments when we continuously change the scanning speed 
of the spectrometer. The slit width is fixed to be 0.02 μm, 

Figure 14.  Spectrograms measured on the long rail. (a) 1.8 m location; (b) 75 m location.

Figure 15.  Experimental results in a range up to 75 m.

Figure 16.  Experimental results compared with a cw counting 
distance meter.

Table 2.  Uncertainty evaluation of the absolute distance 
measurement.

Sources of the  
measurement uncertainty Value

Uncertainty related to the 
modulation frequency

24.1 μm

Uncertainty of the 
modulation frequency

1.6  ×  10−13 Hz

Uncertainty related to the 
repetition frequency

10−10·L

Uncertainty of the 
repetition frequency

2  ×  10−11

Uncertainty related to the 
air refractive index

6.7  ×  10−8·L

Uncertainty of temperature 0.07 K
Uncertainty of pressure 6.5 Pa
Uncertainty of humidity 0.3%
Uncertainty related to the 
long optical rail

0.8 μm

Combined uncertainty 
(k  =  1)

µ + × ⋅− L24.1 m 6.7 102 8 2( ) ( )
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and the integration time of the spectral curve is set to be  
15 s/5000 samples. It is clear that the standard deviation can 
be well below 1 μm when the scanning speed is faster than  
15 s/100 nm.

With a 0.02 μm slit width and a 15 s/100 nm scanning 
speed, we change the integration samples from 1000 to 10 000, 
corresponding to the integration time from 5 s to 35 s. It can 
be found that the standard deviation is better when the integra-
tion time is less than 15 s, indicating that fast measurement is 
needed in high accuracy metrology.

We change the beam intensity consecutively by using 
a neutral filter, from 4.14 mW to 10.6 μW. In figure  20, it 
is shown that higher intensity will lead to a better standard 
deviation. We find that the standard deviation is well below 1 
μm when the beam intensity is above 3.5 mW. The standard 
deviation rises drastically to 17 μm when the intensity is less 
than 50 μW in our case, due to the poor signal-to-noise ratio 
of the spectral interferograms.

Overall, a 0.02 μm slit width, a  <  15 s/100 nm scanning 
speed, a  <  15 s integration time, and a higher beam intensity 
are recommended when we use a simply dispersive spec-
trometer in the case of distance metrology. Please note that 

the system configurations mentioned above could be dif-
ferent when using a different spectrometer to measure the 
spectrograms.

6.  Conclusion

We develop a combined dispersive ranging system, in which 
we use a greatly unbalanced Mach–Zehnder interferometer 
to make the relative time delay between the measurement 
pulse and the reference pulse sufficiently small by changing 
the repetition frequency of the comb source, truly enabling 
arbitrary distance measurement using only dispersive inter-
ferometry. We indicate that in long distance measurement the 
integer number of the pulse-to-pulse length can be measured 
with an uncertainty below 1. As a proof of principle, we carry 
out short distance measurement with a 0.1 m interval in our 
lab, and the experimental results show an agreement within 
1.5 μm with a distance of about 1 m, compared with a refer-
ence cw counting distance meter. We examine the ability of 
our method in long distance measurement on an optical rail. 
The ranging results indicate an agreement well within 25 μm 
in a range up to 75 m, corresponding to a relative precision 

Figure 17.  Standard deviation versus slit width.

Figure 18.  Standard deviation versus scanning speed.

Figure 19.  Standard deviation versus integration time.

Figure 20.  Standard deviation versus beam intensity.
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of 3.3  ×  10−7. To minimize the measurement uncertainty, we 
experimentally evaluate the standard deviations corresponding 
to difference setups of the dispersive spectrometer and dif-
ferent beam intensities. Our experimental results denote that a 
0.02 μm slit width, a  <  15 s/100 nm scanning speed, a  <  15 s 
integration time, and a higher beam intensity are preferred in 
our case of distance metrology.
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