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ABSTRACT 
 

This paper investigate the optimal control problem for a modified Novikov equation with dissipation. 
The existence and uniqueness of regular local solution to the corresponding initial boundary value 
problem is guaranteed by the Faedo-Galerkin method. A critical estimate of the solution is 
obtained. Finally, the existence of an optimal solution to the control problem is proved. 
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1. INTRODUCTION 
 

The Novikov equation 
 

2 24 3t xxt x x xx xxxu u u u uu u u u          1.1  

 

was isolated by Novikov [1] in a symmetry 
classification of nonlocal partial differential 
equations. Compared with the Camassa-Holm 
equation [2] 
 

3 2t xxt x x xx xxxu u uu u u uu               1.2  

 

the Novikov equation has nonlinear terms that 
are cubic, rather than quadratic, which can be 
thought as a generalization of the Camassa-
Holm equation. Novikov [1] found its first few 
symmetries and he subsequently found a scalar 
Lax pair for it, proving that the equation is 
integrable. Hone and Wang [3] gave a matrix Lax 
pair for the Novikov equation, and showed how it 
was related by a reciprocal transformation to a 
negative flow in the Sawada-Kotera hierarchy. 
Infinitely many conserved quantities were found, 
as well as a bi-Hamiltonian structure. They also 

presented peakons for Eq.  1.1 . Liu, Liu and Qu 

[4] proved such peakons are orbital stable. Hone, 
Lundmark and Szmigielski [5] calculated the 
explicit formulas for multipeakon solutions of Eq. 

 1.1 , using the matrix Lax pair found by Hone 

and Wang. Very recent work are intensively 
devoted to studying the local well-posedness, 
global existence of strong and weak solution, and 
blow up of solution of initial value problem for 

Eq.  1.1 in Sobolev spaces or Besov spaces             

[6-13]. 
 

In general, the energy dissipation mechanisms 
are difficult to avoid in a real world and many 
authors considered the dissipative effects on the 
practical models. For example, Ott and Sudan 
[14] investigated the KdV equation with the 
presence of dissipation and their effect on 
solution of the KdV equation. The long time 
behavior of solutions to the weakly dissipative 
KdV equation was studied by Ghidaglia [15]. 
Recently, Wu and Yin investigated the weakly 
dissipative Camassa-Holm equation 
 

 3 2t xxt x x xx xxx xxu u uu u u uu u u       1.3
 
 

on the line [16] and on the circle [17]. They also 
studied the weakly dissipative Degasperis-
Procesi equation 

 4 3t xxt x x xx xxx xxu u uu u u uu u u        1.4  

 
on the line in [18,19] and on the circle [20], where 

0   is a constant. In [21], Yan, Li and Zhang 
considered  the global existence and blow-up for 
the weakly dissipative Novikov equation 

            

 2 24 3t xxt x x xx xxx xxu u u u uu u u u u u     

0  .                                                      1.5
 
 

In this paper, we investigate an optimal control 
problem governed by a modified Novikov 
equation with dissipation 

           
2 0,t x x xx xxm u m uu m m m u u       1.6  

    

where 0   denotes the dissipation. When 

0  , the equation is one of the modified 
Novikov equations recently studied by Mi and Mu 

(see, Eq.  1.1  in [22] with 1b  ). In comparison 

with most of the low-order nonlinear equations, 
such as the Burgers equation [see, 23,24,25], the 
Camassa-Holm equation [2,26], the Degasperis-
Procesi equation [27] and the Dullin-Gottwalld-
Holm equation [28], the Novikov equation has 
higher order nonlinear terms. Therefore, the 
treatment of this equation is generally of more 
difficulty and challenge. One can see this point in 
the study of the Cauchy problem of this equation 
(see, for instance, [6-13]). 
 
