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Abstract 

 
The article is dedicated to the creation of the fragment of table algebras theory constructed on 

the basis of classical relational Codd’s algebras. The distinctive peculiarity of the adapted 

technique is the use of set-theoretic properties of some constructions (full image of the set with 

respect to the function, function restriction with respect to the set, generalized direct 

(Cartesian) product, binary relation of functions compatibility) and their transference on a case 

of tables. The transference of these properties is possible in view of simplicity of signature 

operations representations in terms of indicated set-theoretic constructions. 

Keywords: Relational Codd’s algebras, table algebras, restriction, generalized direct product, 

compatibility relation. 

 

1 Introduction 

 
The table algebras theory forms a theoretic base of modern table databases query languages. The 

papers [1-6] are dedicated to the investigation of table algebras. The carrier elements of these 

algebras are the models of the relational data structures, the signature operations are constructed 

on the basis of basic table manipulations in relational Codd’s algebras [7-10] and in SQL-like 

languages: the union, intersection, difference, selection, projection, join, active complement, 

renaming and grouping mechanisms on example of division operation. 
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2 Table Algebras: Basic Definitions 

 
Examinating data structures were abstracted from different attributes’ domains (i.e. we consider 

one universal domain), from special value NULL as well as from duplicatoins of the rows in the 

table without a primary key (PRIMARY KEY) [6].  

 

Let’s make more precise the tables (the relations) in terms of nominal sets [11-13]. For this we fix 

two sets: A, whose elements are called attributes, and D – the universal domain. 

 

The arbitrary finite set of attributes A⊆R  is called scheme. We’ll denote schemes by R, R1,                     

R2, …. 

 

Row of the scheme R is a nominal set on a pair R, D, in which projection on  the first component 

equals to R. Thus, the row of the scheme R is a function of the form DRs →: . The rows are 

denoted by ,...,, 21 sss .  

 

Table of the scheme R is called a finite set of rows of the scheme R. Thus, table of the scheme R is 

a finite set of the form },...,{ 1 nSSt = , where 0≥n and DRs i →: . The tables 

are defined as t, t1, t2, …. For 0=n  we have a case of an empty table, i.e. a table which does 

not contain rows. The set of all rows (tables) of the scheme R are defined as S(R) (T(R), 

respectively), the set of all rows (tables) are defined as S (T, respectively). Thus, we’ll have 

)(RSS
R

def

U
A⊆

=
, )(2)( RSdef

RT = , 
)(RTT

R

def

U
A⊆

=
. 

 

Here, 
X2  denotes a set of all finite subsets of set X . 

 

The scheme can be empty, then in addition there exists a single empty scheme row which is 

defined by ε  ( empty row is an undefined function). 

 

The set of all tables T is a carrier of a table algebra. We shall define signature’s operations which 

have natural representations in terms of set-theoretic constructions like full image constructions, 

restriction and generalized direct product. 

 

Here Xs |  is a restriction of the row s on set X  which is defined standard as 

)(| DXsXs ×∩= . The restriction of binary relation on a set is introduced completely 

analogously: )(| 2
2UXUXU

def

π×= I , where )(2
Uiπ  is a projection of a binary relation on i-th 

component. 
 

Let A⊆X  is a finite set of attributes. 

 

Definition 1. The unary parametric operation Xπ  is a projection on a set of attributes X . In this 

case its values are the tables which consist of restrictions of all rows of initial tables on set of 

attributes X .  
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Thus, TTX →:π , }| |{)( tsXst
def

X ∈=π . 

 

Definition 2. The binary operation ⊗ is a join. Under join we understood binary operation, whose 

values are tables consisting of all unions of compatible rows of the tables-arguments. 

Thus, ,: TTT →×⊗  }^^ | { 2122112121 sststssstt
def

≈∈∈=⊗ U . 

 

Here ≈ is a binary relation of binary relations compatibility (in particular, the compatibility of the 

functions and rows): XUXUUU
def

|| 2121 =⇔≈ , where 2

2

11

2

1 UUX ππ I=  is an 

intersection of projections on first component of initial binary relations. 

 

Considering the definition of join it is ought to take into account that the functionality property is 

broken in general case of functions union. Therefore, to justify the correctness of the join 

definition it is necessary to take into account the functionality of the union of functions, which are 

compatible [6]. 

 

The definition implies that }|^| | )({ 22112121 tRstRsRRSstt ∈∈∈=⊗ U , where 

)( 11 RTt ∈ , )( 22 RTt ∈ . This is a definition of a natural join or equijoin  [14]. 

