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Abstract
A mobile multilateration measurement system developed at the Physikalisch-Technische
Bundesanstalt (PTB) around 2010 has been thoroughly investigated and refined to gain better
performance with smaller uncertainties even when applied to the calibration of large complex
workpieces. The mathematical background of multilateration and the propagation of
uncertainties for the algorithms involved is explained in detail. Using the example of simple 1D
and 2D measuring tasks, the influence of certain parameters characterizing the setup of the
measurement system on the overall uncertainty is quantified. A strategy is developed to
incorporate multi-stylus measurements which are often inevitable when workpieces feature
complex shapes. The findings are verified on a large involute gear which is 2 m in diameter. All
measurements are performed on PTB’s large coordinate measuring machine with a working
range of 5 m× 4 m× 2 m.

Keywords: coordinate metrology, large-scale metrology, tracking laser interferometers,
multilateration, machine tools, measurement uncertainty

(Some figures may appear in colour only in the online journal)

1. Introduction

In many industrial sectors, high quality requirements are
placed on the production of mechanical components which
often feature complex geometries. For example, large gears
need to bemanufactured very precisely to allow the highly effi-
cient operation of turbines and to prevent damage leading to
expensive outages in the long term. Quality assurance makes
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great demands on manufacturing metrology. Large coordin-
ate measuring machines (CMMs) are suitable for measuring
large components in principle. However, they have reached
their limits concerning the attainable accuracy, since conven-
tional calibrations using measurement standards (e.g. accord-
ing to ISO 10360-2 [1]) do not cover the whole measure-
ment volume. This means the measurement volume of a large
CMM can only be calibrated partially using the available
material standards. Moreover, most of the commercially used
CMMs do not conform to Abbe’s principle [2], which makes
them prone to errors. This especially applies to large measur-
ing objects. Conventional calibration methods, such as length
measurement deviations according to ISO 10360-2, are not
task-specific. Therefore, it is difficult to draw conclusions
about the measurement uncertainty to be expected for a real
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component, or even almost impossible for complex geomet-
ries. The procedure described in this article can solve this prob-
lem by establishing real task-specific calibrations.

Early works on interferometry and trilateration as, e.g. [3]
tried to determine the volumetric accuracy of machine tools
by establishing an error map using a laser interferometer and
a ball bar.

Around 2010, the Physikalisch-Technische Bundesanstalt
(PTB) developed a mobile multilateration (MLAT) system for
3D measurement applications (M3D3) [4, 5]. It is based on
LaserTracers (LTs) [6] as an interferometric reference system.
Applying a special measurement procedure, it allows the 3D
accuracy of the end effector of a positioning machine to be
improved. In principle, the solution is suitable for any type of
kinematic chain (serial, parallel) [7]. It mainly aims to improve
the accuracy of conventional CMMs but can also be used to
turn machine tools into qualified 3D measuring devices by
determining task-specific error maps.

An LT is a self-tracking laser interferometer following a
retroreflector moving in space and continuously executing rel-
ative length measurements. These length measurements sat-
isfy Abbe’s principle and are therefore well traceable to the
metre, the SI unit of length, by calibrating the frequency of
the laser light.

This paper summarizes the application of M3D3 as it cal-
ibrates large measurement standards in detail. The mathem-
atical background and the current research to optimize the
M3D3 method are included. In section 2, the principle of
the method and its theoretical background are explained, fol-
lowed by procedures to validate the basic function and per-
formance in section 3. Strategies for the optimal application
of the method in terms of the arrangement of the LTs and the
distribution of the measuring points are presented in section 4.
Section 5 introduces results of the application of the method
to the measurement of a large gear standard.

2. Principle of the M3D3 method

TheM3D3method is a three stage procedure [4]. The first step
is the measurement itself. It is used for generating the sample
of 3D points to be corrected. In principle, any point sensor,
tactile or optical, can be used. For this article, the method was
applied to tactile measurements on a large CMM (figure 1(a)).

In the second step, which is the task-specific error mapping
with the MLAT reference system, the workpiece is removed
from the measurement volume. The stylus is then replaced
by a retroreflector mounted approximately at the same pos-
ition as the stylus tip centre during the tactile measurement
(i.e. the same stylus tip offset is effective). At least four LTs
are placed into the measurement volume. The CMM replays
the recorded measuring points of the first step, while the LTs
follow the reflector (figure 1(b)), measuring and recording
lengths for each measuring point. Applying the MLAT eval-
uation [2, 4, 8], the 3D coordinates of the retroreflector pos-
itions can be calculated based on the measured lengths from
the LTs. These points are used to correct the initial probing
points.

In the final step, the measured quantities are re-evaluated
with the corrected points using the original CMM evaluation
software, i.e. the part program.

Figure 2 illustrates the principle of the local error correc-
tion using the example of a circle measurement. The initial
CMMmeasurement of the workpiece results in the measuring
points (red filled circles, step 1) as indicated by the CMM. The
positions of the CMM’s probe may be slightly different when
replaying the measuring points for the LT measurements. This
is due to the reproducibility of the CMM positioning (in the
range of micrometres) and, even more, due to a different off-
set of the stylus and the retroreflector (in the range of milli-
metres; red filled square in the inset (2)). The outcome of the
MLAT evaluation is a further set of points (represented by a
blue square in the inset as an example (2’)). These points are
used to define the local error vectors (black arrows) as the dif-
ference between the CMM’s points (red filled square) and the
MLAT points (blue square). To obtain the corrected measuring
points (blue circles (1’)), the local error vectors (black arrows)
have to be added to the original measuring points (red filled
circles).

It should be noted that this approach (determining the error
vector for point 1 at a slightly different position 2) works due
to the continuity of the error vector field.

Besides correcting measuring points recorded by a CMM,
theM3D3method has the big advantage of providing traceable
measuring values based on the calibration of the frequency of
the laser.

