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Abstract
We continue earlier efforts in computing the dimensions of tangent space cohomologies of
Calabi–Yau manifolds using deep learning. In this paper, we consider the dataset of all Calabi–Yau
four-folds constructed as complete intersections in products of projective spaces. Employing
neural networks inspired by state-of-the-art computer vision architectures, we improve earlier
benchmarks and demonstrate that all four non-trivial Hodge numbers can be learned at the same
time using a multi-task architecture. With 30% (80%) training ratio, we reach an accuracy of 100%
for h(1,1) and 97% for h(2,1) (100% for both), 81% (96%) for h(3,1), and 49% (83%) for h(2,2).
Assuming that the Euler number is known, as it is easy to compute, and taking into account the
linear constraint arising from index computations, we get 100% total accuracy.

1. Introduction

There is a growing body of research that applies modern techniques from data science to problems in string
theory [1]. The reasons for that are two-fold. On the one hand, standard computations in string theory are
hard, in particular they can be NP-hard or even undecidable [1–3]. Due to double exponential scaling laws in
terms of computational resources with respect to the input parameters, string theory calculations often fail to
finish in a reasonable amount of time even on modern machines. On the other hand, there are too many
configurations to consider. The largest estimates put a bound ofO(1× 10272000) when considering F-theory
compactified on a Calabi–Yau four-fold [4]. Parsing that many configurations is impossible, thus
computational smart ways are needed to select potentially interesting vacuum configurations [5, 6].

An important key component in realistic string theory compactifications are Calabi–Yau manifolds.
These manifolds have been studied extensively in the past, and thus they comprise some of the best datasets
within the string theory community [7]:

(a) The first widely used dataset are the 7890 complete intersection Calabi–Yau, in short CICY, manifolds in
three complex dimensions by Candelas et al [8–10].

(b) The largest dataset, the Kreuzer–Skarke list, contains 473 million reflexive polytopes in four dimensions.
These encode a toric ambient space, from which one obtains Calabi–Yau three-folds by considering the
hypersurface defined by the canonical bundle [11].

(c) CICY four-folds have also been classified and amount to 921 497 distinct configuration matrices [12, 13].

The incredible progress in data science, in particular image recognition, over the past decade can in part
be attributed to large and clean datasets [14]. They allowed researchers to benchmark their algorithms and
let the best ones compete against each other, which in turn resulted in rapid development and ever
improving neural network architectures [15–19]. We will proceed in a similar vein in this paper. The number
of independent Kähler moduli of CICY three-folds has been successfully analyzed using neural networks in
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the past. These benchmarks were initiated by He, who proposed to treat their configuration matrices as a
simple two-dimensional image [20].

In previous works [21, 22], two of the authors have shown that learning h(1,1) is possible to great
accuracy, but the limited training data is not sufficient to generalize the learning to the number of complex
structure moduli h(2,1). Computing Hodge numbers of Calabi–Yau manifolds is of great importance, since
cohomology computations are an integral part of string theory compactifications. They for example
determine the number of massless fermion generations in string theory compactifications. Thus, the goal is
to identify performant algorithms in these well-studied datasets of tangent bundle cohomologies, which can
then generalize to more complicated vector bundles.

In the rest of this paper, we will present two different approaches for learning Hodge numbers of CICY
four-folds. First, we will treat the problem as a standard image classification task where the Hodge numbers
are the image labels. For this purpose, we employ an Inception module based architecture [16–18, 21, 22]
and show that a single set of hyperparameters generalizes well to all four Hodge numbers, yielding a mean
accuracy over all Hodge numbers of 85%. This suggests that we could scale the approach to a multi-task
learning problem.

