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Abstract

In this work we present a mathematical model for tumour growth based on the biology of the cell

cycle. Our model reproduces the dynamics of three different tumour cell populations: Quiescent

cells, cells during the inter phase and mitotic cells. Here, we investigate the stability analysis

of the cancer-free equilibrium. We have implemented Homotopy perturbation method to give

approximated analytical solutions of non-linear ordinary differential equations of system such as

model for Tumoural growth. A modification of the homotopy perturbation method based on

the use of Pade approximations is done. Some plots are presented to show the reliability and

simplicity of the methods.
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1 Introduction

Cancer is nowadays one of the most common severe diseases in the world. A better understanding
of the dynamics of cancer and tumour growth is therefore crucial.

In the last two decades many mathematical models for the description of tumour growth have
been developed. When investigating tumour growth, one cannot neglect the process of cell ageing
and cell division. In particular cell ageing and cell-cycle have been considered in many and different
[1, 2, 3, 4] approaches. Cells enter the cell cycle through two quite distinct processes. One is the
unique process of fertilization, and the other is cell proliferation activated by growth factors. A
classical cell cycle model, the G0 -model, has been developed by Mackey [5]. Examples of the
more recent work done with mathematical models of [6] and [7] cycle specific chemotherapy are by
Webb. They develop linear and non linear age-structured models of cycle-specific chemotherapy.
Another[8] work interest by Birkhead, in which a four compartment linear system is developed
to model the cycling, resistant and resting cells. Their results are limited to a few numerical
calculations on four specific types of treatments. Swan [9] examines cycle-specific chemotherapy in
his review article. In general [10, 11] the cells undergo the cell cycle, a sort of “life cycle” which
consists of four phases: The G1 phase is necessary for the cell to grow up, before the DNA is
replicated in the S phase, A second growth phase G2 follows and the mitotic phase (M) concludes
the cycle, with division of nucleus and cytoplasm. The result of a completed cell cycle are two
daughter cells which enter the cycle in G1. The first three phases of the cycle are often summed
up together and referred to as ‘interphase’. Here the primary focus will be on the cell cycle events
that occur when G0 cells are stimulated to proliferate by growth factors. There is a complex cell
cycle network of signalling pathways that interact with each other to control whether or not cells
will grow and divide. There is an extensive cell cycle tool kit that contains both the signalling
molecules and the large number of targets that are engaged as the cell passes through the cell cycle.
Growth factors act early in G1 through a growth factor signalling/cell cycle interface to engage the
cell cycle signalling system that then takes over and presides over the orderly sequence of events
that culminates in cell division to give two daughter cells. The most typical normal cell will have a
cell cycle duration of approximately 24 hours, with various exceptions(e.g.liver cells can take up to
a year to complete their cycle). However a study made by Tubiana [12] on 30 solid human tumours
reveal that the median duration of these phases can be even higher with a cell cycle duration lasting
a median time of 2 days and distributed as 1 day for G1, 18 hours for S, 6 hours for G2, leaving just
approximately 1 hour for mitosis M . These values are median values and one must be cautioned
to the fact that different cell lines have different cell cycle times(normal and cancerous cells), they
give evidence that the cell cycle time is approximately twice as large in man than in animals. In

this article, we consider the following model (1) for cell cycle of tumoural cells. In this model,
the inducement of this article is to expand the application of the analytic Homotopy perturbation
method to solve for tumoural cell cycle. Ji-Huan He is a Chinese Mathematician, He was the first
person to propose the Homotopy perturbation method. The first connection between series solution
methods such as an Adomain decomposition method and Pade approximates was established. In
section 2, we investigate the stability analysis for cell cycle of tumoural cells model with positiveness
and boundedness of solutions. In section 3 and 4 we discuss the pade approximation method and
homotopy perturbation method for investigating the approximate solutions of the above said model
(1). In section 5, we derived the approximate solutions of the model (1) using section 3 & 4 and
also plotted the approximate solutions. Finally this article end with the conclusions in section 6.
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2 Model