 

Reference [6,14] introduced the operation of active addition , which approximates a set-theoretic 

addition in a certain sence. Let’s consider several subsidiary concepts necessary for an active 

addition introduction. 

 
Definition 3. Let A is an attribute, t is a table of the scheme R. Then 

)},^({, sdAtssd | D
def

tA >∈<∈∃=  is an active domain of attribute A with respect to table t 

according to the terminology in [14]. 

 

Definition 4. Assume 
tA

RA

def
DNtC ,)(

∈
= . For an empty table  we need to choose a nonempty 

scheme, where, as previously, R is the scheme of table t.  

 

Where, C(t) is called saturation of table t  [15,16] and N is an operator of constructing of a set of 

all nominal sets with respect to parameter-indexing. We shall give a general definition. 

 

Let’s fix sets V and Σ. Let Uvv ∈Σ }{  (i.e. ∑ν
ν a ) is a certain indexing of denotation subsets 

Σ⊆Σv
 by names of a (finite) set of names VU ⊆ . 

 

Definition 5. Under the nominal set corresponding to the given indexing  a nominal set on a pair 

v
Uv

U Σ
∈
U,  is understood which is the projection on first component coincides with set U and 

every Uv ∈  value (denotat) belongs to the set vΣ .  
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The set of all such nominal sets are denoted by v
Uv

N Σ
∈

. By definition, we assume that there 

exists a single nominal set which corresponds everywhere undefined indexing. This empty 

nominal set is denoted by ε . Thus, }{εdef

v
v
N =Σ

∅∈
. 

 

Note that the operator for construction of set of all nominal sets corresponding the indexing 

coincides, in fact, with a set-theoretic construction of a generalized direct (Cartesian) product 

∏
∈∈

Σ=Σ
Uv

vv
Uv

N   [17]. 

 

Definition 6. Under active complement an unary operation is understood ~ which corresponds 

every table its complement up to the saturation. 

Thus, TT →~: , ttCt
def

\)(
~ = . 

 

Under renaming an unary, generally speaking partial, parametric operation of the form 

ξξξ TTRt →~:  is understood, where the parameter is an injective , generally speaking partial, 

map defined on an attributes set AA →~:ξ . The operation only renames tables-arguments 

attributes according to parameter. 

 

The arrow of the form →~  is used to denote partial operations . 

 

The formal definion of renaming requires additional notions. The table renaming is a renaming of 

all attributes of its scheme, therefore table renaming is reduced to renaming its rows, where two 

such renaming are connected among themselves by a full image construction. In turn, the row 

renaming is renaming of first pair components, e.g. the row elements. Let’s go down to precise 

definions. 

 

Let AA →:η is a certain total function of attributes renaming, generally speaking, not an 

injective function, we denote the set of all finite binary relations on a pair of sets A, D by S ′ . 

 

Definition 7. Under rows renaming corresponding to function of attributes renaming η is 

understood the map of the form 

 

)}(|)(),({)(,: 2
1 sAAsAsRsSSRs

def

πηηη ∈><=′→ , εεη =)(Rs . 

 

Evidently the functionality rows property can be broken in case of such renaming, we require the 

attributes renaming function η to have the following structure: we fix an injective partial function 

of the form AA →~:ξ  and assume ξξη dom
def

\id AU= . 
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Here XX →:idX  is the identical fuction (diagonal) defined on set X . 

 

Informally speaking, attributes of the set ξdom  (i.e. the attributes of domain of map ξ ) are 

renamed, attributes of the differences ξ\domA  are remained the same. This corresponds to 

situation when only part of attributes of database tables is renamed globally, the rest attributes 

remain unchanged. 

 

Definition 8. Scheme R is called ξ -admissible, if ∅=)\(][ ξξ domRR I , where 

}~)(^(|{][ ABRBBAR
def

−∈∃= ξξ  is a full image of scheme R with respect to map ξ .  

Here −~ – is a generalized equality (strong Kleene’s equality) [18]. 

 

The set of all tables of ξ-admissable schemes are defined by ξT . It is easily to check that the 

functionality property is not broken in case of renaming the rows of ξ-admissable schemes [6]. 

 

Definition 9. Renaming corresponding to injective partial renaming attributes function 

AA →~:ξ is understood as unary parametric operation ξRt  which domain is ξT  and the 

values are set by equality ][)( tRstRt ηξ = , ξTt ∈ ,where, as earlier, ξξη dom\id AU=  

and the right part of the last equality is a full image of table-argument.  