Subsequently, we show that all Hodge numbers can be learned simultaneously by utilizing a branched
network with hard parameter sharing [23, 24] between the task specific sub-structures, which ultimately are
responsible for learning the distributions of the Hodge numbers. The multi-task approach has several
advantages, with respect to single-task architectures. From a technical side, multi-task learning has been
shown to improve the overall performance of the models [23]. From a physics and algebraic geometry
perspective, a single model hints towards the definition of a unified framework from which it may be
possible to extract meaningful theoretical information, such as closed form formulas. The model we
developed is capable of learning at the same time, and without rescaling, the four dimensions of the tangent
space cohomologies of CICYs, accounting for the heavy class imbalance present in the dataset. This
multi-task Ansatz leads to perfect performance on two of the four Hodge numbers and accuracy of 96% and
83% for h(3,1) and h(2,2) respectively, with a training ratio of 80%.

The outline of this paper is as follows. In section 2, we discuss related works of learning cohomologies
and earlier results on Calabi–Yau three-folds. Section 3 explores the dataset of CICY four-folds and presents
the results of our classification experiments. This is followed by our main results in section 4 in which we
introduce our deep learning model CICYMiner, a multi-task regression model based on chained Inception
modules that predicts all four Hodge numbers at once. We conclude in section 5 with some outlooks. Python
codes for this paper can be found at:

• https://github.com/robin-schneider/cicy-fourfolds
• https://github.com/thesfinox/ml-cicy-4folds

The list of packages used throughout the development comprises pandas [25, 26] and numpy [27] for
data operations, matplotlib [28] and seaborn [29] for visualisation, and tensorflow [30] for the deep
learning algorithms.

2. Related works

The first paper utilizing machine learning algorithm to predict various different cohomology dimensions was
written by He [20]. The author tackled the problem of predicting Hodge numbers of CICY three- and
four-folds, but also line bundles over these manifolds [20]. These studies have later been extended to
systematically investigate CICY three-folds with linear regression, support vector machines, and dense neural
networks achieving accuracies ranging from 37% to 85% [31, 32] when using 70% training data. The
benchmarks have subsequently been improved by using an Inception-based architecture to accurately predict
97% of the test data using only 30% training data, essentially solving the problem of predicting
h(1,1) [21, 22]. This work was supplemented by more methodological studies in which the dataset was
augmented with various other (topological) quantities. Other works on CICY three-folds include [33, 34].

An initial exploration of CICY four-folds has been started by He and Lukas [20, 35]. The authors used a
simple dense neural network and were able to predict h(1,1) with an accuracy of 96%. This promising early
result showed that the increased size of the dataset improves the performance significantly. However, in line
with previous studies of h(2,1) on CICY three-folds, the authors were unable to accurately predict the value of
the other Hodge numbers, reaching an accuracy of only 27% for h(3,1). They were successful in improving
this accuracy for a subset of the dataset by considering all configuration matrices of shape (4,4) and using
feature enhancement. This feat was achieved by supplementing the training samples with all up to degree
four monomials of the defining polynomials and pushed the accuracy to 95%.
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The Kreuzer–Skarke list has also been the target of deep learning algorithms. In order to identify
equivalent Calabi–Yau manifolds coming from different triangulations, Demirtas et al trained residual neural
networks to learn the triple intersection numbers [36]. They reached an almost perfect performance, which
allowed them to cut down the computation time from seconds to microseconds. This in turn made it
possible to derive an upper bound on the number of distinct Calabi–Yau manifolds arising from the polytope
with the most triangulations, setting it to 1× 10428.

There are several ongoing projects in learning Hodge numbers of line bundle cohomologies. These can
be separated into two different approaches. First, learning the cohomology dimensions directly, for example
on del Pezzo surfaces [37] and on CICY three-folds [6, 20, 38, 39]. Second, neural networks have been used
to classify cones in the cohomology-dimension landscape [40–42]. The Hodge numbers belonging to these
cones can all be described by the same analytic equations [43].

3. Exploring the dataset

In this section, we will introduce and explore complete intersection Calabi–Yau four-folds. We then proceed
to learn the four non-trivial Hodge numbers independently using neural networks with an Inception
inspired architecture [16–18].

3.1. CICY four-folds
A complete intersection Calabi–Yau manifold is fully defined by its configuration matrix. This matrix
encodes the polynomial degrees and ambient space factors in the following way:

M=

 n0 p01 · · · p0K
...

