British Journal of Mathematics & Computer Science

11(2): 1-9, 2015, Article no.BJM CS.19422
I SSN: 2231-0851

SCIENCEDOMAIN international

www.sciencedomain.org

A Performance Evaluation of OpenCL and Intel Cilk Pluson a
Graphic Rendering Problem

Y. J. Gambo', S. B. Junaidu?, S. E. Abdullahi’?and C. I. Saidu®

!Department of Computer Science, Federal University Wukari, Wukanaba State, Nigeria.
’Department of Mathematics, Ahmadu Bello University, Zaria, Kadstate, Nigeria.

3Bingham University, Karu, Nasarawa State, Nige

Article Information

ria.

DOI: 10.9734/BJMCS/2015/19422

Editor(s):

(1) Qiang Duan, Information Sciences & TechnologpBrtment, The Pennsylvania State University, USA.

Reviewers

(1) Anonymous, Carnegie Mellon University, USA.
(2) Anonymous, University of Port Harcourt, Nigeria.
(3) Anonymous, Kocaeli University, Turkey.

(4) Samir Kumar Bandyopadhyay, University of Calcuttelia.

Complete Peer review Historhttp://sciencedomain.org/review-history/11164

Original Research Article Received: 09 June 20
Accepted: 01 August 20

15
15

Published: 29 August 2015

Abstract

found it difficult to render graphics in a timely mannermanimal cost. In this paper, a comparative st
was carried out on two recent and powerful multiprocessaidlpbprogramming languages OpenCL &

was consistent after first run without restart than I@ik Plus and as raytracing depth increased
performance gap between OpenCL and Intel Cilk Plus alsoaisedewith OpenCL showing the bett
performance.

Parallel programming is fast evolving into a central corehigh performance computing. Several
computing hardware vendors now embed several proceg#orscomputers to increase speed and
performance thus the need to maximize and utilize computisgurees for maximum performance.
Rendering of graphics has also been a challenge in tdrspeed that architects and graphic experts mave

Intel Cilk Plus which were used to separately program rabaerassingly parallel graphic renderipg
algorithm, raytracing. The programs were ran and pibfda three different computers with varying
specifications on windows using Microsoft Visual Studio 2@% IDE. The result showed that OpenfCL

dy
nd

the
er

Keywords: OpenCL; intel cilk plus; parallel programming; nading; high performance computing;

rendering.

1 Introduction

Speed and performance have become the critical factorfimind) computing systems and the Internet in

this contemporary time. Computers have moved from being embeddedust a single processor

*Corresponding author: Email: yaknanjohn@gmail.com;

to

Gambo et al.; BJMCS, 11(2): 1-9, 2015; Article niVMBCS.19422

multiple processors over the years. This is all in adidcrease speed and performance. Parallel computing
is one of the most exciting technologies to achieve promingsince the invention of electronic computers
[1]. Parallel computing can be seen as the use of alglazamputer to reduce the time needed to solve a
single computational problem [2]. Many scientific and technehzgiasks today demand high computing
power to solve. One of such areas is the area of graphaering. This research exploits the power of
parallel computing in improving the performance of rayitrg algorithm in the domain of graphic
rendering.

The rise of multicore is bringing shared-memoryaflalism to the masses. The community is struggling to
identify which parallel models are most productive [3].

However, with this proliferation of parallel computing dms comes the challenge of programmability.
Programmers must consider data dependencies, race condd@mnmunications, etc. As the available
parallel computing resources go beyond just the CPU, evenprmgeamming complexities arise. To access
all available resources, the same routine or algorittay need to be coded multiple times and in multiple
ways. The programmer must consider various type-, vendomplatiorm-specific programming models

and/or APIs [4].

A single source code that could be portable acrossatfiopins is a challenge. A better way is needed. In
2008, Apple Computer proposed a draft specification for Opgi@pen Computing Language) [5] to the
Khronos Group. The Khronos group explains that OpenCL lets pnogeas write a single portable program
that uses all resources in the heterogeneous platformié]Kironos Group also asserts that OpenCL is an
open royalty-free standard for general purpose parallegramming across CPUs, GPUs and other
processors. OpenCL presents programmers with a standdrdvi&P which to program; participating
vendors write their device drivers to conform to its #peation. This abstraction enables programmers to
focus less on device-specific programming details. ABpenCL works on different hardware, but the
software needs to be adapted for each architecture [7].

