
____________________________________________________________________________________________ 
 
*Corresponding author: Email: vryazan@yandex.ru; 
 

Physical Review & Research International 
3(4): 591-601, 2013 

 
SCIENCEDOMAIN international 

       www.sciencedomain.org 

 
 

Form of Nonequilibrium Statistical Operator, 
Thermodynamic Flows and Entropy Production 

  
V. V. Ryazanov1* 

 
1Institute for Nuclear Research Nat. Acad. of Sci. of Ukraine, 47, Nauky Prosp.,  

Kiev 03068, Ukraine. 
 

Author’s contribution  
 

The only author performed the whole research work. Author VVR wrote the first draft of the 
paper. Author VVR read and approved the final manuscript” 

 
 
 

Received 15 th March 2013  
Accepted 4 th July 2013 

Published 28 th July 2013 
 

 
ABSTRACT 
 
Nonequilibrium statistical operator (NSO) in the form suggested by Zubarev is represented 
as an averaging operation of the quasiequilibrium statistical operator over the distribution 
of the lifetime of the system. The form of the density function of the system lifetime affects 
all its non-equilibrium characteristics. In general, we consider the situation when the 
distribution density of the system lifetime depends on the current time moment. In the 
expressions for the fluxes and entropy production additional terms appear in comparison 
to the expressions derived from Zubarev’s NSO. These additional terms can be obtained 
by applying the principle of maximum entropy. 
 

 
Keywords: Nonequilibrium statistical operator; distribution of the lifetime; fluxes and entropy 

production. 
 
1. INTRODUCTION  
 
One of the most fruitful and successful ways of development of the description of the non-
equilibrium phenomena is given by a method of the non-equilibrium statistical operator 
(NSO) [1,2,3]. In work [4] new interpretation of the NSO method is given, where the 
operation of taking the invariant part [1,2,3] or the use of the  auxiliary «weight function» (in 
terminology of [5,6]) in NSO are treated as the averaging of the quasi-equilibrium statistical 
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operator on the distribution of the past lifetime of a system. This approach is consistent with 
the approach by Zubarev [2] with NSO yielded by averaging over the initial time. 
 
This interpretation of NSO gives it physical sense of the account of causality and allocation 
of a real final time interval in which a given physical system is placed. New interpretation 
leads to various directions of development of NSO method which is compared, for example, 
with Prigogine’s [7] approach, introduction of the operator of internal time, irreversibility at 
microscopically level. 
 
In [5] a source is introduced in the Liouville equation which gives the modified Liouville 
operator coinciding with the form of the Liouville equation suggested by Prigogine [7] (the 
Boltzmann-Prigogine symmetry), when the irreversibility is entered in the theory at the 
microscopic level. We note that the form of NSO by Zubarev in the interpretation of [4] 
corresponds to the main idea of [7] in which one sets to the distribution function ρ q which 

evolves according to the classical mechanics laws, the coarse distribution function ρ =Λρq 

(Λ is operator) whose evolution is described probabilistically since one perform an averaging 
with the probability density pq(u), Λ acts as an integral operator. 
  
In Kirkwood’s works [8] it was remarked, that the system state in some time moment 
depends on all previous evolution of the non-equilibrium processes developing in the 
system. In [5, 6] it is noted, that different «weight functions» can be chosen. Any consistent 
form of the lifetime distribution density would give a source term in the general form in 
dynamic Liouville equation which thus acquires the form considered by Boltzmann and 
Prigogine [5,6,7], and contains dissipative items. 
 
In Zubarev’s works [1-3] the linear form of a source corresponding to the limiting exponential 
distribution for lifetime is introduced. Other choices of the lifetime distribution density would 
give more exact analogues of the “collision integrals». The approach in facts introduces an 
explicit account for the time symmetry violation (introducing the finite lifetime, that is the 
beginning and the end of a system life cycle) is introduced. 
 