...
. . .

...
nr pr1 · · · prK


χ

. (1)

Each pij ∈ N is the degree of the jth polynomial in the homogeneous coordinates of the ith complex projective
space with dimension ni. The Calabi–Yau condition is translated in the configuration matrix by requiring
that

ni + 1=
K∑
j=1

pij. (2)

The Euler number χ is given in the subscript and can be directly computed by integrating the fourth Chern
class or from the four non-trivial Hodge numbers as

χ= 4+ 2h(1,1) − 4h(2,1) + 2h(3,1) + h(2,2). (3)

A second linear relationship between the Hodge numbers can be derived by combining the indices
χq = χ(M,∧qTM∗) [13] leading to

44=−4h(1,1) + 2h(2,1) − 4h(3,1) + h(2,2). (4)

The configuration matrices have been generated from an initial set of matrices and subsequently applying the
splitting procedure [8, 12], finding new manifolds and discarding equivalent descriptions. In this way, a total
of 921 497 topological distinct types of CICY manifolds were found, with 905 684 of them not being direct
products of lower dimensional manifolds.

The Hodge number distributions are presented in figure 1. The mean, maximum and minimum values
are

⟨h(1,1)⟩= 10.1241 , ⟨h(2,1)⟩= 0.817330 ,

⟨h(3,1)⟩= 39.642620 , ⟨h(2,2)⟩= 2411752204 . (5)

Notice that the distributions of the Hodge numbers are, in general, imbalanced: for instance, h(2,1) vanishes
for 70% of the configuration matrices in the dataset. We find that 54.5% are favourable (i.e. h(1,1) is equal to
the number of projective spaces), less than the 61.9% for CICY three-folds6. Hence, for slightly more than
half of the cases we have h(1,1) = r, the number of projective ambient space factors. This number is important
as it should be the baseline to compare any algorithm against.

6 There exists another dataset of CICY three-folds in which 99.1% are favourable [10], but no such feature enhanced data is available for
the four-folds. However, the results from [21, 22] show that using favourable matrices helps mostly in computing h(1,1).
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Figure 1. The plots show the histograms with logarithmic y-axis of the four non-trivial Hodge numbers. In the first row we have
on the left the distribution of h(1,1), to the right of h(2,1). In the bottom row h(3,1) is presented to the left and h(2,2) to the right.

Figure 2. An inception module can be decomposed into the different convolutional kernels scanning over the width (W) and
height (H) with filters (F). They are subsequently concatenated (C) and followed by a batch normalization (BN) layer. The
Inception module is the main building block of both the CICYMiner and the classification architectures.

3.2. Classifying Hodge numbers
Problems in image recognition are usually formulated as classification tasks. Take the ImageNet dataset which
consists of 14× 106 data points with over 21 000 classes. That is about one order of magnitude larger, both in
samples and classes, than predicting h(2,2). In this section, we will train one neural network to classify each of
the four non-trivial Hodge numbers independently. We will use an architecture based on Inception
modules [16–18] as was done for the best performing predictors of the CICY three-fold Hodge
numbers [21, 22]. This specific architecture has been shown to lead to the best performance on the
configuration matrices when using 1d kernels of maximal size. This partially reflects the fact that scanning
coordinates in each projective space and a single variable over all projective spaces helps in better learning the
connections between the different hypersurfaces of the CICYs (see figure 2). The choice of maximal 1d kernel
is, in fact, motivated by the mathematical machinery required to compute Hodge numbers. There, one has to

4
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Figure 3. The first row shows training loss and accuracy plotted against the computation budget. The error bars represent the
upper and lower bounds for the four different training ratios. In the second row, we plot on the left the validation accuracy and on
the right the test accuracy of the best performing models for the different training ratios.

compute the dimension of ambient space cohomology group representations, which are stacked for each
projective space. These ambient space representations arise after splitting up the Koszul resolution

0 →∧KN ∗ → ·· · →N ∗ →OA →OA|M → 0 . (6)

which contains the antisymmetric products ∧sN ∗ of the defining hypersurfaces (N denotes the normal
bundle, which contains the information about the polynomial degrees pij). Moreover, using an Inception
based architecture lead to a performance increase of misclassification rate on the ImageNet dataset from
15.3% for AlexNet [15] using a standard convolutional architecture to 6.7% for the first version of
GoogLeNet [16].

