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ABSTRACT

The phenomenon of thermal Spreading resistance takes places when two rough solids are
brought into contact and heat flow is streamed across their asperities. The purpose of the
present study is to investigate the heat conduction and thermal spreading resistance of Half-
Spaces and semi-infinite Microchannels with Variable conductivity for both heat flux and
temperature specified boundary conditions on the contact of silicon and heat sink material in
Chip-Multiprocessor. The governing equation is expressed in cylindrical coordinates. A well-
known technique (Kirchhoff transformation) is used to linearize the steady state nonlinear
heat conduction equation of problem and equations are solved by deriving the analytical
solution. Results are presented in contour plots that show the effects of various boundary
conditions on the thermal spreading resistance, heat flow rate and temperature distribution.
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1. INTRODUCTION

Heat transfer across the interfaces formed by imperfect joints occurs in a wide range of
applications, such as micro-electro mechanical systems (MEMS), aerospace, biomedicine,
nuclear sciences, heat exchangers and steel industries. Thermal spreading resistance (TSR)
is crucial for thermal assessment of contacting bodies in electronic systems. Because of its
dependence on the geometric features of solids (asperity slop, surface roughness and etc),
kind of deformation, load or apparent contact pressure, type of interstitial fluids and thermal
conductivity of solids, it is difficult to develop a precise estimation of TSR. Many studies have
been carried out to determine the impact of diverse parameters on the TSRs. General
expressions for determining the effect of heat source eccentricity on TSR of finite isotropic
and compound rectangular flux channels are presented by Muzychka et al. (2003) [1]. He
also reported a review of TSRs in compound and orthotropic systems for both cylindrical and
rectangular systems (Muzychka et al., 2004) [2]. The effects of temperature-dependent
conductivity, shape and size of contact surfaces and different boundary conditions on the
TSR of Silicon have been studied numerically by Rahmani and Shokouhmand (2012) [3].
The effect of heat spreaders in compound systems has been studied by many investigators
(Yovanovich et al., 1999; Yovanovich et al., 1998; Yovanovich et al., 1980; Muzychka et al.,
2001) [4-7]. Lam et al. (1999) and Ying and Toh, (2000) investigated the effect of orthotropic
properties on the TSR [8-9]. Yang et al. (1999) analyzed the TSR of a strip contact spot on a
layer of material for the heat-flux specified boundary condition on the contact zone [10].
Many researches on TSR have been done showing the significance of this issue. This work
plans to develop analytical solution for determination of TSR with inhomogeneous thermal
conductivity. TSR can be analyzed as two problems which two boundary conditions will be
considered for the contact area, isothermal contact area and heat flux-specified condition.
The solution for the inhomogeneous silicon will be obtained by means of Kirchhoff
Transformation and Separation values methods.

Nomenclature

A= cross section area, m?

b= larger radius of Flux Channel, m

c= radius of contact surface, m

cte = constant value

D= Area-averaged temperature defined by Eq. 20, K
Jo(x) = Bessel function of the first kind of order zero
Ji(x) = Bessel function of the first kind of order one
k = thermal conductivity, W/mK

heat flow rate, W
= heat flux, W/m?

q

R= thermal resistance, K/IW
r = radial coordinate, m

t = arbitrary variable

T= temperature, K

z= length coordinate, m

Greek Letter Symbols

= variable temperature substitution, K
flux channel relative radius, c¢/b
dummy variable

>m o
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Q= function of contact/total radius ratio (where the flux channel relative radius is
equal to c/b)
v = Laplacian operator
Subscripts
n= normal component counter
r= reference variable
c= contact surface
0 = sink properties
= spreading
Sink = Heat Sink
k=cte = Constant value of thermal conductivity

2. THERMAL SPREADING RESISTANCE (TSR)

Fig. 1 simply shows the schematic configuration of chip-multiprocessor in which Silicon layer
is in contact with heat sink material which can be Aluminum, Copper, Diamond and etc. In
order to simulate this contact, many domains are suggested and employed; two common
geometries which are used in this study are shown in Figs. 2 and 3. Spreading resistance
occurs when thermal energy is transformed from one solid to another one by conduction
through a small contact area. In a heat sink, this means that heat does not distribute
uniformly through the heat sink base.