In [9-10] it is shown, in what consequences for non-equilibrium properties of system results 
change of lifetime distribution of system for systems with final lifetime. In [9-11] various 
dependence of the probability density of time past life pq(u) from the age of the system are 
considered, u=t-t0, t is current time, t0 is the moment of the birth of the system. In [11] the 
dependence of pq(u,t) on the current time moment is considered. In [11] this dependence is 
chosen in the piecewise continuous form, where the form of the function pq(u) is different for  
two time intervals. The general case can be considered choosing the continuous function 
pq(u,t) with an additional argument t. This choice is considered in the present paper 
generally and for specific forms of the function pq(u,t). We show how the choice of this 
function affects the physical characteristics of the system, namely, flows and entropy 
production. 
 
2. NEW INTERPRETATION OF NSO 
 
In [3] the nonequilibrium distribution (or NSO) is written in the form 
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      ρ(t)= ∫−

t

ttt
00

1
exp {-i(t-t’)L}ρrel(t’)dt’       (1) 

 
where L is Liouville operator; iL=-{H,ρ}=Σk{(∂H/∂pk)(∂ρ/∂qk)-(∂H/∂qk)(∂ρ/∂pk)}; H is Hamilton 
function, z or pk and qk are momentum and coordinates of particles; {…} is Poisson bracket. 
The relevant distribution has a form 

  ρrel(t)=exp{-Φ(t)-∑
=

n

j 1

Fj(t)Pj(t)};       (2) 

Φ(t)=ln∫dzexp{-∑
=

n

j 1

Fj(t)Pj(z)}.       (3) 

 
The Lagrange multipliers Fj(t) are determined from the self-consistency conditions 
 
 <Pn>

t=<Pn>
t
rel=Sp(ρrel(t)Pn); 

 
Pm(t) are some observable macroscopic quantities, dynamical variables [1-3]. For example, 
they may be the energy, the number of particles, the momentum, or some other variables. 
 
In [1-3] in taking the limit transition for t-t0, the Abel's theorem is used and the NSO is 
rewritten as 
 

      lnρ(z;t)=limε→0ε ∫
∞−

0

dt’exp{εt’}lnρrel(z;t+t’,-t’)dt’,                                             (4) 

where 2
1 2 1( , ) ( ,0)iLt

rel relt t e tρ ρ−= . The Liouville equation has a source term 

 
∂ρ/∂ t+iLρ(t)=-ε(ρ(t)-ρq(t,0)),                        (5) 

 
which tends to zero (ε→0) after the thermodynamic limiting transition. Equation (5) thus 
possesses the Boltzmann-Bogoliubov-Prigogine symmetry. For (1) 
 
 ∂ρ/∂ t+iLρ(t)= (ρ(t)-ρq(t,0))/(t-t0). 
 
The statistical distribution before taking limit is 
 

     lnρ(z;t)=ε ∫
∞−

t

dt’exp{-ε(t-t’)}lnρrel(z;t’,t-t’)dt’.      (6) 

 
In [4, 9-11] the distributions (4), (6) are rewritten as 
 

         lnρ(t)= ∫
∞

0

pq(y)lnρrel(t-y,-y)dy=lnρrel(t,0) - ∫
∞

0

(∫pq(y)dy)(dlnρ rel (t-y,-y)/dy)dy ,               (7) 
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where probability distribution density function pq(y) is interpreted as the lifetime distribution  
y=t-t0  of the system. We obtain the distribution of (1) from the expression (7) when using a 
uniform distribution of the form 
 

0

1
, [ , ]

( ) , ,
0, [ , ]

q

x a b
p y b t a tb a

x a b

 ∈= = =−
 ∉

                                                    (8) 

 
without using the Abel's theorem. If 
 

pq(y)=εexp{-εy}; ε=1/T=<Γ>-1,                                                                                 (9) 
 
the expression (7) reduces to the form of the NSO [1, 2]. 
 