2.1. Mathematical description of the MLAT evaluation

To locate a point in three-dimensional space, at least three dis-
tances to known points (i.e. LTs) must be given. However,
since the positions of the LTs are in general unknown as well,
a fourth LT is needed in order to calculate both the measuring
points and the LT positions [4, 7].

Let Pi = (xi,yi,zi) for i= 1, . . . ,n denote the measuring
points, and let Tj = (x0j,y0j,z0j) for j= 1, . . . ,m be the posi-
tions of LTj. Since the LTs cannot measure absolute lengths,
but only lengths relative to an arbitrary starting point, the total
length between T j and the measuring point Pi consists of the
measured relative length lij and the unknown dead path l0j.
More precisely, for the m · n measured lengths lij between the
m LTs and the n measuring points Pi, the equations:

lij+ l0j−wij

= sj

√
(xi− x0j)

2
+(yi− y0j)

2
+(zi− z0j)

2
, (1)

are obtained. Here, sj is a scale factor of LTj, which reflects
the uncertainty of the laser frequency, and can vary around
1 within the limits of the calibration uncertainty of the fre-
quency. Moreover, wij is the residual between the measured
distance lij and the value predicted by the model applied to the
estimated parameters.

Equation (1) defines a set of m · n equations, and there
are m more equations for the scale factors sj. The number of
unknowns is given by 5 m+ 3n (n point coordinates xi,yi,zi
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Figure 1. M3D3 procedure. (a) Step 1, pointwise (e.g. tactile) measurement of the workpiece. (b) Step 2, length measurements with four
LTs.

Figure 2. Principle of the local error correction. Red (1):
measuring points as indicated by the CMM in tactile measurement.
Red ■ (2): probe position while replaying the measuring points for
the LT measurement. They are slightly different due to the limited
positioning accuracy of the CMM and different offsets between the
stylus and the retroreflector. Blue □ (2’): points from the LT
measurement (evaluated by MLAT), resulting in local error vectors
(difference between points 2 and 2’). Blue (1’): corrected
measuring points, adding the local error vectors to points 1.

and five unknowns x0j,y0j,z0j, l0j,sj of each LT). However, in
order to determine the coordinates of the measuring points and
the LT positions, a coordinate system has to be fixed, which
reduces the number of unknowns to 5m+ 3 n− 6. One neces-
sary condition rendering the given equation system solvable
is therefore given by mn+m⩾ 5m+ 3n− 6 or (m− 3)n⩾
4m− 6. From this relation, it can easily be seen that at least
m= 4 LTs are needed to apply the MLAT algorithm. For
exactly four LTs, 10 or more measuring points are needed to

generate a solvable equation system. Typical point numbers
of 50 to several hundreds lead to an over-determined system
of equations with a large degree of freedom ν = (m− 3)n−
4m+ 6. To minimize the discrepancies between the equations,
a weighted least-squares fit is applied.

Let β be a vector containing the coordinates xi,yi,zi of the
measuring points, as well as the unknowns x0j,y0j,z0j, l0j,sj of
each LT, and let the function ϕ be defined by:

ϕi+n( j−1)(β) =−l0j

+ sj

√
(xi− x0j)

2
+(yi− y0j)

2
+(zi− z0j)

2
.

(2)

The measured lengths from the LTs are combined in a vec-
tor Li+n( j−1) = lij. With these definitions, equation (1) can be
written as:

L−ϕ(β) = w, (3)

where w are the residuals of the length measurements.
The uncertainties for the length measurements with the LTs

are given by:

u2ij = a2 + b2(lij+ l0j)
2, (4)

where a and b are constants, describing length-independent
and length-dependent uncertainty contributions. Since no cor-
relations between the individual length measurements are
taken into account, the weight matrix Q used for the least-
squares fit is a diagonal matrix with the entries qi+n( j−1) =
1/u2ij on the diagonal.

To ensure the traceability of the measurement, the scale
factors sj must be fitted against 1. To take this into account, the
function ϕ is extended with ϕnm+j(β) = sj− 1 for j= 1, . . . ,m.
Accordingly, the vector L is extended by Lnm+j = 0, and the
weight matrix is extended by the diagonal elements qnm+j =
1/u(sj)2, where u(sj) is the standard uncertainty of the calib-
ration of the lasers’ wavelengths. The minimization problem
then reads:

(L−ϕ(β))tQ(L−ϕ(β))→min . (5)

3
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Since this is a non-linear minimization problem,
it is approximated by a sequence of linear problems
(Gauss-Newton algorithm [9]). Therefore, for any given point
β̂, the function ϕ is linearized by ϕ(β̂+ dβ̂) = ϕ(β̂)+ Jdβ̂+
. . ., where J= Dϕ(β̂) is the Jacobian matrix of ϕ at the point
β̂. With ŵ= L−ϕ(β̂), the linearized problem reads:

(ŵ− Jdβ̂)tQ(ŵ− Jdβ̂)→min, (6)

which implies the equation JtQJdβ̂ = JtQŵ for dβ̂.
In order to find a unique solution to this minimization prob-

lem, a coordinate system needs to be fixed. One possibility
is to use the initial values P0

i = (x0i ,y
0
i ,z

0
i ) for the measuring

points reported by the CMM as a reference, i.e. the coordinate
system is chosen such that the sum of the squared distances
∥Pi−P0

i ∥2 takes a minimum. Let

ψ(β) =

( ∑n
i=1(P

0
i −Pi)∑n

i=1P
0
i ×Pi

)
, (7)

where × denotes the cross product, then the solution must
additionally fulfil the constraints ψ(β) = 0. This leads to:

ψ(β̂+ dβ̂) = ψ(β̂)+Gdβ̂, (8)

with G= Dψ(β̂), and hence to the constraint ψ(β̂) =−Gdβ̂
for the calculation of dβ̂. The constrained system can then be
solved by using Lagrange multipliers λ, i.e. the equation:(

JtQJ Gt

G 0

)(
dβ̂
λ

)
=

(
JtQw
−ψ(β̂)

)
, (9)

has to be solved.
If the iteration is started with a vector β0 containing the

initial measuring points x0i ,y
0
j ,z

0
j , then ψ(β0) = 0 and also

ψ(β̂) = 0 for all β̂ calculated by iterations. It follows that the
solution for dβ̂ is given by:(

dβ̂
λ

)
=

(
JtQJ Gt

G 0

)−1(
JtQw
0

)
. (10)

This calculation has to be iterated with β̂ replaced by β̂+
dβ̂ until theweighted sum of the squared discrepancies reaches
its minimum, where in each step, the matrices J,G andQmust
be updated according to the actual value of β̂.