The optimal control is an important component of 
modern control theories and has a wider 
application in modern engineering. Two methods 
are introduced to study the control problems in 
partial differential equation (PDE): One is using a 
low model method, and then changing to an 
ordinary differential equation (ODE) model [29]; 
the other is using a quasi-optimal control method 
[30]. No matter which one is chosen, it is 
necessary to prove the existence of optimal 
solution according to the basic theory [31]. Let us 
mention some papers concerning optimal control 
problems for nonlinear PDEs. Ghattas and Bark 
[32] studied the optimal control of two and three 
dimensional incompressible Navier-Stokes flows. 
Vedantham [23] developed a technique to utilize 
the Cole-Hopf transformation to solve an optimal 
control problem for the Burgers equation. Sang-
Uk Ryu and Atsushi Yagi [33] investigated the 
optimal control of the Keller-Segel equations. 
Volkwein [24] used the augmented Lagrangian-



 
 
 
 

Zhou et al.; ACRI, 1(1): 17-27, 2014; Article no.ACRI.2014.002 
 
 

 
19 

 

SQP technique to solve the optimal control 
problem governed by the Burgers equaiton. 
Hinze and Volkwein [25] discussed the 
instantaneous control of the Burgers equation. 
Lagnese and Leugering [34] considered the 
problem of boundary optimal control of a wave 
equation with boundary dissipation. Oksendal 
[35] proved a sufficient maximum principle for the 
optimal control systems described by a quasi-
linear stochastic heat equation. Based on the 
energy estimates and the compact method, Tian, 
Shen et al. [26-28] studied the optimal control 
problems for the viscous Camassa-Holm 
equation, viscous Degasperis-Procesi equation 
and viscous Dullin-Gottwalld-Holm equation. 
Under boundary condition, Zhao and Liu [36] 
studied optimal control problem for viscous 
Cahn-Hilliard equation. 
 

Our paper is organized as follows. In Section 2, 
we formulate the control problem. In Section 3, 
we obtain the existence of a unique regular 
solution to the dissipative modified Novikov 
equation and a critical estimate of this equation. 
In Section 4, we prove the existence of an 
optimal solution to the control problem. A short 
conclusion is made in Section 5.   
 

2. FORMULATION OF THE OPTIMAL 
CONTROL PROBLEM 

  
It is appropriate to introduce some notations. Let 

  denote the interval  0,1 , and 0 be a 

subset of   with positive measure. Define 
 

       
2.

2
exp 2 : , 0k k

k Z k Z

H L u x u i kx u u x dx


 

 
      

 
  �

 

 

which is endowed with the scalar product. 
 

     ,
H

u v u x v x dx


  , 

 
and the norm 
 

    2

1

2,
HL

u u u


   

 

Let  L   be the space of real functions on   

which are measurable and essentially bounded; 
it is a Banach for the norm 
 

                          
   sup

L
x

u ess u x 


  . 

 

We introduce the Sobolev space 
 

      2 2: , , 1,2, ,s jH u u L D u L j s         ,     

s N  
 
which is equipped with the scalar product 
 

     
 2

0

, ,s

j j

H L
j

u v D u D v
 



   , 

 
with the norm 

      
1

2, ss HH
u u u


 . 

 
Set 
 

       
2 2

exp 2 : 1 , 0
s

s
per k k

k Z k Z

H u x u i kx k u u x dx


 

 
      

 
  

 

 

We have on 
1
perV H



  a Poincaré’s inequality 

 

     2 20L L
u c Du

 
    ,  u V   . 

 

This shows that V  is Hilbertian for the scalar 

product    , ', '
V H

     and 

  
1

2,
VV

u u u  is a norm on this space 

equivalent to that induced by  1H  , see [37]. 

 

Denote the dual spaces of V  and H  as 

 1V H    and H 
, respectively. Obviously, 

V H H V    , each embedding being 

dense. The duality pairing between V 
and V  is 

given by 
 

     
,

,
V V

u u x v x dx       for   u V    and   

V   . 