Thus the operations of taking the  invariant part [1], averaging over initial conditions [2], 
temporal coarse-graining [8], choose of the direction of time [5,21] are replaced by averaging 
on  the lifetime distribution. The logarithm of NSO (1) is equal to the average from the 
logarithm of the relevant distribution (2) over the system lifetime distribution. As in [22] we 
make some estimations about the values Pj. The problem of estimation corresponds to 
assuming some information about values Pj. Lets assume, that this information consists in 
assumptions about the finiteness of the system lifetime and about exponential distribution 
pq(y)= εexp{-εy}. We shall note that for the logarithm of the nonequilibrium distribution lnρ(t), 
given by equality (7), the equation (5) is valid (after replacement ∂ /∂ t by -∂ /∂y and partial 
integration of the rhs of (5) it is equal to dlnρ(t)/dt). The initial conditions ρ(t0)=ρq(t0,0) [2] are 
satisfied, if in (7) we assume that lnρ(t0-y,-y)=0 at y>0, as at the moment of time, smaller 
than t0, the system does not exist. 
 
Besides the Zubarev’s form of NSO [1-3], NSO in the Green-Mori form [23] is known, where 
one assumes the auxiliary weight function [5] to be equal to W(t,t`)=1-(t-t`)/t; 
w(t,t`)=dW(t,t`)/dt`=1/t; τ=t-t0. After averaging one sets τ→∞. This situation at pq(u)=w(t,t`) 
coincides with the uniform lifetime distribution (8). In [1] this form of NSO is compared to the 
Zubarev’s form. 
 
It is possible to specify many specific expressions for the lifetime distribution of system, each 
of which can possess its advantages. Each of these expressions corresponds to the specific 
form of the source term in the  Liouville equation for the nonequilibrium statistical operator. 
Generally for pq(y) this source term has the form 

J=pq(0)lnρq(t, 0)+ ∫
∞

0

(∂ pq(y)/∂ y)(lnρq(t-y, -y))dy.                            (10) 

 
If the function pq(y,t) depends on t as well, the form  of the source changes. The Liouville 

equation holds, for example, under the conditions indicated in [1-3], when  
Another possibility to arrive at the Liouville equation with zero source is to find a function 
pq(y,t) that satisfies the condition J=0. To do this it is necessary to solve the integral 
equation. Setting the form of the function pq(u) reflects not only the internal properties of the 
system, but also the impact of the environment on the open system, its characteristics of the 
interaction with the environment. In [2] a physical interpretation of the function pq(u) in the 
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form of the exponential distribution is given as a free evolution of an isolated system 
governed by the Liouville operator. In addition, the system undergoes random transitions 
whereas the corresponding representing point in the phase space switches from one phase 
trajectory to another with exponential probability under the influence of a "thermostat", the 
random time intervals between consecutive switches growing infinitely. This occurs if the 
parameter of the exponential distribution tends to infinity after taking thermodynamic limit. 
But real physical systems are finite-sized. The exponential distribution is suitable for the 
description of completely random systems. The impact of the environment on a system can 
have more organized character, for example, for a system in the stationary nonequilibrium 
state with input and output fluxes; so different can be the interaction between the system and 
environment, therefore various forms of the function pq(u) different from the exponential form 
can be set. 
 
One could name many examples of explicitly defining the function pq(u). Every definition 
implies some specific form of the source term J in the Liouville equation, some specific form 
of the modified Liouville operator and NSO. Thus the family of NSO is defined. If the 
distribution pq(u) contains n parameters, it is possible to write n equations for their 
expression through the parameters of the system. From the other side, they are expressed 
through the moments of the lifetime. There is the problem of the best choice of the function 
pq(u) and NSO. In [24] to determine the type of function pq(u) the principle of maximum 
entropy for the evolution equations with the source is used. 
 