2.2. MLAT uncertainty and residuals

To calculate the uncertainties of the single points from themul-
tilateration procedure (in the following referred to as ‘MLAT
uncertainty’), the covariance matrix Cβ of the solution β can
be used. This covariance matrix is given by the first block of
the matrix in equation (10), i.e.(

Cβ ∗
∗ ∗

)
=

(
JtQJ Gt

G 0

)−1

. (11)

The diagonal entries of Cβ are the variances of the elements of
β, i.e. of the coordinates of the measuring points and LT pos-
itions, the dead path lengths and the scale factors. If a meas-
urement value is a function f of β, also the off-diagonal ele-
ments of Cβ must be taken into account for the calculation of
the uncertainty of f(β). For a linear function f(β) = Aβ with
a certain matrix A, the covariance matrix of f(β) is given by
ACβAt. For non-linear functions, in some cases a linearization
can be applied as known from the propagation law of uncer-
tainties. For example, let hij(β) = ∥Pi−Pj∥ be the distance
between two points, and let B= Dhij(β) be the Jacobian mat-
rix of hij at the point β. The propagation of uncertainty then
leads to u2hij(β) = BCβBt for the uncertainty of this distance.
For more complex functions f, the covariance matrix Cβ can
also be used to generate random values in order to perform a
Monte Carlo simulation for the calculation of uf(β).

With the residuals from the fitw= L−ϕ(β), the chi-square
χ2 = wtQw and the reduced chi-square χ2

ν = χ2/ν can be cal-
culated, where ν = (m− 3)n− 4m+ 6 is the degree of free-
dom. The number

√
χ2
ν is called the Birge ratio [10]. If the

model fits to the data and the estimates for the uncertainties
are reasonable, the Birge ratio should be close to one. (How-
ever, a value of the Birge ratio close to one does not imply
that the model is correct.) A value significantly larger than one
indicates either a poor model, or that the uncertainties for the
length measurements were assumed to be too small. A value
much smaller than one could mean that the estimates for the
uncertainties are too large.

It can be shown that the covariance matrix of the residuals
is given by Vw = Q−1 − JCβJt. The standardized residuals w̃ij
related to the length measurements are hence given by:

w̃ij =
wij√

u2ij −Hi+n( j−1)

, (12)

with uij being the uncertainties of the length measurements as
defined in equation (4), andHi+n( j−1), the i+ n( j− 1)-th diag-
onal element of the matrix H= JCβJt. If the model fits to the
data, the standardized residuals should follow a normal dis-
tribution. A distribution of the residuals that deviates strongly
from a normal distribution is also a hint that the assumptions
made were not correct.

2.3. Stabilization points

In many cases, the measuring points are not distributed in a
way that would be desirable for a good MLAT configuration
(i.e. rather inappropriate: a more or less coplanar distribution
of points). It might thus be necessary to measure some addi-
tional points to make the mathematical problem solvable and
numerically more stable. These stabilization points should be
distributed in space around the workpiece, especially covering
the directions the workpiece does not extend to. They serve
mainly to determine the positions of the LTs more precisely,
which in turn, leads to smaller uncertainties of the measuring
points. In sections 4.2 and 4.3, strategies to optimize the dis-
tribution and number of stabilization points will be presented.
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2.4. Further uncertainty consideration

So far, only the MLAT uncertainty has been considered (see
section 2.2). For the application of the method described here,
however, the so-called task-specific measurement uncertainty
[11] is ultimately of interest. This is the uncertainty of the char-
acteristic which is to be measured on the workpiece (e.g. a
diameter, form or location parameter). The local error correc-
tion (see figure 2) corrects for systematic errors related to the
CMM, i.e. residual rigid-body geometric errors, static, non-
rigid-body errors and the hysteresis of guideways. The MLAT
uncertainty must be combined with the other relevant uncer-
tainty contributions from the CMM, the tactile probing pro-
cess, the environmental conditions and the workpiece to be
calibrated itself. It must consequently be propagated into the
task-specific measurement uncertainties.

This can be done classically through sensitivity analysis.
Due to the complexity of the measurements on CMMs, this
will only be possible for a limited number of simple measur-
ing tasks. Therefore, for more complex tasks, a Monte-Carlo-
based method according to the Guide to the Expression of
Uncertainty in Measurement, Supplement 1 [12], and ISO
15530-4 [13], e.g. the Virtual Coordinate Measuring Machine
(VCMM) by PTB [14], is suitable.

In this article, unless otherwise stated, task-specific uncer-
tainty means only that part of the uncertainty that depends on
the MLAT uncertainty.

2.5. Metrological challenges

There are several influences affecting the quality of the M3D3
result and thus the MLAT uncertainty. The most important
parameters that have to be chosen carefully when setting up
the measurement system are described in the following.

The LTs have a fixed and a length-dependent contribution
to the measurement uncertainty of the length measurements of
0.2 µm+ 0.3 · 10−6 ·Li (Li measured distance). This uncer-
tainty contains, apart from the uncertainty of the frequency
calibration, contributions from the roundness of the sphere,
the controlling of the orientation as well as from the envir-
onmental data, i.e. temperature, humidity and pressure, that is
used to correct the laser’s wavelength. Hence, the distances to
the measuring points should be as short as possible to ensure
small measurement uncertainties.