We proceed as in earlier studies [21, 22] by considering different train:val:test splits with respectively
10%, 30%, 50% and 80% training and 10% validation data. The architecture hyperparameters have been
optimized using Bayesian Optimization Hyperband [44, 45] on the problem of predicting h(3,1). The same
hyperparameters have then been used to also classify the other three Hodge numbers.

We opted to present the results of neural networks with a comparable number parameters
840000± 10000 to the number of configuration matrices. This architecture comprises four Inception
modules, with respectively 3× 64 and 16 filters, utilizing batch normalization for better gradient
propagation into the earlier layers [16–18, 46]. Figure 2 decomposes an Inception module into its different
ingredients. The convolutional kernels scan over the configuration matrix dimensions, i.e. the maximal
number of possible projective ambient spaces (16) and the maximal number of polynomial constraints (20).
The Inception modules are followed by three dense layers with 16 units, ReLU activation function and
dropout layers with a 0.2 rate to contrast overfitting. Furthermore, we employ ℓ1 (1× 10−5) and ℓ2
(1× 10−6) regularization for all weights in the network. The last layer contains a softmax activation function

with {h(i,j)min , . . . ,h
(i,j)
max} classes. The network is trained with Adam optimizer and an initial learning rate of

4× 10−4 on a 32 mini-batch size. This architecture is still trainable in a reasonable amount of time on a
desktop computer with access to a GPU. In comparison to earlier studies [21, 22], we found that leaving the
outliers inside the training data does not negatively impact the results.

Figure 3 shows in the top row the training loss and accuracy, and in the bottom row validation accuracy
tracked over the training process and test accuracy for the best-performing model. The best-performing
model is the one with the highest validation accuracy, which one would get when employing early stopping
on that metric. It is important to track the best performing models as sometimes the loss starts increasing

5
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Table 1. Comparison of the test accuracy for different training ratios.

h(1,1) h(2,1) h(3,1) h(2,2)

10% 0.99 0.87 0.59 0.62
30% 1.00 0.91 0.67 0.73
50% 1.00 0.94 0.68 0.75
80% 1.00 0.95 0.70 0.75
Mean 1.00 0.92 0.66 0.71

again as visible from the h(2,1) curve. The error bars are computed from the different training ratios and the
budget on the x-axis is given by

budget= number of epochs× percentage of training data

80
. (7)

We observe that h(1,1) is predicted with almost perfect accuracy for any training ratio, while the accuracies of
the other three Hodge numbers improve with more training data. However, when the training data contains
more than 30% of the samples one has diminishing returns for the accuracy. This is in line with previous
observations for the CICY three-folds [21, 22]. Even though the hyperparameters have been optimized to
learn h(3,1), it is the worst performing value. This is interesting as figure 1 shows that the distribution of h(2,2)

spans a longer range, contains more outliers and has a thicker tail. The plots show that we avoid overfitting to
the training data.

Table 1 collects the accuracy at different training ratios and the mean-value for the four different training
ratios of the best performing model7. In the training process, we employed learning rate decay with a factor
of 0.4, when the validation accuracy did not improve for epochs equivalent to 0.15× budget. This is clearly
visible from the loss and accuracy plots in the top row and accounts for the down- and up-stairs steps.
Summarizing the results, we find that the hyperparameters found for predicting the worst performing Hodge
number h(3,1) also generalize well to the other three Hodge numbers. This is a first indication that the
prediction of Hodge numbers could benefit from multi-task learning.