The general model [13] described for the cell cycle for the tumoural cells as follows:

Q′(t) = µQV (t)− (bQ + µG0)Q(t)

U ′(t) = 2b1U(t) + bQQ(t)− µ1U(t)

V ′(t) = −(µ0 + µQ)V (t) (2.1)

The system (1) needs to be analysed with the following initial conditions:

Q(0) > 0, U(0) > 0, V (0) > 0

we denote,

ℜ3
+ = {(Q,U, V ) ∈ ℜ3

+, Q(0) ≥ 0, U(0) ≥ 0, V (0) ≥ 0}

Table I:
Parameter Description

Q(t) Number of quiescent (G0) cells at a time t
U(t) Number of mitotic cells at a time t
V (t) Number of interphase (G1, S and G2-phase) cells at a time t

Table II: Parameter Values and Range [[13]]

Variable Description Value Dimension

µG0 death rate G0 cells 0.1/104 time
µQ transition rate from G1 to G0 0.02 time
bQ transition rate from G0 to G1 0.2 time
b1 division rate of M cells 0-1 day time
µ0 death rate G1 cells 0.11 time
µ1 death rate M cells 0.28 time

2.1 Positive Invariance

The model (1) can be written in the form,

X ′(t) = F (X(t))

where

F = (F1, F2, F3)
T := (Q,U, T )T , F (0) = (Q(0), U(0), V (0))T ∈ ℜ3

+.

and

F (X) =

F1(X)
F2(X)
F3(X)

 =

 µQV (t)− (bQ + µG0)Q(t)
2b1U(t) + bQQ(t)− µ1U(t)

−(µ0 + µQ)V (t)

 .
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It is easy to check that Fi(X)|Xi(t) ≥ 0, i = 1, 2, 3. ,
Due to lemma Yang [14] any solution of the above equation with initial point X0 ∈ ℜ3

+, say
X(t) = X(t,X0) is such that X(t) ∈ ℜ3

+ for all t > 0.
Remark 1:
Any positive solution of system (2) with initial conditions are bounded.

2.2 Stability Analysis

For biomedical reasons, it is important to look at the long-term behaviour of tumoural cell populations.
In this section, we investigate only the stability of the cancer free-steady state and determine
conditions on the model parameters for tumour growth eradication.

The system (1) is a linear system with the stationary points (Q∗, U∗, V ∗) = (0, 0, 0). The
eigenvalues associated with the matrix are given by,

B =

−(bQ + µG0) 0 0
bQ 2b1 − µ1 0
0 0 −(µ0 + µQ)

.

From the above matrix gives the characteristic equations by

λ3 + a1λ
2 + a2λ− a3 = 0

where,
a1 = µ1 − 2b1 − (bQ + µG0 + µ0 + µQ)
a2 = (µ0 + µQ)(bQ + µG0) + (µ0 + µQ)(2b1 − µ1) + (bQ + µG0)(2b1 − µ1)
a3 = (2b1 − µ1)(bQ + µG0)(µ0 + µQ)

The roots of the above characteristic equation are ,

λ1 = −(bQ + µG0)

λ2 = 2b1 − µ1

λ3 = −(µ0 + µQ)

From the the above it is trivial to see that all roots of the characteristic equations are real and that
λ1 < 0, and λ3 < 0.

Remark 2:
The cancer free steady state is locally asymptotically stable if b1 < µ1

2
.