One can make various assumptions about the form of the function pq(u), yielding  different 
expressions for the source in the Liouville equation and the behaviour of the nonequilibrium 
system. The main difference of this paper from [4, 9-11] and expressions (1), (7) is that the 
function pq(u) is replaced by the function pq(u, t), as pt

q(y) in [19]. 
 
3. ADDITIONAL TERMS IN THE EXPRESSIONS FOR THE FLUXES AND 

ENTROPY PRODUCTION 
 
If instead of the function class pq(u) the dependence on pq(u, t) is considered, this results in 
the change of the Liouville equation for NSO ρ(t). In [2-3] expression for 

)()()( ttt qρρρ −=∆  is obtained in the form  

∫
∞−

−−−=∆
t

qqq
tt dttiLtQttUet ')'()'()',()( )'( ρρ ε ,     (11) 

where })(exp{)',(
'

ττ dQttU
t

t

qq ∫−= , qqQ Ρ−= 1  is the operator, additional to the 

Kawasaki-Gunton projection operator. The action of the latter on the quantum or classical 
variable A is defined by 
 

t

n

q

n

t

nnqq
P

t
PTrAAPTrTrAtAt

δ
δρ

ρ
)(

})()({)()( ∑ −+=Ρ , 
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(...)Tr  is the operation of taking the trace [3]. The operation (...)Tr  can be interpreted as 
the integration over the phase space of N particles with subsequent summation over all N 
[3]. For the case of dependence pq(u,t) instead of (11) we obtain 

∫ ∫
∞−

∞
− −−∆+−=∆

t

qqqqq
tttp dtduuuttuptiLtQttUet q '}),'()',()'()'(){',()(

0

)')(,0( ρρρ ,                  (12) 

 

where 
t

tup

u

tup
tuptptup qq

qqq ∂
∂

+
∂

∂
+=∆

),(),(
),(),0(),( . In comparison with [4, 9-11] an 

additional term 
t

tupq

∂
∂ ),(

 appears.  

 
We obtain an expression for the fluxes 
 

∑ ∫
∞−

−− ∆+Μ+=
∂

∂

n

t

mnmn
tttp

q
t

m

t

m dttttFtteP
t

P
q ')]',()'()',([)')(',0(& ,                   (13) 

 
where the first term in square brackets is obtained in [2,3] 
 

∫
−=Μ

1

0

1 )}'()'()'()',()({)',( ttItttUtIdxTrtt x
qn

x
qqmmn ρρ ,                        (14) 

 

nnn PtPPtQtI && ))(1()()( −+=  are dynamic variables of flows, P(t) is Mori projection 

operator acting on the classical and quantum dynamical variables on the rule 

∑ −+=
n

t

nnt

n

q
t

q
t

PP
P

A
AAtP )()(

δ
δ

, and the second term presents a correction to the 

expression obtained in [2, 3]. The appearance of such an additive caused a general form of 
the density function of the lifetime distribution. In this case, 
 

 ∫
∞

−−
∂

∂
+

∂
∂

+=∆
0

)},'()',()({]
'

)',()',(
)',()',0([)',( duuutttUtITr

t

tup

u

tup
tuptptt qqm

qq
qqm ρ .  (15) 

For pq(u) in exponential form (10) 0=∆ qp  and, therefore, the addition of (15) is zero. 

The expression for the entropy production with an additional term in comparison with the 
expressions derived in [2,3] is: 
 

∑ ∫
∞−

−− ∆+Μ=
nm

t

mnmnm

tttp dttttFtttFe
dt

tdS
q

,

)')(',0( ')]',()'()',()[(
)(

.                                      (16) 
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4. ESTIMATES OF THE ADDITIONAL TERMS 
 
To estimate the magnitude of the addition terms in terms of flows and entropy production we 
use the explicit expression for the function ),( tupq  obtained in [24] with the maximum 

entropy method. Under certain approximations the expression for the distribution of the 
lifetime obtained in [24] can be written as 
 