4. CICYMiner

In the previous section, we showed that a classification task based on Inception modules is effective in
learning the Hodge numbers. As the optimization was conducted for h(3,1), rather than an ad hoc structure
for each output, the good results motivate further study on learning several Hodge numbers at the same
time. In this section, we focus on a regression model for two main reasons. First, in general computations of
vector bundle cohomologies, the predictions may not be bounded, thus an inference model has to be able to
adapt by learning an approximation function, rather than classification probabilities. Second, previous
studies showed that regression models on a similar task were more efficient than classification [21].

Figure 4 shows the schematic of the architecture used in this section. The architecture enables multi-task
learning by hard parameter sharing over an initial structure capable of learning a shared representation of the
input. This, in general, has proven efficient at increasing the learning power of a single network, rather than
differentiating and optimizing several, and to reduce the risk of overfitting [23, 47]. The median layers of the
network replicate a similar multi-tasked structure on the same learning objective: in fact, one branch of the
sub-structures learning the Hodge numbers is an auxiliary architecture used to reinforce the stability of the
representation. No additional regularization was added to the model, apart from a 0.2 dropout rate before
the fully connected networks in the auxiliary branches. Such an architecture is thus capable of ‘mining’ richer
and more diverse features from a shared representation of the input by using different layer combinations.
The model is partly inspired by a recently proposed DeepMiner [48] model, used for people re-identification
tasks, capable of learning more information by using different branched structures and layers. As such, we
refer to our model as CICYMiner: we leverage the DeepMiner architecture with the advantages of multi-task
learning in order to learn a family of related tasks, which however present complicated and strongly diverse
distribution functions (see figure 1). The role of the auxiliary branches in CICYMiner (see figure 4) is mainly
related to feature mining, that is the ability to extract as much information as possible from intermediate

7 Using a five-fold increase in network weights (4× 106) one is able to improve the accuracy of h(3,1) and h(2,2) to over 80%. However,
this comes at the cost of significant more training time and we then enter the regime where there are more weights than samples in the
dataset.

6
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Figure 4. The basic building block of CICYMiner are Inception modules. The architecture is built to enable the hard parameter
sharing in the bottom layer, in order to construct a common representation of the input. The task specific sub-structures then
replicate the behaviour through an auxiliary branch, which further uses dense layers, batch normalization (BN) and dropout (D)
to control overfitting. The final model predicts all Hodge numbers at once. The composition of the Inception modules are shown
in figure 2.

representations, in order to guide the learning of the weights during learning. The auxiliary branches have, in
fact, slightly different architectures with respect to the main branches, in order to perform different
transformation on the inputs. An added value of the auxiliary branches is the duplication of the outputs,
which in this multi-task context can improve overall performance, with regard to outlier and overfit control.

4.1. Preprocessing and evaluation strategy
We use the same dataset presented for the classification objective in the previous section. Given the strong
class imbalance, we select the training set by using a stratified approach on h(2,1) in order to preserve the
distribution of the samples. The validation set is then chosen totally at random, using 10% of the samples.
The remaining samples form the test set. We preprocess the input data by simply rescaling the entries of the
configuration matrices in the training set to the interval [0, 1]. Matrices in the validation and test sets are
rescaled accordingly, using the statistics obtained from the training set.

The outputs of CICYMiner are, in fact, floating point numbers h̃(i, j) ∈ R+, as it is typical in regression
tasks. They ultimately need to be rounded to integers to be directly compared with the true values and to
compute the accuracy. The distributions of the Hodge numbers have not been rescaled as training led to
lower accuracy when this strategy was adopted. The specialised branches of the network are, in fact, deep
enough to apply the proper scaling starting from a shared representation and correctly learn the output
distribution of the Hodge numbers.

In order to test the robustness and versatility of the network, we choose to keep the outliers in the
training set. In multi-task learning architectures, they may strongly affect the behavior of the network and
may need robust loss functions during training [49]: this problem is directly addressed in what follows. On
the other hand, what represents an outlier for a certain task, can be valuable information for another [50],
hence the choice of keeping the outliers in the training set. Empirically, we also experienced a decrease in
accuracy when trying to find a good outlier exclusion strategy.