Also, the angles between the laser beams hitting the retrore-
flector at a measuring point have to be taken into account to
allow good intersection conditions and the minimization of
the measurement uncertainty. Ideally, the LTs should face the
measuring point from all spatial directions, forming an equi-
lateral tetrahedron [15]. Since in reality this is not feasible
(e.g. due to the limited acceptance angle of the retroreflector),
the LT positions have to be chosen carefully. Simulations for
various LT positions showed that good intersection conditions
can be achieved if the angles between the outer LTs (that is,
between the left and the right, or between the upper and the
lower LT, respectively) are larger than 90◦. Angles larger than
120◦ provide no further improvement with regard to theMLAT
uncertainty.

Figure 3. Setup of line measurement to compare M3D3 results
(4 LTs, black circles) with a reference LT (red circle).

Thewaiting time and averaging of the lengthmeasurements
of the LTs further influence the measurement uncertainty. At
each measuring point, the retroreflector halts for a waiting
time of several seconds to ensure that no vibrations disturb the
measurement. The recorded length is an average over several
length measuring values to account for short-time turbulence
effects.

The necessary waiting time can make the M3D3 measure-
ment very time-consuming. Since no discontinuity in the local
error vectors is to be expected, for closely spaced measuring
points, it is possible to thin out the measuring points. Sub-
sequently, calculated local error vectors can be interpolated
for the measuring points in between.

To minimise the influence of the environment, the meas-
urements were performed in a measuring room with a very
well controlled climate concerning the stability of temperat-
ure and humidity: the temperature is temporally stable within
±0.2 K during the entire measuring time, spatially over the
whole measuring volume within 0.1 K, the relative humidity
is controlled within ±3%.

3. Validation by reference measurements

One established method for testing the performance of meas-
uring systems is to measure calibrated standards. In [4] and
[5], several experiments suitable for the MLAT systems are
described. To cross-check after updating the LT hardware and
the extensive revision of themeasuring software, some of these
experiments were repeated on PTB’s large CMM. This also
served as as starting point for the optimization process.

3.1. Line measurements

Four straight lines were generated with ten measuring points
each. The lines extended over almost the entire measuring
volume of PTB’s large CMM. In one measurement process,
the CMM moved the reflector to these points to record the
lengths between the points. The lengths returned by the CMM

5
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Figure 4. Length deviations with task-specific length uncertainties of an x axis parallel line, a line in xy plane, a space diagonal line and a
line in xz plane. (a) Data from the CMM. (b) M3D3 corrected data for a multilateration with 32 stabilization points.

Figure 5. Results of a cross-check using a calibrated hole plate standard: Deviations from calibration values. (a) Tactile measurement of the
hole plate on a CMM with disabled numerical error compensation. The standard deviation is 6.0 µm, the maximum deviation is 8.4 µm. (b)
M3D3 correction of the tactile measurement for practical setup in figure 7(a). The standard deviation is 0.3 µm, the maximum deviation is
0.5 µm.

were compared to reference lengths which were recorded sim-
ultaneously by a single LT with the tracking motors switched
off once the laser beam had been aligned properly. To turn
off the tracking has two aims: First, it serves as a cross-check
if the reflector is really moved on a straight line as intended.
Furthermore, it prevents small readjusting movements of the
LT that lead to random noise on the measured length val-
ues. The reference LT thus served as a common laser inter-
ferometer. Afterwards, with the same points, an M3D3 meas-
urement with four additional LTs was carried out to determ-
ine the corrected lengths for comparison with the reference
lengths.

The reference LT was placed near a corner in the measure-
ment volume, and the four lines were defined such that they
intersect in the centre of the reference LT, as can be seen in
figure 3. Ten points A, B, C, … on each line (A being nearest

to the reference LT) defined nine test lengths per line that were
measured forward and backward in the following way: A-B-
B-A-A-C-C-A-…Thus, for each line, 36 sets of point coordin-
ates were recorded by the CMM as well as 36 lengths by the
reference LT and by each of the fourM3D3LTswere recorded.
The 144 measured data sets of all four lines were used in
one multilateration process to calculate the M3D3 corrected
lengths.

For the MLAT measurement setup, 32 stabilization points
were defined and arranged equidistantly on the edges of a
cuboid frame that spans nearly the entire volume of the meas-
uring points. They were measured in front of the actual meas-
uring points of the four lines. The four LTs for the MLAT
measurements were arranged according to the spatial boundar-
ies of the CMM. The outer LTs were placed as far apart as pos-
sible in the y direction about 300 mm above the ground. Two

6
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LTs were positioned between the outer LTs: one at a height of
about 300 mm and one on a stable tripod at a height of approx-
imately 1600 mm.

The length deviations of the CMM for the test lengths were
calculated as differences of the distances returned by the CMM
and the reference lengths between two corresponding points.
As can be seen in figure 4(a), for all lines these deviations are
within the specification of the CMM, expressed as the max-
imum permissible error (MPE= 3.3 µm+ 2.5 · 10−6 ·L) with
an absolute size of up to 6 µm.

The error bars of the CMM length deviations indicate the
expanded measurement uncertainties (k= 2) of the reference
LT for the test lengths. The expanded uncertaintyUTj for a test
length between point P0 and point Pj of a line, as can be seen
in figure 4, is then

UTj =
√
U2

0 +U2
j j= 1, . . . ,9, (13)

where U0 denotes the uncertainty for the laser length between
the reference LT and the nearest measuring point of the con-
sidered line. The M3D3 length deviations are calculated as
differences of the lengths between two measuring points of
the MLAT fit and the corresponding reference lengths. These
deviations are smaller than 0.8 µm at the largest test length,
as can be seen for all lines in figure 4(b). This demonstrates
the length correction capabilities of the M3D3 method over a
large measuring range. The task-specific uncertainties of the
M3D3 fit as length uncertainties between point P0 and point
Pj (indicated as error bars in figure 4(b)) were obtained from
the covariance matrix for the corresponding points, as shown
in section 2.2.