1 aps
<« Silicon layer

chip-multiprocessor

Fig. 1. Chip-Multiprocessor Configuration
In order to determine the TSR, two schematic geometries are commonly used:

i) Heat source on a half-space in which microcontacts are assumed to be located far
from each other, the top surface (z=0) of the half-space outside the contact area is
assumed to be adiabatic and contact surface has isothermal or isoflux boundary
conditions. The sink area is much larger than the contact area, thus, it can be
assumed isothermal (Tgw=T«). The TSR of a circular microcontact of radius C is
defined as (see Fig. 2) (Yovanovich and Marotta, 2003) [11]:

= = — k=ct
T-Tw |4KCH Jisoflux,k = cte

TSR = = ™M
o

,isothermal  k = cte
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Where the area-averaged temperature (AAT) is given by:

4 ()

Fig. 2. Half-Space

ii) A circular contact area (A.) is in contact with semi-infinite circular flux channel with
adiabatic edges. Cooper et al. (1969) suggested a precise relation for determining the
circular flux channel TSR (see Fig. 3) [12]:

YTC _fz:() _ q)(g)
4KC’

TSR = k =cte (3)

R

| Fllow Linesl

Contact Area

Fig. 3. Flux Channel
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Where ¢ (¢) is dimensionless TSR factor (¢ = c¢/b) that was calculated in many studies
(Cooper et al.,, 1969; Gibson, 1976; Negus and Yovanovich, 1984; Mikic and Rohsenow,
1966) [12-15].

3. KIRCHHOFF TRANSFORMATION

Assessment of the TSR needs the solution of Laplace’s equation. Laplace’s equation for
inhomogeneous silicon has the form:

V.(kVT)=0 w

This nonlinear equation cannot be solved easily by analytical methods, but there is a simple
method named Kirchhoff transformation for transforming the expression of the non-linear
diffusive process into the linear equation. Introducing a new variable:

6= [k(T)dT
ki()

g (5)
Where the reference conductivity is a function of temperature k,=k(T,). The aforementioned
nonlinear heat conduction equation Eq. (4) becomes a linear Laplace’s equation

kVi0=0 o

Once 6 is obtained, the transformation can be used to convert back to temperature. The
temperature dependence of k (T) of the Silicon can be modeled approximately by following
relation (Glassbrenner and Slack, 1964) [16].

k(T)=k xexp(1-+ -

Where k=148 W/mK is the reference value for the thermal conductivity of Silicon at the
reference value of temperature T,-300 K. If the reference temperature T, of the Kirchhoff
transformation is assumed to be the temperature at the infinity distance in z and r directions
(T., Ko) and the contact surface temperature (T,, K;) for the Half-Space and the Flux
Channel, respectively, the governing equations and boundary conditions will be transformed
using Kirchhoff transformation, as shown below:
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k. V6 =0
6=06,
0<r<cior
Half-Space:<z=0— 00 QO p
_kw_:—:q
0z 7c
r>c,—=0
Z
r—>o,0=60 =0
z#0—> 0—0 -0
z—>w0,0=0, =
(8)
and
kCV29=O
0<r<c,0=60 =0
z=0—>
r)c,—>%zo
0z
Flux Channel:
kCZ—(g:O,r—H)
z#0—> 62
kc_: Q2 :q”,Z_)w
0z b

4. TSR OF INHOMOGENOUS SILICON
4.1 Half Space

4.1.1 Isothermal contact surface

The general solution of temperature distribution throughout the Half-Space can be obtained
by means of separation of variables method as follows (Yovanovich and Marotta, 2003) [11]:

2 . 2¢
0 =—0 sin
z \/(r—c)2+zz +\/(I"+C)2+Zz (10)

The temperature distribution in the original system T(r,z) can be obtained using Kirchhoff
transformation and the temperature-dependent conductivity relation (7) as
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2c )
\/(r—c)z+zz+\/(r—i-c)z+z2 (11)

The heat flow rate (HFR) through the Half-Space becomes as follows:

T(r,z)=T.(1- ln(%(

0= 4kwTwc[1 —exp(1- ;)j

(12)
The final result for the TSR becomes as follows:
rspe_ (L-T)
4k T c(1—exp(
- (13)

4.1.2 Isoflux contact surface

The general solution of temperature distribution throughout the Half-Space can be obtained
by means of separation of variables method as follows (Yovanovich and Marotta, 2003) [11]:

0= e (40 (he) 2

The temperature distribution in the original system T(r,z) can be obtained using Kirchhoff
transformation and the temperature-dependent conductivity relation (7) as follows:

Tr,2) =T~ In(1 -2 [0 (A, (40 22
k, rcT), 7 A,

(15)
The AAT of contact surface is given as follows (Yovanovich and Marotta, 2003) [11]:
4
— c
0.=(15
- (16)
Also:
T =T.(-In(l-——2 )
Finally, the TSR becomes:
Ty 28
TSR = s
0 (18)
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4.2 Flux Channel

4.2.1 Isothermal contact surface

The general solution of temperature distribution throughout the Flux channel can be obtained
by means of separation of variables method as follows (Yovanovich and Marotta, 2003) [11]:

o(r,z) = Q —z+ Qz > S E/lﬂzr) WA | p
kxb®~  knbc'S A S (A,b) (19)

Where D is equal to the AAT on Z=0 plane.