7
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4.2. Training
In this case, training occurred over a fixed amount of 300 epochs, due to time restrictions on the cluster
computing infrastructure. Training takes approximately 5 d on a single NVIDIA V100 GPU. We use the
Adam [51] stochastic gradient descent with an initial learning rate of 1× 10−3 and a mini-batch size of 64
configuration matrices. Due to the long training time, the optimization was done using a grid search over a
reasonable amount of choices of hyperparameters. The network is ultimately made of 1× 107 trainable
parameters, accounting for both the shared representation and the eight sub-networks learning Hodge
numbers and their auxiliary outputs. In terms of typical computer vision multi-task learning, we still deal
with a small network: for instance, the original Inception network by Google has 0.7× 107 parameters for a
single classification task [16–18].

We already motivated the choice of keeping the outliers in the training set. We address the arising issues
by employing a Huber loss function [52]:

H{k}
δ (x) =


1

2

k∑
n=1

Nk∑
i=1

ωn

(
x(i)

)2
,

∣∣x(i)∣∣⩽ δ

δ
k∑

n=1

Nk∑
i=1

ωn

(∣∣x(i)∣∣− δ

2

)
,

∣∣x(i)∣∣> δ

(8)

where ωn for n= 1,2, . . . ,k are the loss weights of the different branches of the CICYMiner, δ is a
hyperparameter of the model and x(i) is the residual error of the ith sample. The choice of the loss turns out
to be extremely useful in this regression task, as it behaves as a ℓ2 loss for small residuals, and it is linear for
larger errors. Robustness is thus implemented as a continuous interpolation between the quadratic and
linear behaviour of the loss function. This is a solution usually adopted for classification [50] where
combinations of ℓ1, ℓ2 and Frobenius norm are used for robustness.

In our best implementation, we used δ= 1.5, and loss weights 0.05, 0.3, 0.25 and 0.35 for h(1,1), h(2,1),
h(3,1) and h(2,2), respectively (the auxiliary branches use the same values as the principal ones). The learning
rate is set to reduce by a factor of 0.3 after 75 epochs without improvements in the total loss of the validation
set (as a reference, at 80% training ratio, this hard reduction mechanism triggered only once between epochs
270 and 300).

4.3. Results
The final results are presented in figure 5 and in the last row of table 2. As shown in the learning curve, h(1,1)

reaches perfect accuracy with just 10% of the training data, in alignment with previous attempts [35] and the
classification results of the previous section. h(2,2) is in general the most difficult label to train and it is
strongly dependent on the training ratio. The network appears to be underfitting the distributions of the
Hodge numbers, and validation loss is still decaying after 300 epochs: it would be interesting to run training
for longer time, in order to study the behaviour of the network. At a training ratio of 30% the network
reaches perfect accuracy on h(1,1), while h(2,1) gets to 97%. h(3,1) remains at 81%, while h(2,2) reaches barely
49%. Increasing the number of training samples is, in general, beneficial for all Hodge numbers: h(1,1) and
h(2,1) reach 100%, while the accuracy of h(3,1) and h(2,2) rises to 96% and 83%, respectively, when the
training ratio reaches 80%. For the first three outputs in table 2, the regression metrics, mean squared error
(MSE) and mean absolute error (MAE), show the ability to effectively learn the discreteness of the Hodge
numbers: both metrics show, in fact, values which can be confidently rounded to well defined integer results
(i.e. MAE≪ 0.50 and MSE≪ 0.25).

The good performance of the first three Hodge numbers suggests the possibility to use relations such as
the Euler characteristic (3), which can be computed from combinatorics, and the linear constraint (4). Using
the latter to compute h(2,2) leads to an accuracy of 96% on the test set, using the best results at 80% training
ratio. Using (3) and (4) together, h(3,1) and h(2,2) can reach perfect accuracy at 80% training ratio. Using
CICYMiner it is therefore possible to compute all four Hodge numbers with 100% of accuracy.