 

For given 0T   and Banach space X , let 

 2 0, ;L T X  and  0, ;C T X  denote the space 

of square integrable and continuous functions, 

respectively, in the sense of Bochner from  0,T  

to X . They are Banach spaces for the norms 
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    2

1
2 2

0, ; 0

T

L T X X
f f t dt    , 

and  

 
 

 
0, ;

0,

sup
C T X X

t T

f f t


    , 

 

respectively.  0, ;L T X
denotes the space of 

measurable functions from  0,T  to X  which 

are essentially bounded; the space is Banach for 
the norm 
 

 
 

 
0, ;

0,

sup
L T X X

t T

u ess f t



   , 

 

For fixed 0T  , we also defined the space 

 0, ;W T V  as  

                   

      2 20, ; : 0, ; , 0, ;tW T V m m L TV m L TV     , 

 
which is a Hilbert space endowed with the 
common inner product, see [38], the 

corresponding norm being denoted 
 0, ;W T V

  , 

                          

      2 2

1

2

0, ; 0, ; 0, ;tW T V L T V L T V
       . 

 

For brevity we write  2L X ,  C X  and  W V  

in place of  2 0, ;L T X ,  0, ;C T X  and 

 0, ;W T X . 

 
Further, the extension operator 

    2 2
0L ,B L Q L V   is defined by 

            

0 0

0

,

0, \

q in Q Q
B q

in Q Q
 

 


 

 

where  0,Q T   and  0 00,Q T   . 

 
The optimal control problem we intend to 
investigate is minimizing 

                 

     2 2
0

2 21
,

2 2L H L Q
J m Cm z


      2.1  

subject to  
             

   

   

2

0

3

0, 1, , 0,1,2,

0, .

t xx x x

j j

j j

m m uu m u m B in Q

u u
t t j

x x

m x m x in

     

 

 
 

  


   2.2  

 

Here C  is the injection of  W V into 

 2L H , z is a desired state, 0   is fixed, 

 0m x H is given, and  2
0L Q  denotes the 

control variable. Clearly, our control target is to 
match the given desired state z  by adjusting the 

body force   in a control volume 0Q Q in the 

2L -sense. 
 

For a control  2
0L Q   the state  m W V  

is given by the weak solution of the viscous 
Novikov equation  

               

 
   

2 2

00,

t xx x xm m uu m u m B in L V

m x m x in H

      




 2.3  

 
Now we present the definition of the weak 

solution to Eq.  2.3  in the space  W V . 

 

Definition 2.1 A function    ,m x t W V  is 

called a weak solution to Eq.  2.3 , if  

       2

, , ,
, , , ,t t x xV V V V V V V

m m uu m u m B       

     2.4  

 

is valid for all V   and   a.e.  0,t T  and 

0m H  are valid. 

 
The control problem then is  
 

 min ,J m       s.t.    ,m   is a weak solution 

to   2.3
             

 2.5  

 

Let    2
0X W V L Q  ,  2Y L V H  , and 

define an operator  1 2, :e e e e X Y   by  

   1 2
1 t xx x xe m m uu m u m B 

        
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and 
 

   2 0,0e m x m x   , 

 

where :V V   is the Laplace operator with 
periodic boundary conditions. Then we rewrite 

 2.5  in the following form 

 

 min ,J m       s.t.    , 0e m        2.6  

 

3. EXISTENCE OF A UNIQUE WEAK 

SOLUTION TO  2.3  

 
The following theorem ensures the existence of a 

unique weak solution to Eq.  2.3  

 

Theorem 3.1 Let 0T   be fixed,  0m x H
 

and  2B L V  , then there exists a unique 

local weak solution      ,m x t C H W V   

to Eq.  2.3 in the sense of Definition 2.1. 