3.2. Calibrated hole plate

To examine the influence of the positions of four LTs
on the uncertainties of the M3D3 correction, a calibrated
Zerodur® hole plate standard was used. This standard is a two-
dimensional object with a side length of about 600 mm, fea-
turing 44 holes on its edges, see figure 5.

The calibration uncertainty of the distance L between the
centre points of any two holes is specified by:

U(L) =
√
(0.4 µm)

2
+(0.5 · 10−6 ·L)2. (14)

The tactile and MLAT measurements were performed on
PTB’s large CMM. For this test, the numerical error com-
pensation of the CMM was disabled in order to achieve larger
correction effects in the further investigations. The hole plate
standard was mounted horizontally while being tensionless.
For the results of the tactile measurement in comparison to the
M3D3 corrected results, see figure 5. Disabling the numerical
error correction should help to validate the fundamental prin-
ciple of the method on a CMM that is quite too good to need
any correction with the numerical error correction enabled, see
figure 6 for comparison.

Figure 6. Results of a cross-check using a calibrated hole plate
standard: Deviations from calibration values for the tactile
measurement on a CMM with enabled numerical error
compensation. The standard deviation is 0.6 µm, the maximum
deviation is 0.8 µm.

4. Optimization of the method

The main objective of the optimization is to reduce the MLAT
uncertainties. These uncertainties depend on the number and
the relative positions of the LTs to the measuring points as well
as on the number and arrangement of the stabilization points.
If the tactile measuring points of the object to be corrected
are available, the uncertainties can be determined a priori by
simulation. For this purpose, the LT positions and stabiliza-
tion points are defined, and the lengths between the LTs and
the measuring points as well as the added stabilization points
are calculated. Themultilateration can be conductedwith these
artificial lengths. The MLAT uncertainties are comparable in
both cases (measured or calculated lengths), as they depend
almost exclusively on the laser lengths and the intersection
conditions. The LT positions and the arrangement of the sta-
bilization points can thus be optimized for small uncertainties
prior to the actual MLAT measurement.

4.1. Position of the LTs

The influence of the LT positions was investigated on the
basis of a configuration for the measurement of the hole plate.
To determine optimal positions, simulations were performed
based on the CMM coordinates of the tactilely measured
points of the hole plate and a set of 32 stabilization points
arranged on a cuboid frame around the plate.

Figure 7(a) shows the setup in the top view with the meas-
uring points, the arrangement of stabilization points and the
LT positions.

7
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Figure 7. M3D3 measurement of the hole plate standard: (a) Simulation (red ■) and practical (black ) setup in the CMM coordinate
system for evaluating the uncertainties of the M3D3 correction. Angle α < 180◦. (b) Task-specific length uncertainties between any two
holes compared to the uncertainties of calibration for the simulation (red ) and the practical (black +) setup.

The MLAT contribution to the uncertainties of the M3D3
corrected distances between any two holes was obtained by
Monte Carlo simulation with 1000 iterations. In each itera-
tion, the MLAT calculation was carried out on simulated laser
distances perturbed by random values, drawn according to the
LT’s uncertainty specification. The centres of the holes were
determined by least-squares circles, and the mean values of
forward and backward measurements were calculated. Then
the 946 distances between any pair of the 44 averaged hole
centres were calculated. The length uncertainties were determ-
ined as the standard deviation of the simulated distances. To
illustrate this, these 946 length uncertainties are plotted over
the distances between corresponding holes (see figure 7(b)).

As a starting point, a symmetrical arrangement for the
four LTs in the xy orientation was chosen. To achieve small
task-specific uncertainties, an optimization of the LT positions
should aim at minimizing the x and y components of the meas-
uring point uncertainties. Hence, concerning the intersection
conditions (see also section 2.5), a z position of LT1 and LT2

at the level of the plate plane is ideal. LT3 and LT4 were set at
the heights z= 300 mm and z= 1200 mm, respectively.

Varying the LT positions in the simulation setup, the fol-
lowing observations could be made: an upward or downward
shift of LT1 and LT2 leads to larger uncertainties. In general,
larger distances of the LTs to the measuring points lead to lar-
ger uncertainties, since the length-dependent part of the meas-
urement uncertainty of the LTs has more impact. The best res-
ults were obtained for small average distances of LT1 and LT2

to the measuring points. Considering the restriction that the
angle α must be smaller than 180◦ to guarantee the sight of
the laser beams on the reflector, a trade-off had to be found.
The less relevant z components of the uncertainties could be
reduced by positioning LT3 and LT4 closer to the measuring
points or by setting the upper LT4 higher for a larger intersec-
tion angle in z. However, this increased the x and y compon-
ents of the resulting uncertainties. For the optimized ‘virtual’

setup in figure 7(a), uncertainties even smaller than the uncer-
tainties of calibration U(L) of the plate could be achieved, as
can be seen in figure 7(b) (red point cloud compared to blue
line).

A setup for a real measurement has some restrictions con-
cerning the spatial conditions in the measuring volume of the
CMM and the equipment available for positioning the LTs and
adjusting the retroreflector. Taking this into account, a setup
for the four LTs was found for the verification measurements
close to the optimal positions. LT1 and LT2 had to be mounted
below the plate at a height of z= 427 mm. LT3 had a height
of z= 288 mm and LT4 of z= 1181 mm (see black circles in
figure 7(a)).