4.4. Ablation study
CICYMiner introduces new elements, with respect to previous attempts at predicting Hodge numbers of
CICYs [21, 35], namely:

(a) Huber loss for robustness;
(b) auxiliary branches.

In this section, we separately analyse each new aspect, together with other variations of the architecture.
Specifically, we analyse the impact of the batch normalization used in the Inception modules. We also
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Figure 5. On the left, we show the final test accuracy of CICYMiner for the four different training ratios. On the right, we present
the loss function at 80% training ratio, smoothed with a running average over 20 epochs.

Table 2. Comparison of the accuracy obtained by similar models at 80% training ratio. Regression metrics are also specified for
CICYMiner at the same ratio.

h(1,1) h(2,1) h(3,1) h(2,2)

+att 1.00 0.99 0.96 0.81
MSE loss 1.00 0.97 0.92 0.50
No aux 1.00 0.84 0.92 0.72
bs-256 1.00 0.99 0.94 0.65
Layer norm 1.00 0.99 0.92 0.66
CICYMiner 1.00 1.00 0.96 0.83
MSE (1× 10−4) 1.3 98 560 6800
MAE (1× 10e−3) 7.8 19 130 360

Figure 6. Substructures of the attention mechanism used in the ablation study. Here,× indicates a matrix product along
appropriate axes, while ◦ is the Hadamard product (element-wise). Reshape operations (R) are also indicated.

address the use of attention mechanisms [53], used in the DeepMiner model, which in our case did not lead
to an improvement in accuracy, but rather to a faster training.

We proceed by modifying the backbone structure of CICYMiner. We first introduce the attention
mechanism used in [48] for comparison. The Spatial Attention Module (SAM) and CHannel Attention
Module (CHAM) are presented in figure 6: the full attention mechanism is the composition CHAM ◦ SAM
used between each Inception module in the main branch of the task-specific architecture in figure 4. We also
analyse the performance of the model by simply removing the auxiliary branches in the top layers of the
network. Then, as opposed to the Huber loss, we test the predictions using the usual MSE used in most
regression tasks. We finally change the size and type of the normalization strategy used in the architecture: we
first train a network with a mini-batch size of 256 samples, and we then compare the results with a Layer
Normalization [54] strategy. Results are summarised in figure 7 and numerically reported in table 2.
CICYMiner leads to the best overall performance for all four Hodge numbers. The distributions of the
residuals, x(i) appearing in the Huber Loss (8), show in figure 8 a homoscedastic behaviour (no correlations
between predictions and absolute value of the residuals), which ultimately supports the completeness of the
model and its ability to properly predict the four Hodge numbers correctly.

The use of a different loss function, which is not robust against outliers, led to largest drop in accuracy,
overall: the difference starts to be consistent even for h(2,1) and h(3,1), which do not present many outliers in
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Figure 7. Summary of the ablation study.

Figure 8. Residual plots at 80% training ratio.

figure 1. The accuracy plummets when considering h(2,2), as expected. The presence of outliers is also evident
when increasing the mini-batch size: h(2,2) suffers the largest decrease in accuracy due to such normalisation
strategy. At the same time, the introduction of a batch-size independent Layer Normalization strategy, which
normalizes each sample over the channel direction rather than the batch dimension, leads to a similar
decrease. The presence of outliers seems, therefore, a delicate issue for which the size of the mini-batches
plays a relevant role.

A related aspect is represented by the ablation study on the auxiliary branches. As their role is to mine a
richer variety of features to stabilise the shared representation, and learn better approximations of the
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output, the accuracy drops significantly in the case of highly imbalanced distributions. The largest drop
impacts h(2,1) which suffers from predictions shifting towards zero. This shows that we indeed need a
mechanism to get as much training information as possible through the addition of transformations and
auxiliary branches, as in the CICYMiner.

