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Abstract
We study an associative algebra A over an arbitrary field, that is a sum of two subalgebras B and C
(i.e. A = B+C). We prove that if B has a nil ideal of bounded index, and that C has a commutative
ideal, both of finite codimension in B and C, respectively, then for some nil PI ideal I of A the ring
A/I has a commutative ideal of finite codimension.

Keywords: Rings with polynomial identities, prime rings
2010 Mathematics Subject Classification: 16N40; 16R10; 16R20

1 Introduction
Let R be an associative ring and R1, R2 its subrings such that R = R1+R2, i.e. for every r ∈ R there
exist r1 ∈ R1 and r2 ∈ R2 such that r = r1+r2 (we keep this notation throughout the Introduction). In
[1] K. I. Beidar and A. V. Mikhalev stated the following problem: if both Ri satisfy polynomial identities
(shortly, are PI rings), is it true that also R is a PI ring? The problem is still open. A positive answer
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in particular cases can be found in many papers (cf. [2], [3], [4], [5], [6], [7], [8], [9]). In the context of
these studies the following natural question arises: what properties has the ring R when Ri satisfies a
specified polynomial identity fi = 0 for i = 1, 2. Concerning this question, Kegel [3] proved that if both
Ri are nilpotent then so is R. In [4] it was shown that if Ri are nil of bounded index (i.e. they satisfy
identity xni = 0) then so is R. In [2] Bahturin and Giambruno proved that if both Ri are commutative
then R satisfies the identity [x1, y1][x2, y2] = 0, where as usual [x, y] = xy − yx.

In [10], developing some ideas of [9], certain generalizations of the above three cited results were
obtained for algebras over an arbitrary field that have commutative ideals of finite codimension (such
algebras are called almost commutative), algebras that have nilpotent ideals of finite codimension
(such algebras are called almost nilpotent) and algebras that have nil ideals of bounded index and
finite codimension (called almost nil of bounded index algebras). It was shown in [10] that if both Ri
are almost commutative subalgebras then R = R1 +R2 contains a nilpotent ideal I such that R/I is
almost commutative. Moreover, it has been shown that if both Ri are almost nilpotent (respectively
almost nil of bounded index) then so is R.

In this paper we show that if R1 is nil of bounded index and R2 is commutative then R contains a
nil PI ideal I such thatR/I is commutative. Moreover we show that ifR1 is almost nil of bounded index
and R2 is almost commutative then R contains a nil PI ideal I such that R/I is almost commutative.

2 The Main Results
We consider associative algebras over a fixed field K, which are not assumed to have an identity. If
I is a two-sided ideal (left ideal, right ideal) of a ring (an algebra) A, we write I �A (I <l A, I <r A).

By F , N , B, H and C we denote the class of all finite dimensional algebras, nilpotent algebras,
nil of bounded index algebras, nil PI algebras, and commutative algebras, respectively.

Let us consider two arbitrary classes of algebras S and T , for which 0 ∈ S and 0 ∈ T . Let

ST = {A | there exists I �A such that I ∈ S and A/I ∈ T }.

Obviously S ⊆ ST and T ⊆ ST . Thus CF denotes the class of almost commutative algebras;
NF the class of almost nilpotent algebras; BF the class of almost nil of bounded index algebras.
By Adrunakievich’s lemma, if J � I � A and JA is the ideal of the algebra A generated by J then
(JA)

3 ⊆ J . So if J ∈ H then JA ∈ H. Thus (HR)S = H(RS) for arbitrary classes of algebras R and
S. Certainly, every subalgebra of an algebra from HCF belongs to HCF .

Throughout the paper, A is an algebra over a field K and B and C are subalgebras of A such
that A = B + C. Moreover, let B0 �B and C0 � C, where dimK B/B0 <∞ and dimK C/C0 <∞.

Using the above notation, we can state the main result of this paper as follows:

Theorem 2.1. Assume A = B + C with B ∈ BF and C ∈ CF then A ∈ HCF .

The proof will be given in Section 4.

3 Preliminary Materials
The centre of an algebra H is denoted by Z(H). For a given subset S of an algebra H, by lH(S) and
rH(S) we denote the left and right annihilators of S in H, respectively.