Biomedical Interpretation: Note that µ1 represents the death rate of the mitotic cells and b1
represents the division rate of the mitotic cells.
Assume that b1 > µ1

2
, then the cells can be divided and the tumour cell is going to the interphase

stage that the cancer is to be growth. Hence the necessary condition for the cancer cell decay is
b1 < µ1

2
, in this case the death rate of the mitotic cells is greater than the division rate, therefore

the cancer cells will not grow.(according to this model). This fact will be confirmed by the more
complex models later and also has been identified for radiation treatment in [15].
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3 Pade Approximation

A rational approximation to f(x) on [a,b] is the quotient of two polynomials PN (x) and
QM (x) of degrees N and M , respectively. We use the notation RN,M (x), M(x) to denote this
quotient. The RN,M (x) Pade approximations to a function f(x) are given by [16],

RN,M (x) =
PN (x)

QM (x)
, for a ≤ x ≤ b. (3.1)

The method of Pade requires that f(x) and its derivatives be continous at x = 0. The
polynomial used in (2)are,

PN (x) = p0 + p1x+ p2x
2 + · · ·+ pNxN , (3.2)

QM (x) = q0 + q1x+ q2x
2 + · · ·+ qMxM . (3.3)

The polynomial in (4)and (5) are constructed so that f(x) and RN,M (x) agree at x = 0 and
their derivatives upto N + M agree at x = 0. In the case Q0(x) = 1, the approximation is just
the Maclaurin expansion for f(x). For a fixed value of N + M the error is smallest when PN (x)
and QM (x) have the same degree or when PN (x) has degree one higher than QM (x). Notice that
the constant coefficient of QM (x) is q0 = 1. This is permissible, because it is noticed to be 0 and
RN,M (x) is not changed when both PN (x) and QM (x) are divided by coefficients. Assume that
f(x) is analytic and has the Maclaurin expansion,

f(x) = a0 + a1x+ a2x
2 + · · ·+ akx

k + · · · , (3.4)

and from the difference f(x)QM (x) - PN (x) = Z(x),[∑
aix

i
] [∑

qix
i
]
−

[∑
pix

i
]

=
[∑

cix
i
]

(3.5)

The lower index i = N + M + 1in the summation on the right side of (7) is chosen because
the first N + M derivatives of f(x) and RN,M (x) are agree at x = 0. When the left side of (7) is
multiplied out and the coefficient of the powers of xi are set equal to zero for k = 0, 1, 2, · · ·N +M ,
the result is a system of N +M + 1 linear equations:

a0 = p0,

q1a0 + a1 = p1,

q2a0 + q1a1 + a2 = p2,

q3a0 + q2a1 + q1a2 + a3 = p3,

qMaN−M + qM−1aN−M+1 + aN = pN , (3.6)

and

qMaN−M+1 + qM−1aN−M+2 + ...+ q1aN + aN+1 = 0,

qMaN−M+2 + qM−1aN−M+3 + ...+ q1aN+1 + aN+2 = 0,

.

.

.

qMaN−M+1 + qM−1aN+1 + ...+ q1aN+M+1 + aN+M = 0. (3.7)
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Notice that in each equations the sum of the subscripts on the factors of each products the
same,and this sum increase consecutively from 0 to N +M .

The M equation in (9) involve only the unknowns q1, q2, q3, · · · qM and must be solved first.
Then the equations in (8) are used successively to find p1, p2, p3, ...., pN [16].

4 Homotopy Perturbation Method

To illustrate the homotopy perturbation method (HPM) for solving nonlinear differential equations,
He [17, 18] considered , the following nonlinear differential equation:

A(u) = f(r), r ∈ Ω (4.1)

with the following boundary condition:

B

(
u,

∂u

∂t

)
= 0, r ∈ Γ (4.2)

where A is general differential operator, B a boundary operator, f(r) is known analytical function
and Γ is the boundary of the domain and denotes differentiation along the normal vector drawn
outwards from Ω. The operator A can be decomposed into two operators M and N , where M is
linear, and N is nonlinear opearator. Equation (10) can be therefore, written as follows:

M(u) +N(u)− f(r) = 0. (4.3)

He [17, 19] considered a homotopy v(r, p) : Ω× [0, 1] → ℜ which satisfies,

H(v, p) = (1− p)[M(v)−M(u0)] + p[A(v)− f(r)] = 0 (4.4)

which is equivalent to,

H(v, p) = M(v)−M(u0) + pM(u0) + p[N(v)− f(r)] = 0 (4.5)

where p ∈ [0, 1] is an embedding parameter, and u0 is an initial approximation of (10). Obviously,
we have,