The same stabilization points as in the simulation setup
were measured before and after the measuring points. By
applying the M3D3 method, a good correction could be
achieved, see figure 5(b). The standard deviation σ from
the calibration values was only 0.3 µm and the maximum
deviation, 0.5 µm. The standard deviation σ was calculated
using:

σ =

√∑n
i

(
∆x2i +∆y2i

)
n− 1

, (15)

where ∆xi and ∆yi are the x and y components of the differ-
ence between the calibrated and the M3D3 corrected centre of
hole i after the mathematical alignment, and n is the number
of holes.

The black point cloud (+) in figure 7(b) shows the task-
specific length uncertainties of the M3D3 correction from the
Monte Carlo simulation. Themain reason for the overall larger
uncertainties compared to those of the optimal setup is the fact
that LT1 and LT2 are not positioned at the height of the plate’s
plane.

Additionally, a second measurement with worse LT posi-
tions (i.e. LT1 and LT2 positioned about 800 mm farther away

8
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Figure 8. (a) Setup for the M3D3 correction with the best (red ♦) and the worst (black ■) arrangement of the stabilization points.
(b) Corresponding task-specific length uncertainties between any two holes of the M3D3 correction compared to the uncertainties of
calibration.

from the plate) was carried out. As expected, this resulted in
slightly larger deviations of the M3D3 corrections from the
calibration values (standard deviation: 0.4 µm and maximum
deviation: 0.8 µm) and, above all, in significantly larger task-
specific length uncertainties (up to a factor of 3 for the larger
distances between two holes).

4.2. Distribution of the stabilization points

The influence of the distribution of stabilization points was
examined based on the measurement of the hole plate stand-
ard with the LT positions (black circles) in figure 7(a), the cor-
responding correction result (figure 5(b)) and the task-specific
length uncertainties (black +) in figure 7(b), respectively. In
this basic setup, stabilization points were arranged at 32 loc-
ations on a cuboid frame, each measured twice (in reversed
order), resulting in 64 distance measurements. To investigate
the effect of distribution, subsets of locations were selected
and measured several times each in the simulation to maintain
an overall number of distance measurements of 64 for com-
parability.

The arrangement of stabilization points on a frame around
the measuring points turned out to be a good choice for com-
mon measuring tasks and can be recommended as a default.
For the plate measurement considered here, the uncertainties
could be further reduced by a more specific arrangement. A
subset of the 16 stabilization points near the four LTs (see
the setup (red diamonds) and the associated length uncertain-
ties (red circles) in figure 8) has been found from a series of
arrangements. The choice of the subset allowed the uncertain-
ties to be slightly reduced as can be seen by comparing the
basic uncertainty (black + in figure 7(b)) to the red circles in
figure 8(b).

One set, mirroring this arrangement, turned out to be the
worst selection from the considered series of arrangements in

terms of uncertainties and the quality of the correction (see
black squares in figure 8(a)). Here, the stabilization points
have a large distance to the LTs. The length uncertainties with
this subset are massively increased compared to the basic
arrangement on the frame, as can be seen (black crosses) in
figure 8(b). In this case, the standard deviation from the cal-
ibration values as a measure of the quality of the correction
is 0.5 µm, which is also significantly higher than that of the
basic arrangement.

4.3. Number of the stabilization points

Investigations into the number of stabilization points were
carried out by simulations based on the setup regarding line
measurements (see section 3.1). In this case, the multilatera-
tion problem is solvable even without any stabilization points,
since the measuring points on the four lines are sufficiently
distributed within the test volume. Nevertheless, the usage of
stabilization points is strongly recommended, as even a small
set of stabilization points leads to a significant reduction of the
uncertainties (e.g. compare figure 4(b) with 32 and figure 9
without any stabilization points).

The basis for further investigations is the cuboid volume
that spans from the minimal to the maximal values of the
coordinates of all measuring points. The uncertainties were
calculated by simulation with a certain number of stabilization
points on a frame around the volume and with the same num-
ber of points randomly distributed within the volume, respect-
ively. The stabilization points were equidistantly arranged on
the edges of the frame. A minimum number of eight stabiliza-
tion points in the corners of the frame were used. Successively,
up to nine further points were added on each of the 12 edges
between the corners, which results in an overall number of 116
stabilization points. For each number of points, 100 random
sets were generated for evaluation.
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Figure 9. Length deviations with task-specific length uncertainties
of an x axis parallel line, a line in xy plane, a space diagonal line and
a line in xz plane. M3D3 corrected data for a multilateration without
any stabilization points.

Figure 10 shows the uncertainties depending on the number
of stabilization points for themaximum test length of the x axis
parallel line as an example. Similar results are obtained for the
other lines and shorter test lengths.

In summary, it can be said that an increase in the number
of stabilization points steadily leads to smaller uncertainties.
This applies both to the frame and, on average, to the randomly
distributed stabilization points, at which the frame configura-
tion for all numbers of points yields smaller uncertainties than
the randomly arranged stabilization points.

However, while eight stabilization points already reduce
the uncertainty significantly from (in case of the frame) about
4 µm for zero stabilization points to below 1.3 µm (corres-
pondent to a factor of about 3), the effect of many more sta-
bilization points is rather small. The maximum number of 116
stabilization points only leads to a further reduction in uncer-
tainty of about five percent.

Random configurations with fewer points have a much
greater spread of achieved uncertainties than those with more
points. This is obvious, as the chances of drawing an optimal
configuration increase with the number of points.

The idea might come up to try to optimize the total measur-
ing time for an acceptable measurement uncertainty by using
a certain number of stabilization points. This cannot be done
in general, but for a certain measuring task. But since in most
measuring tasks there are much more measuring points than
stabilization points, there will not be much scope for optimiz-
ation of the measuring time.

More important might be the question of whether just eight
stabilization points can be considered satisfactory, since the

Figure 10. Simulated maximum length uncertainties of the x axis
parallel line depending on the number of stabilization points.

benefit of more points is only a few percent. However, experi-
ence has proved that it is advantageous to use at least a number
of stabilization points so that the MLAT problem is solvable
even without any real measuring points. Good indications of
the stability of the setup can be obtained by measuring before
and after the actual measuring points. A total of 32 points has
turned out to be a good compromise in terms of measurement
time and achievable uncertainty.