We now present several facts which we will use further. Let R be a ring and I �R. Applying the
identity [xy, t] = x[y, t] + [x, t]y, it is easy to show that

1. I[R,R] ⊆ [I, R]R∗;

2. I[I, R] ⊆ [I, I]R∗,
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where R∗ denotes the ring R with an identity adjoined. From the above it follows that if I is a
commutative ideal of the ring R then [I,R] ⊆ rR(I) (similar arguments give [I, R] ⊆ lR(I)). Moreover,
if rI(I) = 0 or lI(I)=0 then I ⊆ Z(R). Furthermore if rR(I) = 0 or lR(I) = 0 then R is a commutative
ring.

We have the following from A. Mekey in [11]:

Lemma 3.1. Let H be an algebra over an arbitrary field F and P a subalgebra of H such that
dimF H/P <∞. Then P contains an ideal I of H such that dimF H/I <∞.

We will use the following modification of Petravchuk’s Lemma 7 from [9].

Lemma 3.2. ([10]) Let P1 and P2 be subalgebras of an algebra H and let I be an ideal of H such
that I ⊆ P1 + P2. Then there exist subalgebras Q1 ⊆ P1 and Q2 ⊆ P2 of H such that Q1 + Q2 is a
subalgebra of H and I ⊆ Q1 +Q2.

We need some information about the class of nil PI rings. Given a ring H, let us denote by W (H)
the sum of all nilpotent ideals of the ring H.

Proposition 3.1. ([12]) For every nil PI ringH there exists a natural number n such thatHn ⊆W (H).

Now we give some properties of the class HCF (cf. [9, Proposition 1]).

Proposition 3.2. For the class HCF the following statements hold:

(i) every subalgebra and every quotient algebra of an algebra from HCF belongs to HCF .

(ii) if P, Q ∈ HCF then the direct product P ×Q belongs to HCF .

(iii) if I �H, H/I ∈ HCF and I ∈ HCF then H ∈ HCF .

Proof. The statements (i) and (ii) are obvious. We show that (iii) holds. Let I �H, H/I ∈ HCF and
I ∈ HCF . Then there exists an ideal J of I and an ideal U of J such that U ∈ H, J ∈ HC and
I/J ∈ F . By Andrunakievich’s lemma and the fact that U � J � I �H, the ideal U of H generated
by U is in H, so we can assume that U = 0, and thus I ∈ CF . Let S/I be an ideal of H/I such that
S/I ∈ HC and H/S ∈ F . We proceed by induction on n = dim I/J .

Suppose first that n = 0, that is I = J . Since [I,H] ⊆ rI(I) � I � H and (rI(I))
2 = 0, [I,H]

is contained in some nilpotent ideal of H. So we can assume that [I,H] = 0. Hence I ⊆ Z(H)
and I[H,H] = 0. Let G = rS(I). Obviously G � H and [S, S] ⊆ G. Since (G ∩ I)2 = 0 and
G/(G ∩ I) ≈ (G + I)/I ∈ BC, it follows that G ∈ BC. We can assume that G ∈ C. Because
[G,S] ⊆ rG(G) � G � H and (rG(G))2 = 0 we may assume that [G,S] = 0. Therefore G ⊆ Z(S)
and G[S, S] = 0. Since [S, S] ⊆ G, we have [S, S][S, S] = 0. It is not hard to check that S∗[S, S]� S.
Indeed, since [xy, t] = x[y, t] + [x, t]y for all x, y, z ∈ S, we have S∗[S, S] = [S, S] + S[S, S] ⊆
[S, S] + [S, S]S = [S, S]S∗. Similarly [S, S]S∗ ⊆ S∗[S, S]. So [S, S]S∗ = S∗[S, S]. Hence S ∈ NC and
consequently H ∈ NCF ⊆ HCF .

Suppose now that n > 0 and the result holds for integers less than n. Since J is commutative,
we again can assume J ⊆ Z(I). Consider T = {t ∈ S | It ⊆ JS}, where JS is the ideal of S
generated by J . Obviously T � S. Thus S/T can be considered as a subring of the ring of K-
linear endomorphisms of I/JS . Since I/JS ∈ F it follows that S/T ∈ F . Similarly, T/L ∈ F for
L = {l ∈ T | lI ⊆ JS}. Clearly J ⊆ L ∩ I.

If J 6= L∩I, then there exists 0 6= a ∈ I \J such that Ia ⊆ JS and aI ⊆ JS . Suppose that Ia * J
and let 0 6= b ∈ Ia \ J . Since J ⊆ Z(I) and b ∈ JS then Ib ⊆ J and bI ⊆ J . Analogously one can
show that if aI * J then there exists 0 6= c ∈ aI \ J such that cI ⊆ J and Ic ⊆ J . Thus, in each case
there exists d ∈ I \ J such that dI ⊆ J and Id ⊆ J . So the subring N of the ring I generated by d
and J is a commutative ideal of I. Certainly dim I/N < n and the induction assumption gives (iii) in
the case when J 6= L ∩ I.