))()((
)0(

1

)0(
),(

0
/

/

tRtRe
F

p

ep
tup

ii

ii

Fuc

i

q

Fuc
q

q

−+
=

−

−

,                                                      (17) 

 

∑ ∑∑ −+
>><<−><

>><<−><
=

m k
i

kiki

kmjmjk
jm

j

tZF
PPPP

PPPPPP
tFtFtR )(ln)()()( 000  

 

>><<−><
>><<−><

−∑∑
mimi

mjmj

m j
j PPPP

PPPP
tF )( 0  ,                                                 (18) 

 
where we use the Zubarev-Peletminsky rule [1,5,25,26] 
 

)(),,...,1(,
1

zw
dt

zd
MiPCPw

M

j
jiji

rr
r

rr ===∇ ∑
=

,                                (19) 

 
where Cij are c-numbers. When considering the local density of the dynamical variables, Pi 
values may depend on the spatial variables. Then the quantities Cij may also depend on the 
spatial variables or may be differential operators; 
 

∑∑∑∑====
j

jjii tFCС )( 0 .                                                   (20) 

 
From the normalization condition we find 
 

)()(;/)1()0( 0
/ 2

tRtRrreFp ii FrC
iq −=−= − . 

 
For the distribution of (17) the expression ),( tupq∆ , appearing in (15), is  
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The value 1)( −

i

i

F

C
 is close to the average lifetime 0tt − , and following approximate 

equality can be written: 
t

r

tt

r

t

r

F

rС

i

i

∂
∂−

−
≈

∂
∂−

0

. If the value r quickly changes with time 

this expression can take large values. 
 
In the linear approximation in r 

)();1(),(;/)0(),0(
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0 t

r
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F

ea
pe

F

ar
aetupFCaptp

i

ua

q
au

i

au
qiiqq ∂

∂+−=∆+====
−

−−  

5. CONCLUSION 
 
Our main result is that, for a specific example of defining a function pq(u,t) shows the effect 
of this function on the physical characteristics of the system: flows and entropy production. 
 
In [16-19] the lifetimes of a system are considered as functionals of a random process, that 
is the random moment for a stochastic process that characterizes the system, to achieve a 
certain threshold, such as zero level. This definition is used in the present work. In [11, 27-
28] the lifetime is included within the range of common physical quantities acting as controls 
(in terms of information theory) for the quasi-equilibrium statistical operator, and providing 
additional information about the system. The distribution containing lifetime as 
thermodynamic parameter considered in [11, 28] can be related to the interpretation of NSO 
from [4] and in the present paper as an average over the distribution of the lifetime of the 
system. 
 
Let's notice, that in a case when the value dlnρq(t-y, -y)/dy (the operator of entropy 
production σ [1]) in the second item of the right part (9) does not depend on y and is taken 
out from the  integration on y, this second term  becomes σ<Γ>, and the expression (9) does 
not depend on form of the function pq(y). It is the case, for example, of ρq(t)∼exp{-σt}, 
σ=const. In [29] such distribution is obtained from the principle of maximum entropy with 
inclusion of the  average values of fluxes as constrains. 
 
The form of the density distribution of the lifetime is essential for the kind of expressions for 
nonequilibrium system behaviour. A more detailed description pq(u) compared with the 
limiting exponential (10) allows  to describe the real stages of the evolution (and systems 
with small lifetimes). Each of the distributions for the lifetime has a certain physical meaning. 
In the queuing theory different service policies correspond to different expressions for the 
density distribution of a lifetime. In the stochastic theory of storage specifying these 
expressions corresponds to setting different models of the output and input into the system. 
 
It is shown that the account for dependence of this function on the current point in time leads 
to additional terms in the expressions for the average flows, of entropy production and other 
characteristics of a nonequilibrium system.  
 