Moreover, there exists a constant 0C  , which 

depends on  ,   and 0m , such that  

 

      2 2
0 0

2 2

0 01
W V H H L Q L Q

m C m m        3.1  

 
Proof.  As in the proof for the unsteady Navier-
Stokes equations in [39] we derive that there 

exists a unique  W V  satisfying  2.3  in the 

weak sense. Thus, we have to prove the 

estimate  3.1  

 

Multiplying the first equation in  3.2  by 2m  and 

integrating over  , we obtain that 
 

 2 2

,
2 2 ,

H V V V

d
m m B m

dt
 



          3.2  

 
Applying Hölder’s inequality and Young's 
inequality for products, we obtain 
 

 
,

2 , 2
VVV V

B m B m 


   

2 24
VV

B m 
 

                        3.3  

 

Then we derive from  3.2 -  3.3  that  

 

22 2 4

V
H V

d
m m B

dt
 

 

  .         3.4  

 

Integrating it over  0, t , we have 

 

         
22 2

0
0

4

V

t

HH
m t m B s

 

    

        
22

0
0

4

V

T

H
m B s ds

 

    

 2

22

0

4
H L V

m B 




  ,             3.5  

 
which implies that 
 

 
   2

22 2

0

4
HC H L V

m t m B 




  .       3.6  

 

Meanwhile, it follows from  3.4  that 

 

   2

22

0 V

T

L V
m m t dt   

 
 2

2 2

02 0

4 1T

HL V
B s ds m

 


   

                                    

 2

2 2

02

4 1
HL V

B m
 



  .                   3.7  

 
Since  
 

 
2 2

,xx xx xx HH H
m u u u u u u      

              

2 2 2
2 x xxH H H

u u u    

2 2 2
2 xxH V H

u u u    ,              3.8  

 
and 
 

1

2 2 2

x x xxH H H
u u u  ,                            3.9  

 
we obtain that  



 
 
 
 

Zhou et al.; ACRI, 1(1): 17-27, 2014; Article no.ACRI.2014.002 
 
 

 
22 

 

 
 H H C H

u m m  , 

 V H C H
u m m  ,                   3.10  

           
 1x H H C H

u m m  .  

 
Using Hölder's inequality, Poincaré’s inequality 
and the Sobolev embedding theorem, we deduce 

from the first equation in  3.2  that 

 

 2t L V
m 

 

 
2

2

0
sup

L V

T

xx x xm uu m u m B dxdt


    


                        

 2

2 2

0

1 1
sup

2 2
L V

T

xx x xm u m u m B dxdt


    



 
    

 
             

 2

2

0

1
sup

2
L V

T

x x xH H L H H
m u m



  


 


                         

21

2
xL H H HV

u m B dt   

 
  


                     

 


2

2

0
sup

L V

T

V V V V V
m u m



      3.11  

2

V V V VV
u m B dt  



   

 

 
2

2

0
sup

L V

T

V V H V V VV
m m m B dt



    


    

     2 2
2

C H L V L V
m m B 



 
   

 
 

 

where we used the fact that    C HV
u t m  

in  3.10 . 

 

It then follows from  3.6 ,  3.7  and  3.11  that 

 

       
     2 2

2 2 2

tW V L V L V
m m m    

              

        2 2 2

2
2

2
L V C H L V L V

m m m B 


 
    

 

        2 2 2
0

2
2 2 2

2
L V C H L V L Q

m m m      
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
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H
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 
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2

0

4
2
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m 



 
  
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 
 

2
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0

2
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L Q

H H L Q
C m m  

 
     

 
  

which gives the claim  3.1 . 

 

4.  EXISTENCE OF AN OPTIMAL 

SOLUTION TO  2.6  

 
In this section, we prove the existence of an 

optimal solution to the control problem  2.6  

based on Lions' theory (see [40]). 
 
Theorem 4.1 There exists an optimal control 

solution  ,m  
 to the problem  2.6  . 

 

Proof.  Let  ,m X   satisfying the equation 

 , 0e m   .According to the cost of tracking 

type in  2.1  we have  

   2
0

2
,

2 L Q
J m


   . 