H(v, 0) = M(v)−M(u0) = 0, H(v, 1) = A(v)− f(r)] = 0 (4.6)

The changing process of p from zero to unity is just that of H(v, p) from M(v) − M(u0)
toA(v)−f(r). In topolgy, this is called deformation, M(v)−M(u0) and A(v)−f(r) are homotopic.
According to the homotopy perturbation method, the parameter p is used as a smaller parameter,
and the solution of equation (13) can be expressed as a series in p is the form,

v = v0 + pv1 + p2v2 + p3v3 ++... (4.7)

When p → 1, equation (13) corresponds to the original one, equations (12) and (16) become
the approximate solution of equation (12),
i.e.,

u = lim
p→1

v = v0 + v1 + v2 + v3 + ... (4.8)
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4.1 Convergence

From [20, 21] Let us write Eq (13) in the following form,

M(v) = M(u0) + p[f(r)−N(v)−M(u0)] = 0 (4.9)

Applying the inverse operator, L−1 to both sides of Eq (17), we obtain

v = u0 + p[L−1f(r)− L−1N(v)− u0] (4.10)

Suppose that

v =

∞∑
i=0

pivi, (4.11)

substituting (19) into the right-hand side of Eq(18) in the following form

v = u0 + p

[
L−1f(r)− L−1N(

∞∑
i=0

pivi)− u0

]
(4.12)

If p → 1, the exact solution may be obtained by using,

u = lim
p→1

v

= L−1f(r)− L−1N

[
∞∑
i=0

vi

]

= L−1f(r)−
∞∑
i=0

(L−1N)(vi).

To study the convergence of the method let us state the following theorem.

Theorem:(Sufficient Condition of Convergence).

From [20, 21] Suppose that X and Y are Banach spaces and N: X → Y is contractive nonlinear
mapping, that is

∀w,w∗ ∈ X; ∥ N(w)−N(w∗) ∥≤ γ ∥ w − w∗ ∥, 0 < γ < 1

Then according to Banach’s fixed point theorem N has a unique fixed point u, that is N(u)= u.
Assume that the sequence generated by homotopy perturbation method can be written as

Wn = N(Wn−1), N(Wn−1) =

n−1∑
i=0

wi, n = 1, 2, 3..,

and suppose that W0 = W0 ∈ Br(w) where Br(w) = {w∗ ∈ X| ∥ W ∗ −W ∥< r}, then we have,
i) Wn ∈ Br(w),
ii) limn→∞ = w.
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Proof:
(i) By inductive approach , for n = 1, we have,

∥ W1 − w ∥=∥ N(W0)−N(w) ∥≤ γ ∥ w0 − w ∥

Assume that,

∥ Wn−1 − w ∥≤ γn−1 ∥ w0 − w ∥

as induction hypothesis,then

∥ Wn − w ∥=∥ N(Wn−1)−N(w) ∥≤∥ Wn−1 − w ∥≤ γn ∥ w0 − w ∥ .

Using (i), we have

∥ Wn − w ∥≤ γn ∥ w0 − w ∥≤ γnγ < r ⇒ Wn ∈ Br(w).

(ii) Because of ,

∥ Wn − w ∥≤ γn ∥ w0 − w ∥ and lim
n→∞

γn = 0, lim
n→∞

∥ Wn − w ∥= 0

that is,

lim
n→∞

Wn = w

5 Application

We have applied the homotopy perturbation method to non linear ordinary differential systems (1),
then we use Laplace transformation and Pade Approximation to compute analytical solution of the
system (1),

5.1 Homotopy Perturbation Method to a cell cycle of the tumoral
Model

We derive the correct functional according to perturbation method as follows:

(1− p)(v̇1 − ẋ0) + p(v̇1 − µQv3 + (bQ + µG0)v1) = 0

(1− p)(v̇2 − ẏ0) + p(v̇2 − 2b1v2 − bQv1 + µ1v2) = 0

(1− p)(v̇3 − ż0) + p(v̇3 + (µ0 + µQ)v3) = 0 (5.1)

here “.” the denotes differentiation with respect to t(for example,v̇ = dv
dt
), and the initial

conditions are as follows:

v1,0(t) = x0(t) = Q(0) = r1

v2,0(t) = y0(t) = U(0) = r2

v3,0(t) = z0(t) = V (0) = r3 (5.2)
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and

v1 = v1,0 + pv1,1 + p2v1,2 + p3v1,3 + · · · ,
v2 = v2,0 + pv2,1 + p2v2,2 + p3v2,3 + · · · ,
v3 = v3,0 + pv3,1 + p2v3,2 + p3v3,3 + · · · , (5.3)

where vi,j , i, j = 1, 2, 3, · · · are functions yet to be determined. Substituting equations (19) and
(20) into (18) and arranging the coefficients in terms of “p” powers, we have,

[v̇1,1 − µQr3 + (bQ + µG0)r1]p+ [v̇1,2 − µQv3,1 + (bQ + µG0)v1,1]p2+

[v̇1,3 − µQv3,2 + (bQ + µG0)v1,2]p3 + · · · = 0

[v̇2,1 − 2b1r2 − bQr1 + µ1r2]p+ [v̇2,2 − 2b1v2,1 − bQv1,1 + µ1v2,1]p2+

[v̇2,3 − 2b1v2,2 − bQv1,2 + µ1v2,2]p3 + · · · = 0

and

[v̇3,1 + (µ0 + µQ)r3]p+ [v̇3,2 + (µ0 + µQ)v3,2]p2+

[v̇3,3 + (µ0 + µQ)v3,2]p3 + · · · = 0 (5.4)

To obtain the unknowns vi,j(t),i,j=1,2,3, we will construct and solve the following system which
includes nine equations with nine unknown, considering the initial conditions, vi,j(0) = 0,i,j=1,2,3.

v̇1,1 − µQr3 + (bQ + µG0)r1 = 0,

v̇1,2 − µQv3,1 + (bQ + µG0)v1,1 = 0,

v̇1,3 − µQv3,2 + (bQ + µG0)v1,2 = 0,

v̇2,1 − 2b1r2 − bQr1 + µ1r2 = 0,

v̇2,2 − 2b1v2,1 − bQv1,1 + µ1v2,1 = 0,

v̇2,3 − 2b1v2,2 − bQv1,2 + µ1v2,2 = 0,

v̇3,1 + (µ0 + µQ)r3 = 0,

v̇3,2 + (µ0 + µQ)v3,2 = 0,

v̇3,3 + (µ0 + µQ)v3,2 = 0. (5.5)

From equation (17), if the three terms approximation are sufficient, then we obtained:

Q(t) = lim
p→1

v1(t) =

2∑
k=0

v1,k(t)

U(t) = lim
p→1

v2(t) =

2∑
k=0

v2,k(t)

V (t) = lim
p→1

v3(t) =

2∑
k=0

v3,k(t) (5.6)
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Now, we have

Q(t) = r1 + (µQr3 − (bQ + µG0)r1]t+ (−µQ(µ0 + µQ)r3 − (bQ + µG0)

(µQr3 − (bQ + µG0)r1)t
2

U(t) = r2 + (2b1r2 + bQr1 − µ1r2)t+ (2b1(2b1r2 + bQr1 − µ1r2) +

bQ(µQr3 − (bQ + µG0)r1)− µ1(2b1r2 + bQr1 − µ1r2))t
2

V (t) = r3 + (−(µ0 + µQ)r3)t+ (µ0 + µQ)
2r3t

2 (5.7)

Here, we should take Q(0) = 2 ∗ 105, U(0) = 1 ∗ 105, V (0) = 4 ∗ 105, for this model,[16] to
compute Q(t), U(t), V (t). A first few approximations for Q(t), U(t), V (t) are computed and given
below:

Three terms approximations:

Q(t) = 200000− 32002t+
268036001

100000
t2 − 4684988056001

30000000000
t3

U(t) = 100000 + 212000t+
895599

5
t2 +

154311064001

1500000
t3

V (t) = 4000− 52000t+ 3380t2 − 2197

15
t3 (5.8)

Four terms approximations:

Q(t) = 200000− 32002t+
268036001

100000
t2 − 4684988056001

30000000000
t3

+
849164461080760

120000000000000
t4

U(t) = 100000 + 212000t+
895599

5
t2 +

154311064001

1500000
t3

+
884560600670533

200000000000
t4

V (t) = 4000− 52000t+ 3380t2 − 2197

15
t3 +

28561

6000
t4 (5.9)

Five terms approximations:

Q(t) = 200000− 32002t+
268036001

100000
t2 − 4684988056001

30000000000
t3

+
849164461080760

120000000000000
t4 − 158416983860762

600000000000000
t5

U(t) = 100000 + 212000t+
895599

5
t2 +

154311064001

1500000
t3

+
884560600670533

200000000000
t4 +

456441761590

300000000000000
t5

V (t) = 4000− 52000t+ 3380t2 − 2197

15
t3 +

28561

6000
t4

− 371293

3000000
t5 (5.10)
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Six terms approximations:

Q(t) = 200000− 32002t+
268036001

100000
t2 − 4684988056001

30000000000
t3

+
849164461080760

120000000000000
t4 − 158416983860762

600000000000000
t5

+
301998089419911

360000000000000
t6

U(t) = 100000 + 212000t+
895599

5
t2 +

154311064001

1500000
t3

+
884560600670533

200000000000
t4 +

456441761590

300000000000000
t5

+
261692748588

600000000000000
t6

V (t) = 4000− 52000t+ 3380t2 − 2197

15
t3 +

28561

6000
t4

− 371293

3000000
t5 +

4826809

1800000000
t6 (5.11)

Using Laplace transformation to (31) we have,

L(Q(s)) =
200000

s
− 32002

s2
+

268036001

50000s3
− 4684988056001

5000000000s4

+
849164461080760

500000000000000s5
− 1584169838607628096001

50000000000000000000s6

+
30199808941991169548116001

5000000000000000000000000s7

L(U(s)) =
100000

s
+

212000

s2
+

1791198

5s3
+

154311064001

250000s4

+
26536818020115999

25000000000s5
+

4564417615906059904001

2500000000000000s6

+
785078245766003695860075999

250000000000000000000s7

L(V (s)) =
400000

s
− 52000

s2
+

6760

s3
− 4394

5s4
+

28561

250s5

− 371293

25000s6
+

4826809

2500000s7
(5.12)

Substituting s = 1
t
in (32), we have,

L(Q(t)) = 200000t− 32002t2 + 5360.72002t3 − 936.9976112002t4

+169.832892216152002t5 − 31.68339677215256192002t6

+6.0399617883982339096232002t7

L(U(t)) = 100000t+ 21200t2 + 3.582396 ∗ 105t3 + 6.17244256004 ∗ 105t4

+1.06147272080463996 ∗ 106t5 + 1.8257670463624239616004 ∗ 106t6

+3.140312983064014783440303996 ∗ 106t7

L(V (t)) = 400000t− 52000t2 + 6760t3 − 878.8t4 + 114.244t5

−14.85172t6 + 1.9307236t7 (5.13)

Using Pade approximant [[16]] of (33) and substituting t = 1/s, we get [[16]] in terms of s.
By using the inverse Laplace transformations, we have,
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Q(t) =
2.000000000

1025
Dirac(t)(3.019980894 ∗ 1025t7 − 1.584169839 ∗ 1026t6

+8.491644611 ∗ 1026t5 − 4.684988056 ∗ 1027t4 + 2.680360010 ∗ 1028t3

−1.600100000 ∗ 1029t2 + 1.000000000 ∗ 1030t)