0 22 j@(r,O)27rrdr =D

=0

(20)

The temperature distribution in the original system T(r,z) can be obtained using Kirchhoff
transformation and the temperature-dependent conductivity relation (7) as follows:

o0 —/1”2 .
T(rz)=T.(0-In(1+—2 - - 3 €I AIINAS | )
kxT,b*  kxT,b*c = A2J3(A,b) 21)
The TSR becomes as follows:
D+ L(ﬂ(é‘)
D 4k ¢
T {In(1 —?) —In(1- . )}
TSR = : :
0 (22)

In this equation, increasing the total HFR from the contact surface to the flux channel, Q,
causes an increase in the AAT of contact surface with 6(r,z) distribution, D.
The TSR ratio TSR/TSR (k=cte) iS:

0
D+—=—p(¢)
E{ln(l—i)—ln(l— 4';C )
TSR Y
= >1
TSR(k:cte) 1 Q)(S)
4k.c 23)

This relation indicates that when the thermal conductivity is assumed to be variable, the
amount of TSR related to this assumption is more than the TSR with constant conductivity.
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5. DISCUSSION

Thermal spreading resistance of silicon (Si) as a most widely used semiconductor in
microelectronics industry was expressed by analytical method. To demonstrate the
importance of the present work, some analytical graphs from aforementioned mathematical
results are presented. Two example of Half-Space with two different boundary conditions
(isoflux and isothermal contact surface) are presented. First, an example is given which
shows the effects of temperature and size of contact surface on the HFR and TSR. Second
one shows the effects of HFR and size of contact surface on the AAT and TSR.

Variation of ratio TSR/TSR - «) in the heat flow range of rate from 1 W to 5 W and in the
temperature range of 300 to 350 K for the isoflux and isothermal contact surface boundary
conditions, are shown in Figs. 4 and 5, respectively.

—&i

10014 H

10012

1.0010

TSR
TSR (K=cte)

1.0008 -

1.0006 -

1.0004

Fig. 4 Variation of TSR/TSRi=ct¢) , isoflux contact area
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TSR (x

103

102 A

1014

350

320 330
Temperature of Contact (K)

Fig. 5 Variation of TSR/TSRj=ct¢) , isothermal contact area
Increasing linear changes can be seen in both graphs that could be ascribed to the opposite

relationship between temperature value and thermal conductivity of silicon within this
temperature range (see Eq. 7). As the difference between the contact surface temperature
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and the sink temperature becomes more evident, the difference between the TSR (=) and
the TSR becomes more significant, as can be observed in following figures.

Additionally, the symbolic mathematics program Maple 13 (2009) is employed and some
contour plots from mathematical results given previously are presented in this work [17].

For illustration purposes we consider the following two surface boundary conditions, figs. 6,
and 7 are given for the Isothermal contact surface boundary condition and Figs. 8, 9 and 10
are given for isoflux contact.

Isothermal contact surface boundary condition: In this boundary condition, HFR and
TSR are the most important parameter in the thermal evaluation of system. Fig. 6 shows the
changes in the HFR when the contact radius and temperature are increased, the values of
HFR in some pints are given (24, 50...251).

0010
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000z
ooz
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0.004

Contact Radius (m)

0003

000z

0.001

T T T T 1
300 310 320 330 340 350
Contact Temperature (K)

Fig. 6. 2D contour plot of HFR, isothermal contact area

As can be seen in Fig. 6 the values of HFR increase with increase of contact radius. Also,
HFR increases slightly as contact temperature increases, while the contact size is held
constant. As shown in Fig. 7, an increase in contact radius results in an increase in the TSR,
while, TSR decreases with increasing the Temperature of contact surface (T.). These
results can be drawn from Egs. 12 and 13.
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Fig. 7. 3D contour plot of TSR, isothermal contact area

The Isoflux contact surface boundary condition: It can be observed in Figs. 8, 9 and Eq.
17 that the AAT of contact surface increases linearly by increasing the HFR and decreases
logarithmically with contact radius increase. Also, the TSR increases linearly by increasing
the HFR and decreases logarithmically with contact radius increase as illustrated in Fig. 10

and Eq. 18.
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Fig. 8. 2D contour plot of AAT of contact surface, isoflux contact area
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Fig. 9. 3D contour plot of contact surface AAT, isoflux contact area

Radius(m
Fig. 10. 3D contour plot of TSR

6. CONCLUSION

A simple direct method to estimate the TSR of inhomogeneous silicon is proposed. The
proposed model is based on the Kirchhoff transformation, which transforms the nonlinear
heat Conduction equation into the Laplace equation whose analytic solution can be obtained
easily. The effect of contact surface radius and different boundary conditions on the Heat
flux ratio and thermal spreading resistance were assessed. Simple analytical expressions for
determining the TSR of silicon were derived and results were presented in some contour
plots. The effects of various boundary conditions on the thermal spreading resistance, heat
flow rate and temperature distribution were investigated.
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