 

From  3.1 we conclude that 
 W V

m    

yields 
 2

0L Q
   . Then  
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 ,J m     ,   as    ,
X

m      4.1  

 
The norm is weakly lower semi-continuous [41], 

so J  is weakly lower semi-continuous. Since 

 , 0J m   , for all  ,m X   holds, there 

exists 0   defined by 
                  

      inf , | , , , 0J m m X e m        , 

 
which implies the existence of a minimizing 

sequence   ,n n

n N
m 


 in X  such that 

 

 lim ,n n

n
J m 


  ,   , 0n ne m    , n N  . 

 

Then it follows from  4.1  that there exists an 

element  ,m X    such that when n   , 

 
nm m   in    W V   weakly ,          4.2  

 

and 
 

n     in    2
0L Q   weakly .       4.3  

 

 4.2  implies that  

 

               
0 ,

, 0
T

n
t t

V V
m t m t dt



   , as 

n   ,  2L V  ,         4.4          

 

and 
 

 
0

, 0
T

n

V
m m dt  ,    as n    ,  

 2L V  .                                4.5  

 

Thanks to the facts that  W V is compactly 

embedded into   2L L
[39], we conclude that 

nm m  strongly in  2L L . Since 
nm m  

weakly in  W V , 
 

n

W V
m  is bounded [42]. As 

 W V   is compactly embedded into  C H  

[38], we then derive 
 

n

C H
m  is bounded. 

We have 
 

  
0

T
n n n

x xu u m u u m dxdt  


   

                     

   
2 2

0

1

2

T
n n

x x

u m u m dxdt 



                

     
                  

   
2

0

1

2

T
n n

x

u m m dx dt



                          

 4.6  

         
2 2

0

1

2

T
n

x

u u m dx dt 



       

    I II


   , 
 

where  n n n

xx
m u u   and  

xx
m u u     . 

 
First we observe that Young's inequality for 
convolutions yields 
                 

   
121n n

xL L

u u m m




        

 n

L
G m m



                          4.7  

                            

1

n n

L L L
G m m m m

 

      

 
and 
               

      121n n
xx L x L

u u m m




      

                             

    n n
x

Lx L

G m m G m m


               

 4.8  

  1

n n
x L L L

G m m m m
 

     , 

 

where 
1
2

1
2

cosh( )

2sinh( )

x
G


  and  denotes the 

convolution. 
 

For the part I in  4.6 , it follows from Hölder’s 

inequality that  
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T
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x

I u m m dx dt


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
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T
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2

0

T
n n
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
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     22

2n n

L VC H L L
C m m m 



   

0  , as n   ,  2L V  ,   

 
where we used the fact that 

 

n n n

V H C H
u m m   and 

 

n n n

H H C H
u m m   as in  3.10 .     

 

For the part II  in  4.6  , we have 
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where we have used  4.7  and  4.8 .  

 

Then it follows from  4.6 ,  4.9  and  4.10  

that 
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We also have 
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     III IV


  . 
 

For the part III  and IV  in  4.12 , we use 

Hölder’s inequality to find  
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Then we derive that 
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We infer from  4.3  that 
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T
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
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0  , as n    ,  2L V       4.16  

 

Thus from  4.4 ,  4.5 ,  4.11  and  4.15 , 

we conclude that  1 , 0e m     in  2L V  . 

 

From  m W V   we derive that  0m H  . 

Since 
nm m  weakly in  W V , we have 

   0 0nm m  weakly in H  as n   , that 

is 

    0 0 , 0n

H
m m   , as n   , 

H  , 

 

which implies that  2 , 0e m     in H . Thus 

we obtain that  , 0e m    in Y . 

 

Therefore, we have shown that  ,m Y    is 

an optimal solution to the control problem  2.6 . 

This completes the proof of the theorem. 
 

5.  CONCLUSION 
 
In this work we investigate an optimal control 
problem for the viscous modified Novikov 
equation. The existence and uniqueness of a 
local regular solution to this equation is obtained 
and the existence of an optimal solution to the 
control problem is proved. 
 

6.  FUTURE RESEARCH WORK 
 
This work is the base of the first-order necessary 
optimality condition, the second-order sufficient 
optimality condition and the numerical test.  
These issues would be worked on in the near 
future. 
 