If J = L∩ I then since L/J = L/(L∩ I) ≈ (L+ I)/I ∈ HC, J is commutative and H/L ∈ F . By
Lemma 3.1 we can assume that L�H, so (iii) holds by the first part of the proof.
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Remark 3.1. Similarly one can prove that the classesNCF and BCF are both closed under extensions.

Definition 3.1. An algebra A = B+C over an arbitrary field K is called an HCF-counter-example if
A satisfies the following conditions:

(1) A 6∈ HCF ;

(2) the subalgebras B and C have ideals B0 � B and C0 � C such that B0 ∈ B, C0 ∈ C and the
number dimA/(B0 + C0) is the smallest one for all algebras A such that A 6∈ HCF ;

(3) the algebra A does not have nonzero ideals that lie in the K-subspace B0 +C0 from condition
(2).

Let A be an HCF-counter-example. Suppose that 0 6= I �A. Denote A = A/I, B = (B + I)/I,
C = (C + I)/I, B0 = (B0 + I)/I and C0 = (C0 + I)/I. Clearly A = B + C and B,C ∈ HCF .
By Definition 3.1, I * B0 + C0, so dimA/(B0 + C0) < dimA/(B0 + C0). Thus A ∈ HCF . Hence
for every 0 6= I � A we have A/I ∈ HCF . Basing on this it is easy to show that A is a semiprime
algebra. Indeed, if I is a nonzero nilpotent ideal of A then A/I ∈ HCF and consequently A ∈ HCF ,
which is a contradiction. We can extend the above result, as the following lemma shows.

Lemma 3.3. If A is an HCF-counter-example, then A is a prime algebra.

Proof. Suppose that A is not a prime algebra. Hence there exist nonzero ideals I and J of A such
that IJ = 0. Since (I ∩ J)2 = 0 and A is a HCF-counter-example it must be I ∩ J = 0. Hence
A can be embedded into the product A/I × A/J . Since the class HCF is closed under finite direct
products, we obtain that A ∈ HCF . However A is an HCF-counter-example, so A /∈ HCF , which
gives a contradiction.

In the proof of Theorem 2.1 we shall use the following results from [10] and [7] respectively:

Proposition 3.3. ([10]) Let A be a prime algebra. Assume that C0 ⊆ Z(C), rB(B0) 6= 0 and
lB(B0) 6= 0. Then dimB0 <∞ or dimC0 <∞.

The prime radical will be denoted by β.

Proposition 3.4. ([7]) If R1 is a nil PI ring and R2 is a PI ring satisfying identity of degree d, then
Rd−1

1 ⊆ β(R).

4 Proof of Theorem 2.1
The proof of Theorem 2.1 goes in a few steps.

Proposition 4.1. If B ∈ B and C ∈ C, then A ∈ HC.

Proof. Suppose that for all b ∈ B we have bm = 0 for some positive integer m and C is commutative.
From Proposition 3.4 it follows that B ⊆ β(A). Let G be an ideal of A generated by B. Clearly
A/G = (C +G)/G is a commutative algebra and G ⊆ Nil(A), where Nil(A) denotes the nil radical
of A. Let R be the class of all algebras H such that H = H1 +H2, where H1 is a subalgebra of H
satisfying the identity xm = 0 and H2 is a commutative subalgebra of H. Certainly A ∈ R and R
is closed under direct products. Since for all H ∈ R, H/Nil(H) is commutative, by [13, Proposition
1.6.36] we have that all rings of R satisfy a polynomial identity [x, y]k = 0 for some positive integer k.
So Nil(A) ∈ H and A/Nil(A) is commutative. This proves the proposition.

The following corollary is an immediate consequence of Proposition 4.1.
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Corollary 4.1. If B ∈ B and C ∈ C, then A satisfies a polynomial identity [x, y]k = 0 for some positive
integer k.

Remark 4.1. It is easy to see that Proposition 4.1 and Corollary 4.1 remain true if in the definitions of
the classes B, C and H, the algebras are replaced by rings.