Finally, we analyse the impact of the attention modules: we insert such additional layers to improve the
predictions of h(3,1) and h(2,2) only, as other Hodge numbers do not need additional transformations. The
results do not strongly differ from the case without the attention modules, though h(2,2) drops by 2% in
accuracy. It therefore seems that the attention modules do not help the predictions in this case, supported by
the naive intuition that the configuration matrices do not suggest the development of a sequence model, such
as in natural language processing (NLP) or deep learning for video sequences. However, the accuracy reached
by the model occurs at around 100 training epochs, rather than 300 as in other cases. The loss function then
presents a slight increase after that. The use of attention modules, together with an early stopping strategy,
may therefore significantly cut the training time in this context.

5. Conclusion

In this paper, we were able to show that Inception-based neural networks achieve good accuracy in
predicting h(3,1) and h(2,2) and can reach perfect accuracy for the Hodge numbers h(1,1),h(2,1). Earlier studies
using dense architectures were only able to work accurately with h(1,1) [35]. Moreover, we showed that only a
fraction of the training data is needed to already obtain promising results. This stands in contrast to earlier
studies on CICY three-folds for which it was not possible to accurately predict h(2,1) (the only remaining
non-trivial Hodge number in that case). The significant increase in dataset size is responsible for a good part
of the increase in performance: the risk of overfitting is strongly reduced and generalization over all
configuration matrices is more robust. This is also reflected in the observation that removing the tails of the
Hodge number distribution is no longer needed in order to obtain good results. Our main results show that,
given the two constraints (3) and (4) derived from tangent bundle indices, we are able to solve the problem of
predicting all Hodge numbers with perfect accuracy.

Our results demonstrate that it is possible to obtain very accurate predictions for the dimension of
cohomology groups with only partial training data. We emphasize that the computations of more generic
vector bundle cohomologies also satisfy several linear relations and constraints derived from the index, Serre
duality or vanishing theorems such as Kodairas. Thus, it is often sufficient to predict a single Hodge number
with great accuracy to gain knowledge of all the others. In our experiments, training and validation error
align, and we do not observe any significant high variance issues. The high validation and test accuracy
suggests that the algorithm produces reliable results, even if it is only trained on partial data, say 30%. This
should open up venues for further investigation into other vector bundle computations.

It is then important to find configurations which yield high accuracy on the validation set. In earlier
studies, researchers have used feature enhancement to improve accuracy [22, 35]. Unfortunately, it is not
always possible to manipulate the input data via feature engineering in such a way. Adding a relevant
monomial basis changes the dimension of the input space in non-trivial ways, such that one has to restrict
oneself to a subset of the configuration matrices.

We opted to follow a model-centered approach, common in contemporary machine learning literature,
by building a proper architecture with the right amount of parameters. We balance the increased risk of
overfitting, due to a larger number of trainable variables, with the natural regularization of multi-task
architectures, thus increasing the final accuracy. With its 1× 107 parameters, CICYMiner is, given its
underlying geometric nature, still a small network with respect to many state-of-art models for computer
vision or NLP. Good examples are represented by Inception-Resnet-v2 [55], state-of-the-art in single-task
image classification with 5.6× 107 parameters and a long training time on 20 NVidia Kepler GPUs, and
GPT-3 [56], state-of-the-art NLPmodel, with more than 175× 109 model parameters. In fact, recent research
suggests that neural networks often admit power-scaling laws with dataset size and model parameters [57]. It
can also be noted that increasing the capacity of the model may be beneficial to the overall performance [58].
However, the geometric and physical interpretability might then become quite complicated and involved,
hence the suggestion to constrain the complexity of the CICYMiner architecture. It would be interesting to
observe how far one can improve the accuracy of h(3,1) and h(2,2) by using larger networks or adding more
data samples to the dataset, or even by just prolonging the training time on multiple GPUs. Additional data
samples can in principle be easily generated via (in-)effective splits of the already existing configuration
matrices. These redundant matrices had been discarded when compiling the initial dataset [12].

As a conclusion, our paper builds further the case for using deep learning in algebraic geometry by
demonstrating that an appropriate neural network architecture can predict accurately Hodge numbers of
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CICY. Moreover, since algebraic geometry uses datasets which are not of the type usually encountered in
usual machine learning applications, our results extend their range of applications.
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