ACKNOWLEDGEMENTS 
 
The authors would like to thank all the 
anonymous referees for their careful reading of 
the paper and constructive comments and 
suggestions which have helped to improve the 
representation of the paper.  This work was 
supported by the Natural Science Foundation of 
China (No. 11171135, 10420130638). 
 

COMPETING INTERESTS 
 
The authors declare that there is no conflict of 
interests regarding the publication of this paper. 
 
REFERENCES 
 
1. Novikov V. Generalizations of the 

Camassa-Holm equation. J. Phys. A. 
2009;42:342002. 

2. Camassa R, Holm D. An integrable 
shallow water equation with peaked 
solitons. Phys. Rev. Lett. 1993;71:1661-
1664. 



 
 
 
 

Zhou et al.; ACRI, 1(1): 17-27, 2014; Article no.ACRI.2014.002 
 
 

 
26 

 

3. Home ANW, Wang JP. Integrable peakon 
equations with cubic nonlinearity. J. Phys. 
A. 2008;41:372002. 

4. Liu X, Liu Y, Qu C. Stability of peakons for 
the Novikov equation. J. Math. Pures Appl. 
2014;101:172-187. 

5. Hone W, Lundmark H, Szmigielski J.  
Explicit multipeakon solutions of Novikov 
cubically nonlinear integrable Camassa-
Holm type equation. Dyn. Partial Differ. 
Equ. 2009;6:253-289. 

6. Tiglay F. The periodic Cauchy problem for 
Novikov equation. Int. Math. Res. Not. 
IMRN. 2011;20:4633-4648. 

7. Ni L, Zhou Y. Well-posedness and 
persistence properties for the Novikov 
equation. J. Differ. Equations. 2011; 
250:3002-3021. 

8. Wu X, Yin Z. Global weak solutions for the 
Novikov equation. J. Phys. A. 
2011;44:055202. 

9. Wu X, Yin Z. Well-posedness and global 
existence for the Novikov equation Ann. 
Sc. Norm. Super. Pisa Cl. Sci. 2012;3:707-
727. 

10. Himonas A, Holliman C. The Cauchy 
problem for the Novikov equation. 
Nonlinearity. 2012;25:449-479. 

11. Yan W, Li Y, Zhang Y. Cauchy problem for 
the integrable Novikov equation. J. Differ. 
Equations. 2012;253:298-318. 

12. Jiang Z, Ni L. Blow-up phenomenon for the 
integrable Novikov equation. J. Math. Anal. 
Appl. 2012;385:551-558. 

13. Lai S, Li N, Wu Y. The existence of global 
strong and weak solutions for the Novikov 
equation. J. Math. Anal. Appl. 2013; 
399:682-691. 

14. Ott E, Sudan RN. Damping of solitary 
waves. Phys. Fluids. 1970;13:1432-1434. 

15. Ghidaglia JM. Weakly damped forced 
Korteweg-de Vries equations behave as a 
finite dimensional dynamical system in the 
long time. J. Differ. Equations. 1988; 
74:369-390. 

16. Wu S, Yin Z. Global existence and blow-up 
phenomena for the weakly dissipative 
Camassa-Holm equation. J. Differ. 
Equations. 2009;246:4309-4321. 

17. Wu S, Yin Z.  Blow-up, blow-up rate and 
decay of the solution of the weakly 
dissipative Camassa-Holm equation. J. 
Math. Phys. 2006;47:1-12. 

18. Wu S, Yin Z. Blow-up and decay of the 
solution of the weakly dissipative 
Degasperis-Procesi equation. SIAM J. 
Math. Anal. 2008;40:475-490. 

19. Wu S, Escher J, Yin Z. Global existence 
and blow-up phenomena for a weakly 
dissipative Degasperis-Procesi equation. 
Discrete Cont. Dyn-B. 2009;12:633-645. 