Suppose that A = B+C is an algebra such that B0 ∈ B, C0 ∈ C, A /∈ HCF and dimA/(B0+C0)
is the smallest number for which A /∈ HCF . Let T be the sum of all ideals of A that are contained in
B0 + C0. By Lemma 3.2, T ⊆ Q1 + Q2, where Q1 + Q2 is a subalgebra of A and Q1 ∈ B, Q2 ∈ C.
So, by Proposition 4.1, (Q1 + Q2) ∈ HC and consequently T ∈ HC. Additionally Proposition 3.2
gives A/T /∈ HCF . Clearly A/T = (B + T )/T + (C + T )/T . Now it is easy to see that A/T is an
HCF-counter-example. We will use this observation in proofs of Proposition 4.2 and Theorem 2.1.

Proposition 4.2. If B ∈ NF and C ∈ CF , then A ∈ HCF .

Proof. Suppose the result is false. So by the paragraph following Corollary 4.1, we can assume that
A is anHCF-counter-example. Let B0 be nilpotent and C0 be commutative. Consider A1 = B+B0A.
It is clear that A1 is a subalgebra of A and since B ⊆ A1, we have A1 = A1 ∩ (B+C) = B+A1 ∩C.
We shall show that A1 ∈ HCF . We proceed by induction on n, where n is a positive integer such
that Bn0 = 0. For n = 1, we have dimB < ∞, so A1 ∈ CF by Lemma 3.1. Assume that n > 2
and the result holds for all smaller integers. By Lemma 3.3, A is a prime algebra. Since Bn0 = 0 we
have that Bn−1

0 <l A1. From this, there exists a nilpotent ideal I of A1 such that Bn−1
0 ⊆ I. Certainly

A1/I = (B+I)/I+((A1∩C)+I)/I, where (B+I)/I ∈ NF , ((A1∩C)+I)/I ∈ CF and (B0+I)/I
is a nilpotent ideal of (B+I)/I while ((A1∩C0)+I)/I is a commutative ideal of ((A1∩C)+I)/I, both
of finite codimension in (B+ I)/I and ((A1 ∩C)+ I)/I, respectively. Moreover ((B0 + I)/I)

n−1 = 0,
so the induction assumption gives A1/I ∈ HCF and, since I is nilpotent, we have A1 ∈ HCF . Let
U1 = B0 +B0A. Since U1 ⊆ A1 it follows that U1 ∈ HCF .

Consider A2 = C + C0A. Since C ⊆ A2, it is clear that A2 = A2 ∩ (B + C) = C +A2 ∩B. Now
we shall show that A2 ∈ HCF . Suppose that A2 /∈ HCF . Let us note that dimA2/(C0+(A2∩B0)) ≤
dimA/(B0 + C0), so since A2 /∈ HCF , we obtain dimA1/(C0 + (A2 ∩ B0)) = dimA/(B0 + C0).
Consider A2/T , where T is the sum of all ideals of A2 that lie in the K-subspace C0 + (A2 ∩ B0).
By Proposition 4.1 and Lemma 3.2, T ∈ HC. If A2/T ∈ HCF then A2 ∈ HCF , contrary to the
assumption. Hence A2/T is an HCF-counter-example. It is obvious that A2/T = (C + T )/T +
((A2 ∩ B) + T )/T . Moreover lC0(C0) <r A2. Since [C,C0] ⊆ lC0(C0) and (lC0(C0))

2 = 0 and
A2/T is a prime algebra, it follows that [C,C0] ⊆ T . Hence (C0 + T )/T ⊆ Z((C + T )/T ). Let
B0 = ((A2∩B0)+T )/T . IfB0 = 0, then Lemma 3.1 implies that (C0+T )/T contains an ideal S�A2/T
of finite codimension, so A2/T ∈ HCF . If B0 6= 0 then since B0 is nilpotent, lB0

(B0) 6= 0 and
rB0

(B0) 6= 0. Therefore by Proposition 3.3 and Lemma 3.1 again A2/T ∈ HCF . We have obtained
a contradiction with A2 being an HCF-counter-example. So indeed A2 ∈ HCF . Let U2 = C0 + C0A.
Since U2 ⊆ A2, we have U2 ∈ HCF .

In particular U1 and U2 are PI algebras. It is clear that U1 + U2 is a subalgebra of A, U1 <r A
and U2 <r A. By [7, Corollary 4], U1 + U2 is a PI algebra. But dimA/(U1 + U2) < ∞, so according
to Lemma 3.1, there exists J � A such that J ⊆ U1 + U2 and dimA/J < ∞. Consequently A is
a PI algebra. Moreover, if rC0(C0) = 0 then C0 ⊆ Z(C) and it is enough to apply Proposition 3.3
and Lemma 3.1 to obtain A ∈ NF or A ∈ CF , contrary to A being an HCF-counter-example. Thus
rC0(C0) 6= 0.