In conclusion, the frame configuration of the stabilization
points proves to be superior compared to randomly distributed
stabilization points.

4.4. Number of LTs

The usage of additional LTs in terms of cost and effort seems
to be disproportionate to its benefit. If an additional LT is avail-
able, it may be useful to include it in the system in order to have
the possibility for additional checks due to the redundancy.
Nevertheless, to complete the investigation, the influence of
additional LTs on the uncertainties was studied by performing
simulations. As a basis, the simulation setup for the hole plate
standard in figure 7(a) was used: two LTs are placed at height
of the hole plate, one above and one below. Again, the uncer-
tainties were determined using Monte Carlo simulations with
1000 iterations.

To fulfil the aim of minimizing the x and y components of
the measuring point uncertainties, the optimum information
and the best intersection conditions are provided by LT posi-
tions at the height of the plate. Nevertheless, it should be noted
that for solvability of the M3D3 algorithm, LTs at a different
height, i.e. above and below the plate, are also needed. See
also section 4.1. Therefore, the best simulation results were
achieved when additional LTs were added at this z position. As
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Figure 11. Large gear ring standard with three external and three
internal sets of teeth.

can be expected, simulations showed that a successive increase
in the number of LTs in this optimal z position continu-
ously reduced the uncertainties. As an example, a setup with
seven LTs (five of them at the height of the plate, one below
and one above) reduces the uncertainties by about 0.1 µm
(corresponding to a reduction of about 25%) for the maximum
lengths, compared to the basic setup with four LTs.

5. Application and verification of the method

The feasibility and performance of the method was verified
through measurements of a large involute gear ring standard
of about 2 m in diameter with three sets of three external
and internal teeth with different helix angles (figure 11) [16].
For the verification measurements, only one set of internal
and external teeth was selected. The reference values of this
standard are well known from former calibrations and inter-
laboratory comparisons.

Due to the size and shape of the gear ring, this measurement
requires the use of a multi-stylus configuration, i.e. a stylus
in the −z direction for the determination of the workpiece
coordinate system and a stylus in the x direction to measure
the gears (see figure 12). This leads to certain challenges in
the M3D3 evaluation that will be addressed in the following
section.

5.1. Tasks with multiple stylus offsets

The multilateration approach for 3D coordinate acquisition
basically works with a single retroreflector and, in the best
case, without beam interruption in one measuring cycle. For
tactile measurement, this would mean the use of only one
stylus per measuring task. However, for measuring tasks on
real workpieces, e.g. the large gear ring standard used, this is
rarely feasible in practice.Whenmeasuring complex parts, it is
often necessary to determine the workpiece coordinate system

Figure 12. Setup of the probes (left) and reflectors (right) for the
tactile and M3D3 measurement of the large gear ring standard.

and features to be measured with different styli, having differ-
ent offsets. The respective retroreflectors have to be mounted
afterwards with the same offsets, which can only be realized
with limited accuracy. This results in an uncertainty contribu-
tion, as the local error correction refers to a slightly different
position as is desired for correcting the tactile measured point.
Additionally, with different offsets involved, it leads to slightly
shifted M3D3 point clouds when evaluating the offset-related
measurements separately. Furthermore, the relative orienta-
tion of the point clouds cannot be determined correctly. How-
ever, this is essential as it contains orientation information
caused by rotation errors, the magnitude of which depends on
the stylus offset.

In principle, the use of multiple related styli within a test
plan should be avoided wherever possible. This holds inde-
pendently of the application of the M3D3 method, especially
if the highest accuracy is required. If this is not possible for
practical reasons, the stylus offsets should be as short as pos-
sible, and for the multilateration measurement, the offset of
the reflector should be as close as possible to the tactile prob-
ing tip. The probing system qualification should be undertaken
as closely as possible to the place of use. Any difference
will contribute to the measurement uncertainty, especially due
to the rotational errors of the last kinematic axis. To illus-
trate this effect and to estimate the magnitude of the uncer-
tainty contribution, a multi-stylus measurement on the setup
as shown in figure 13 has been simulated. Differences in the
range of approximately 10 mm for the stylus offset (prob-
ing tip vs. reflector) and linear rotational errors in the range
of 20 µrad m−1 have been assumed. The resulting simulated
error vectors are shown in figure 14.

The application of the M3D3 correction procedure requires
the following steps (assuming two stylus offsets):

(1) Perform tactile measurement as usual.
(2) Define one common point Palign to be measured by multi-

lateration using each reflector offset l= 1,2 (resulting in
measured points Palignl). This is the point where the inter-
ferometric measurements will be aligned. It should be as
near as possible to the point where the alignment of the
tactile styli has been undertaken, so that the same rotation
errors are effective.

(3) Perform consecutive multilateration measurements of all
points with both reflector offsets.
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Figure 13. Setup for the M3D3 measurement of the large gear ring
standard.

Figure 14. Simulated error vectors at reflector positions.

(4) Solve the multilateration problem for stylus one using the
measured points for alignment.

(5) Solve the multilateration problem for stylus two using the
LT positions from (4) for alignment.

(6) Shift the point cloud from (5) by the offset between (4) and
(5) in order to make Palign1 = Palign2 .

(7) In order to obtain the correction vectors in one common
coordinate system, solve the multilateration problem for
the complete data set (l= 1,2). A new dead path must
be set at the transition between the two reflectors, as the
information for the incremental lengthmeasurement is lost
at this point. The resulting point cloud is consistent in
itself. It may be slightly rotated relative to the machine
coordinate system, but this has no influence on the final
measurement result.

(8) Apply the local correction vectors to the originally meas-
ured points.