20. Wu S, Yin Z. Blow-up phenomena and 
decay for the periodic Degasperis-Procesi 
equation with weak dissipation. J. 
Nonlinear Math. Phys. 2008;15:28-49. 

21. Yan W, Li Y, Zhang Y. Global existence 
and blow-up phenomena for the weakly 
dissipative Novikov equation. Nonlinear 
Anal. 2012;75:2464-2473. 

22. Mi Y, Mu C. On the Cauchy problem for 
the modified Novikov equation with peakon 
solutions. J. Differ. Equations. 2013; 
254:961-982. 

23. Vedantham R. Optimal control of the 
viscous Burgers equation using an 
equivalent index method.  J. Global Optim. 
2000;18:255-263. 

24. Volkwein S. Distributed control problems 
for the Burgers equation. Comput. Optim. 
Appl. 2001;18:115-140. 

25. Hinze M, Volkwein S. Analysis of 
instantaneous control for the Burgers 
equation Nonlinear Anal. 2002;50:1-26. 

26. Tian L, Shen C, Ding D. Optimal control of 
the viscous Camassa-Holm equation. 
Nonlinear Anal. RWA. 2009;10:519-530. 

27. Tian L, Shen C. Optimal control of the 
viscous Degasperis-Procesi equation. J. 
Math. Phys. 2007;48:113513. 

28. Shen C, Tian L, Gao A. Optimal control of 
the viscous Dullin-Gottwalld-Holm 
equation. Nonlinear Anal. RWA. 
2010;11:480-491. 

29. Ito K, Ravindran SS. A reduced-basis 
method for control problems governed by 
PDEs. Control and estimation of distributed 
parameter systems. Int. Ser. Numer. Math. 
1998;126:153-168. 

30. Atwell JA, King BB. Proper orthogonal 
decomposition for reduced basis feedback 
controller for parabolic equation. Math. 
Comput. Modelling. 2001;33:1-19. 

31. Hu C, Temam R. Robust control of the 
Kuramoto-Sivashinsky equation. Dyn. 
Contin. Discrete Impuls. Syst. B: Appl. 
Algoritheorems. 2001;8:315-338. 

32. Ghattas O, Bark JH. Optimal control of 
two- and three-dimensional incompressible 
Navier-Stokes flows. J. Comput. Phys. 
1997;136:231-244. 

33. Ryu SU, Yagi A. Optimal control of Keller-
Segel equations. J. Math. Anal. Appl. 
2001;256:45-66. 



 
 
 
 

Zhou et al.; ACRI, 1(1): 17-27, 2014; Article no.ACRI.2014.002 
 
 

 
27 

 

34. Lagnese JE, Leugering G. Time-domain 
decomposition of optimal control problems 
for the wave equation. Systems Control 
Lett. 2003;48:229-242. 

35. Oksendal B. Optimal control of stochastic 
partial differential equations. Stoch. Anal. 
Appl. 2005;23:165-179. 

36. Zhao X, Liu C.  Optimal control problem for 
viscous Cahn-Hilliard equation. Nonlinear 
Anal. 2011;74:6348-6357. 

37. Temam R. Infinite-dimensional dynamical 
systems in mechanics and physics. 
Springer-Verlag: New York; 1988. 

38. Dautray R, Lions JL. Mathematical 
analysis and numerical methods for 
science and technology. Volume 5: 

Evolution Problems I. Springer-Verlag: 
Berlin; 1992. 

39. Temam R. Navier-Stokes equations, in: 
Studies in Mathematics and its 
Applications, North-Holland, Amsterdam; 
1979. 

40. Lions JL. Optimal control of systems 
governed by partial differential equations. 
Springer-Verlag: Berlin; 1971. 

41. Wouk A. A course of applied functional 
analysis. Wiley-Interscience: New York; 
1979. 

42. Kreyszig E. Introductory functional analysis 
with applications. John Wiley & Sons; 
1978.

 

© 2014 Zhou et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
 
 
 
  

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://www.sciencedomain.org/review-history.php?iid=904&id=41&aid=7605 
 