If the type of source in the Liouville equation for a non-equilibrium statistical operator is 
chosen in the form suggested by Zubarev [2] it is possible to compare it with the linear 
relaxation source in the Boltzmann equation; more complicated types of sources from other 
distributions for lifetime of the system, can be compared to more realistic types of collision 
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integrals.  Different forms appear to be representation of the openness of the system, its 
interaction with surroundings, finiteness of its lifetime, and coarsening procedures for 
physically infinitely small volumes. 
 
In [30] it was noted that the role of the form of the source term in the Liouville equation in 
NSO method has never been investigated. In [19] it is stated that the exponential distribution 
is the only one which possesses the Markovian property of the absence of the after action, 
that is whatever is the actual age of a system, the remaining time does not depend on the 
past and has the same distribution as the lifetime itself. 
 
The physical sense of averaging over the introduced lifetime distribution of quasi-equilibrium 
system consists in the obvious account of breaking the time symmetry and information loss 
related to it, which is manifested in the average of entropy production <∆S (t)> not equal to 
zero, obviously reflecting fluctuation-dissipative processes as irreversible phenomena in 
non-equilibrium systems. The correlations obtained in the present paper generalize the 
results of statistical non-equilibrium thermodynamics [1, 2 ,3] and information statistical 
thermodynamics [4-5] as instead of weight function in a form εexp{εt'}  the  probability 
density of the lifetime distribution for quasi-equilibrium system is introduced which need not 
be in exponential form (in the latter case it coincides with weight function from [1, 2, 3]). For 
example, for system with n classes of ergodic states the limiting exponential distribution is 
replaced with the generalized Erlang function. In the study of lifetimes for complex systems it 
is possible to involve many results of the theory of reliability, the theory of queues, the 
stochastic theory of storage processes, theory of Markov renewal, the theory of semi-Markov 
processes etc.  
 
As it is specified in [31], the existence of time scales and information stream from slower to 
faster degrees of freedom creates irreversibility of the macroscopical description. The 
information continuously passes from slow to fast degrees of freedom, which leads to 
irreversibility. The information thus is not lost, and passes into the form inaccessible to 
retrieval on the Markovian level of the description. For example, for the rarefied gas the 
information is transferred from one-partial observables to multipartial correlations. In [4] the 
values ε=1 / <Γ> and pq (u) = εexp {-εu} are expressed through the operator of entropy 
production and, according to [31], through the information flow from relevant to irrelevant 
degrees of freedom. 
 
The introduction of the function pq(u) into NSO corresponds to the specification of the 
description by means of the effective account of interaction with irrelevant degrees of 
freedom. In the present work it is shown, how it is possible to expand the description of 
memory effects within the limits of method NSO, to a more detailed account of influence on 
the system evolution of quickly varying variables through the specified and expanded kind of 
the lifetime distribution function density. 
 
In many physical problems the finiteness of lifetime can be neglected. Then ε∼ 1/<Γ> → 0. 
For example, for the case of drops evaporation in a liquid it is possible to show [32], that 
non-equilibrium characteristics depend on exp{y2}; y=ε/(2λ2)

1/2, λ2 is the second moment of 
correlation function of the fluxes averaged over quasi-equilibrium distribution. Estimations 
show, that even at the minimum values of lifetime of drops (generally of finite size) and the 
maximum values ε is the value of y=ε/(2λ2)

1/2≤10-5. Therefore finiteness of values <Γ> and ε 
does not influence the behaviour of system and it is possible to set ε =0. However in some 
situations it is necessary to consider finiteness of lifetime <Γ> and values ε >0. For example, 
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for nanodrops the effect of finiteness of their lifetime should be already taken into account. 
For the lifetime of neutrons in a nuclear reactor in [4] the equation for ε =1/<Γ> is obtained 
which solution leads to the expression for the average lifetime of neutrons which coincides 
with the so-called period of a reactor. In [33] the account for the finiteness of lifetime of 
neutrons result to the corrections to the distribution of neutrons energy. 
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