We show now that Z(A) is finite dimensional over K. This will be proved by showing that Z(A)∩
(B0 + C0) = 0. Suppose, contrary to our claim, that Z(A) ∩ (B0 + C0) 6= 0, so there exists 0 6= z =
b0 + c0, where b0 ∈ B0, c0 ∈ C0 and z ∈ Z(A). Certainly lB0(B0)zrC0(C0) = 0. Since A is a prime
algebra and z ∈ Z(A), it follows that lB0(B0)rC0(C0) = 0. But lB0(B0) � B and rC0(C0) � C, so
lB0(B0)ArC0(C0) ⊆ lB0(B0)BrC0(C0) + lB0(B0)CrC0(C0) ⊆ lB0(B0)rC0(C0) = 0, contrary to the
primeness of A. Hence Z(A) ∩ (B0 + C0) = 0. Therefore dimK Z(A) <∞.
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Now we prove that dimK A < ∞. Since A is a prime algebra, Z(A) is a commutative finite
dimensional domain. It follows that Z(A) is a field. So the central localization Z(A)−1A of A is equal
to A. Since A is a PI algebra, Posner’s Theorem [14] implies that A is finite dimensional over Z(A).
Consequently dimK A <∞. ThusA is not anHCF-counter-example which gives a contradiction.

We are now in position to prove our main result.

Proof of Theorem 2.1: Suppose that there exists A /∈ HCF . Without loss of generality, we can
assume that A is an HCF-counter-example. Moreover, if B0 ∈ B and C0 ∈ C and dimA/(B0 + C0)
is the smallest number for which A /∈ HCF . Applying Lemma 3.3 we have that A is a prime algebra.
By Proposition 3.1, there exists a natural number n > 0 such that Bn0 ⊆ W (B0). Observe that if L
and K are ideals of B such that LK = 0 then B0 = B0 +KAL is a subalgebra of A, KAL�B0 and
(KAL)2 = 0. Since B0/(KAL) is a homomorphic image of B0, it follows that B0 is nil of bounded
index.

Consider B = B + KAL. It is clear that B is a subalgebra of A, B0 � B and dimB/B0 < ∞.
Moreover A = B+C. If a ∈ B0 ∩C0, then aA = aB+ aC. Clearly aB is a nil subalgebra of bounded
index of aA. Since C0 is commutative and a ∈ B0 ∩C0, also aC is a nil subalgebra of bounded index
of aA. By [4, Theorem 2], aA ∈ β(A). Since A is a prime algebra, a = 0. Thus if B0  B0 then
dimA/(B0 + C0) < dimA/(B0 + C0), which contradicts the choice of B0 and C0. Hence B0 = B0.
It follows that KAL ⊆ B0. In particular, if I � B, Im = 0 and Im−1 6= 0 for a positive integer m, then
for every 1 ≤ i ≤ m− 1, we have Ai = Im−iAIi ⊆ B0. Since B0 ∈ B, B0 is a PI algebra of degree,
say, d. So it satisfies the identity

x1x2 . . . xd =
∑

id 6=π∈Sd

απxπ(1)xπ(2) . . . xπ(d),

where Sd is the set of permutations of the set {1, 2, . . . d} and απ are some integers. Suppose that
m > d. Then

(Im−1A)dId = A1A2 . . . Ad =
∑

id6=π∈Sd

απAπ(1)Aπ(2) . . . Aπ(d) = 0,

so (Im−1A)d+1 = 0. Since A is prime, it follows that Im−1 = 0, which gives a contradiction. Thus
m ≤ d. So for all nilpotent ideals I of B, Id = 0. Since every nilpotent ideal of B0 generates a
nilpotent ideal of B, for every nilpotent ideal J of B0 we have Jd = 0. Hence (W (B0))

d = 0. But
Bn0 ⊆ W (B0), so B0 is a nilpotent ideal of B. Therefore B ∈ NF . Using Proposition 4.2 we have
A ∈ HCF . This contradicts our assumption that A is an HCF-counter-example and completes the
proof.

5 Conclusions

In the context of the main result of the paper, that is Theorem 2.1, the following problem arises: if
B ∈ BF and C ∈ CF , is it true that A ∈ BCF? Reasoning used in the article can be applied with
small modifications to obtain the positive answer to the above question. However, Proposition 4.1
should be enhanced.
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