U(t) =
4.000000000

1021
Dirac(t)(7.850782458 ∗ 1026t7 + 4.564417616 ∗ 1026t6

+2.653681802 ∗ 1026t5 + 1.543110640 ∗ 1026t4 + 8.955990000 ∗ 1025t3

+5.300000000 ∗ 1024t2 + 2.500000000 ∗ 1025t)

V (t) =
4.000000000

107
Dirac(t)(4.826809 ∗ 106t7 − 3.7129300 ∗ 107t6

+2.85610000 ∗ 108t5 − 2.197000000 ∗ 109t4 + 1.690000000 ∗ 1010t3

−1.300000000 ∗ 1011t2 + 1.000000000 ∗ 1012t)
(5.14)

Using the equations (29) and (31), we plot for the fourth (Fig 1) and sixth (Fig 2) approximations
of quiescent cells(Q(t)), mitotic cells (U(t)), interphase cells(V (t)) , are presented below respectively:
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From the above fig 1 and fig 2, it is easily seen that, whenever the time (t) is increasing then the
quiescent cells and interphase cells have to be decreased, simultaneously mitotic cells are increasing
the given time (t) in both approximations.
Suppose we take this system with immunotherapy for constant treatment,the time between one
mitosis and next is large enough and the division rate is small, then the tumour vanishes independently
of the delivered dose. However cancer is due to the uncontrolled growth of cells, so a large division is
plausible. Further, we assume that the interphase time is very short we see at the effects of constant
immunotherapy. Finally, the tumour vanishes when the immune system is highly stimulated by the
increasing dosage.

6 Discussion

The main advantage of the method is the fact that it provides its user with an analytical approximation,
in many cases an exact solution, in a rapidly convergent sequence with elegantly computed term.
Thus, we have studied this model with the help of the Homotopy Perturbation Method. Moreover,
we have obtained a solution for this model, when the exact solution could not be found. The
comparison of our solution with the corresponding numerical solution showed the high degree of
accuracy for the approximate solution. It also has several disadvantages inherent in any approximate
method. Unfortunately, this method is very sensitive to the choice of homotopy, which often
determines the possibility of the rapid convergence of approximate solution to the exact one.
Moreover, it is not clear yet how to fine-tune the free parameter. Note also that solution process
itself can be improved [22, 15, 20, 21]. We hope to consider all these problems in our further
works. In the present paper, we just wanted to draw the attention of researchers to the possible
application of the HPM in this model. We did not aim to investigate the accuracy of the HPM
and to estimate the errors of approximation. We simply showed that this method can be used with
good results where it is impossible to solve this type of equations in explicit analytical form. In our
view, the results of the present work reveal that the HPM is very effective and simple for obtaining
approximate solutions of this model in tumoural cell cycles.

7 Conclusion

In this paper we study the effect of a cell-cycle during the M phase, the G0 phase and the interphase
(G1, S,G2). In the absence of any treatments, we see that the cancer growth mainly depends on
the death rate of cells in the mitotic phase and the division rate at which cells in the mitotic
phase go into the G1 phase (see lemma).Cancer will begin to grow if the division rate is greater
than the death rate of cells in mitotic phase.Cell cycle duration is an important factor which can
give rise to oscillation of solutions.We have used the Homotopy perturbation method for finding
the solutions of non-linear ordinary differential systems such as a model for cell cycle of tumoural
cells. The accuracy and efficiency of these methods are demonstrated here by solving some ordinary
differential equation system. We have also used Laplace Transform and Pade approximate to obtain
some analytic solution and to improve the accuracy of the homotopy perturbation method. He’s
homotopy perturbation methods is used to calculate certain difficult integrals. The graphs and
computations presented here is done with the help of Maple. This gives a solution to a mathematical
model of tumour growth, which will be very useful to study about the tumour growth model.
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