(9) As a last step, re-import the points that have been correc-
ted as detailed above into the part program and re-evaluate
with all steps for the workpiece.

The reference of the point clouds with different reflector
offsets is established via the fixed LT positions. It is obvious

that care must be taken to ensure that they do not change
during the measuring process, e.g. due to thermal drift or
collisions.

Following the steps as proposed above to evaluate themulti-
lateration problem with two stylus offsets reduces the residual
errors considerably, as can be seen in figure 15 for the example
of the large gear ring.

5.2. Practical application

The measurement was performed on PTB’s large CMM with
the numerical error compensation of the guideways enabled.
For the tactile measurement of the gear ring standard, two
probes were used as stated above.

The M3D3 measurement was carried out using five LTs.
They were positioned according to the presented research res-
ults to find the best LT positions for a measuring task (see
section 4.1) within the restrictions given by the available
equipment (e.g. stands for the LTs). Four LTs were set up at
the same height (z≈ 300 mm) on a slightly curved line. The
outer LTs were positioned as far apart as possible to enclose a
large angle to the measuring points. The fifth LT was set up in
the middle at a height of z≈ 1600 mm (see also figure 13).

The stabilization points were chosen to form a cuboid
volume of 32 points enveloping the whole gear ring standard
(see sections 4.2 and 4.3). The stabilization point configura-
tion is also shown in figure 13 (red diamonds).

Since two different probes were used for the determination
of the workpiece position and the measurement of the gears,
all measuring points (including the stabilization points) were
measured with two reflector offsets similar to the offsets of the
styli used for the tactile measurement. To obtain the M3D3
corrections, the data (two point clouds) was evaluated follow-
ing the procedure as suggested in section 5.1.

The results (profile and helix slope deviations of all gears)
of the different evaluations were compared to the calibration
values of the large gear ring standard (from 2015, [16]), see
figure 16 as well as table 1. The contribution of the M3D3
procedure to the task-specific uncertainties was calculated by
means of Monte Carlo simulations with 200 iterations. The
measured lengths of the LTs were slightly varied by normally
distributed random numbers in the size of the uncertainties of
the LTs before the multilateration was performed. The evalu-
ation of the profile and helix deviations for every iteration was
carried out using the original part program.

The M3D3 corrections for the measurement of the pro-
file and helix slope deviations are quite small but, never-
theless, with very promising small task-specific uncertain-
ties. It should be emphasized again that another advantage
of the M3D3 method is the traceability of the measuring res-
ults that is ensured by the calibration of the frequency of the
laser.

6. Summary and outlook

An in-depth study of PTB’s M3D3 system gives insight
into the main uncertainty contributors and helps to find the
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Figure 15. Residual errors after applying M3D3 correction. (a) Correcting points for each stylus separately. (b) Correction following the
steps as described in section 5.1.

Figure 16. Results (profile and helix slope deviation) of the M3D3 measurement with five LTs of the large gear ring standard (external and
internal teeth) compared to the calibration values.

13



Meas. Sci. Technol. 33 (2022) 035004 E K Rafeld et al

Table 1. Profile ( fHα) and helix ( fHβ) slope deviation of the M3D3 measurement (with five LTs) of the large gear ring standard (external and
internal teeth). Ucal is the uncertainty of the calibration, UM represents the MLAT contribution to the task-specific measurement uncertainty.

Profile slope deviation fHα: Helix slope deviation fHβ :

all values in µm all values in µm

Ext. gears Ucal Dev. tactile Dev. M3D3 UM Ucal Dev. tactile Dev. M3D3 UM

0◦ L 2.4 0.9 1.2 0.6 2.6 −2.3 −1.0 0.9
0◦ R 2.4 0.8 0.9 0.6 2.6 −2.3 0.4 0.9
10◦ L 2.4 0.4 −0.1 0.7 2.8 −2.1 −1.3 0.9
10◦ R 2.4 0.8 0.6 0.8 2.8 −3.2 −0.3 1.1
20◦ L 2.4 0.7 0.9 0.9 3.2 2.3 0.1 1.3
20◦ R 2.4 1.6 0.7 0.9 3.2 1.1 −3.0 1.3

Int. gears Ucal Dev. tactile Dev. M3D3 UM Ucal Dev. tactile Dev. M3D3 UM

0◦ L 2.4 0.3 −0.3 0.2 2.6 2.7 0.7 0.8
0◦ R 2.4 −0.1 −0.8 0.2 2.6 1.1 −2.4 0.8
10◦ L 2.4 −0.2 −1.0 0.2 2.8 −2.3 −0.3 0.8
10◦ R 2.4 −0.3 −1.0 0.2 2.8 −1.5 2.5 0.9
20◦ L 2.4 0.5 0.1 0.3 3.2 1.6 0.5 1.2
20◦ R 2.4 0.1 −0.5 0.2 3.2 1.1 −1.6 1.0

appropriate setup for any specific application used to improve
the performance of CMMs or machine tools as well as ensur-
ing traceability of the measurement. The presented studies
quantifying the influence of LT positions as well as the num-
ber and arrangement of stabilization points allow an a priori
uncertainty estimation. The results can directly be implemen-
ted in industrial precision engineering processes, which will
benefit from enhanced metrology solutions. For multi-stylus
applications, it is recommended that the presented procedure
is followed step by step as described in order to minimize sys-
tematic errors.

The work is embedded in a comprehensive research pro-
ject on the establishment of a Competence Center for Wind
Energy at PTB [17] and complements previous publica-
tions in the field. The coordinate metrology part of this
project aims to improve the performance of large CMMs
by means of various technologies. Ongoing studies focus
on the evaluation of a complete task-specific measure-
ment uncertainty that, besides the M3D3 contribution as
described here, includes other relevant uncertainty contribu-
tions from the CMM, the tactile probing process, the envir-
onmental conditions and the workpiece itself by using the
VCMM.
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