 

Assume by definition 

 

{ } Ξ∈∈

⊆Ξ ÷⊗=Ω
ξ

ξπσ
,

,,,,
21

1

2
~,,,,,,\,,

Pp

RRRX

R

RXpRRR

def

P  Rt
A

       IU , 

 

where P, Ξ are parameter’s sets (for selection and renaiming operations respectively). 

 

The operations of union, intersection, difference, selection and division, which definitions are 

omitted, are understood in standard way [6]. 

 

Definition 10. The partial (parametric) algebra <T; ΞΩ ,P  > will be called a table algebra. 

Note, that division and intersection are derived with respect to other signature operations [3]. 

 

For Examinating tables and their schemes we  need to take into account  some peculiarities. By 

definition the empty set or rows in the table is called empty table and denoted  by ∅t . As far as 

exists single nominal set on pair ∅, D, namely, empty nominal set ε, then there exists a single row 

ε of a scheme ∅; i.e. }.{)( ε=∅S  Concerning empty scheme ∅ tables: there are two of them 

− ∅t  and }{εε
def

t = . Really, }{}}{{2 ε
)S( ,ttε,)T( ∅

∅ =∅==∅ . 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(23), 3286-3293, 2014 

 

 

3291 

 

At last, evidently, the scheme of non-empty table can be uniquely recover by the table itself, and 

we can ascribe any scheme to empty table, e.g. )(RTt ∈∅  for any scheme R. The last assertion 

can be written in form 

 

}.{)()((, 212121 φtRTRTRRRR =⇒≠∀ I  

 

3 Representations of Signature Operations of Tabular Algebra 

 
The introduced signature operations of table algebras have natural simple representations in terms 

of set-theoretic constructions; namely these representations allow relatively easy to transfer 

properties of full image, restriction, generalized direct product and other constructions on a table 

case. 
 

In the following statesments all designations are used in sense of the monograph [6], in particular, 

SSS →×
−

~:U , }|,{ 2121 ssssdom ≈><=
−

U , 2121 ssss UU =
−

 for all 

−

>∈< Udomss 21, . 

 

Lemma 1 (about projection representation). The projection has the following representation: 
 

][)( tXtХ =↑π , where SSX →↑ : , XssX |)( =↑ .   (1) 

 

The proof implys from definitions of projection and restriction. 

 

Lemma 2 (about join representation). The join has the following representation: 

][ 2121 tttt ×=⊗
−

U .                   (2) 

 

Proof. We show that the left part of equality (2) is included the right one, the right part is included 

left one. Thus, let 21 tts ⊗∈ , then there are rows 11 ts ∈  and 22 ts ∈  such, that 21 ss ≈  and 

21 sss ∪= . It remains to note accessories 

−

>∈< Udomss 21,  and full image definition. 

Now let ][ 21 tts ×∪∈ , then there are rows 11 ts ∈  and 22 ts ∈ , such that 

−

>∈< Udomss 21,  and 21 sss ∪= . The definition of operation SSS →×
−

~:U  

implies that 21 ss ≈ . From here follows that 21 tts ⊗∈ .   

 
Lemma 3 (about saturation representation). The saturation has the following representation:  
 

∏
∈

=
RA

tADtC ,)( ,        (3) 
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Where )},(|{, sdAtssdD
def

tA >∈<∧∈∃=  is an active domain of attribute A  with 

respect to table t , R  is the  scheme of the table t .  

 

The proof implies from definitions of saturation and generalized direct product. 

  

Lemma 4 (about renaiming representation). The renaiming has the following representation: 

 

( ) ][tRstRt ηξ = , where ξξ= dom

def

η \id A U , ξTt ∈  .  (4) 

 

The proof implies from definitions of tables and rows renamining.  
 

Theorem 1 (about representations of signature operations of table algebras). The projection, join, 

saturation and renaming have the representations (1)-(4) respectively.  
 

The proof implies from lemmas (1)-(4). 
  

Thus, the representations of basic operations of table algebras through set-theoretic constructions 

of full image, restriction and direct product have been established. It is worth to note that the 

presence of these representations allows to get properties of table operations in consequences of 

properties of indicated set-theoretic constructions. This will be done in the next part of the paper. 
 

4 Conclusion 

 
Informative fragment of table algebras theory has been constructed in this paper. The main 

peculiarity of adapted technique is contained in establishment of natural representations of basic 

signature operations of these algebras (projection, join, saturation, renaming) in terms of set-

theoretic constructions of full image, restriction, (generalized) direct product, compatibility 

relation. In the second part of the paper the properties of considered set-theoretic constructions 

will be transferred on table algebra. 
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