Intel Cilk Plus is the easiest, quickest way to hartlespower of both multicore and vector processing. It is
an extension of C and C++ programming languages, designed for nealtiitr parallel computing [8]. On
July 31, 2009, Cilk Arts, producers of the Cilk++ programmnlamguage, announced that its products and
engineering team were now part of Intel Corporatiorielland Cilk Arts integrated and advanced the
technology further resulting in a September 2010 releasentef Cilk Plus. To further make parallel
programming easier, Phoronix [9], said that Intel is plagmin implementing the Intel Cilk Plus C and C++
extensions to the GNU Compiler Collection (GCC). Tikialready a reality as GCC 4.9 has Intel Cilk Plus
implemented.

Different strategies have evolved over the years on howvelajea parallel application. According to Luis
[10], there are three (3) basic strategies:

a. Strategy 1. Automatic Parallelization, whose ultimate goal is to relief programmers from

parallelizing task. It takes rough codes and produces effipemallel object code with little or no
additional work by the programmer. The strategy is desdrin Fig. 1.1:

Existing Minor code Automatic Parallel
Source Code Modification Parallelization Application

Fig. 1.1. Automatic Parallelization Strategy (Luis, 1999)

b. Strategy 2: Parallel Libraries: This approach has been more successful than the previoughene.
basic idea is to encapsulate some of the parallel codéstbammon to several applications into a
parallel library that can be implemented in a very efficigay. Such a library can then be reused
by several codes. This is described in Fig. 1.2.

Gambo et al.; BJMCS, 11(2): 1-9, 2015; Article niVMBCS.19422

Minor code
Modification
Existing Automatic Parallel
Source Parallelization |7 Application
Code
Minor code

Modification

Fig. 1.2. Parallel Libraries Strategy (Luis, 1999)

c. Strategy 3: Major Recoding, the third strategy, which involves writing a paralleplgation from
the very beginning as illustrated in Fig. 1.3 below, givese freedom to the programmer who can
choose the language and the programming model. Howevegyitrmake the task very difficult
since little of the code can be reused.

Existing — Compiler Parallel
Source 2100 Assisted Application
Code Recoding Parallelization

Fig. 1.3. Major Recoding Strategy (L uis, 1999)
Programmers have often opted for parallel library styatieg creating parallel applications. For these
programmers, the extensions to existing languages or runlitimegies are a viable alternative. In this
research work we are going to consider OpenCL and IntelRQilk, Parallel Libraries that have evolved as
powerful extensions of C++.

OpenCL and Intel Cilk Plus are fast taking center stageralpbprogramming and this research carries out
a performance evaluation of the two in the domain of fgmaphic rendering.

1.1 Resear ch Objective

The objectives of this research are as follows:

i. To design a parallel raytracing engine using OpenCL and aridsgieg Intel Cilk Plus.
ii. Tocompare the performance of OpenCL implementation aghaisof Intel Cilk Plus.

2 Materialsand M ethods

In this paper a detailed study into graphic rendering and thectngbehigh performance computing was
carried out. The performance of two (2) key parallel mogning tools, OpenCL and Intel Cilk Plus were
tested on raytracing algorithm for graphic rendering

Table. 1.1. Software | mplementations

I mplementation Compute device Compute cores Execution style Alias

C++ CPU Single Core Recursive GCC CPU Recursive
C++ CPU Single Core Iterative GCC CPU lterative
OpenCL C CPU Multi core Iterative OpenCL CPU

Intel Cilk plus CPU Multi core Iterative Intel Cilk @P

Four (4) software implementations were designed as shown Ie Tab The Recursive and Iterative C++
implementations are for benchmarking purposes only. The ingrigations were ran on three (3) different
multi core/processors system with the following speatfans:

Gambo et al.; BJMCS, 11(2): 1-9, 2015; Article niVMBCS.19422

a. Hardware Specification: The computers used in this work were selected randbedguse Intel
and Khronos group the makers of Intel Cilk plus and OpergShectively expect these software to
work on any multicore or multiprocessor computers that resw very common. The hardware
specification are as shown in Table 1.2 :

Table 1.2. Har dwar e Specification

Computers
PC One PC Two PC three
Make HP Dell Samsung
(O] Windows 8 Windows 7 Windows 7
Processc Dual AMD E-350 Intel Core i--2310M Intel Core i3 CPU M 370 (¢
processor 1.6GHz CPU @ 2.10GHz 2.40GHz 2.40GHz
Installed Memor 3.00GB (2.60GB Usabl 2.00GE 4.00GB (3.80 GB Usabl
System Type 32 bits OS 64-bit OS 64-bit OS
b. Software Specification: The software specification of the systems used inréssarch are shown
in Table 1.3:
Table 1.3. Softwar e Specification
Computers
Software PC One PC Two PC Three
(oS Window € Windows Windows
IDE Visual Studio 2008 Visual Studio 2008 Visual Studio 2008
OpenCL Versio AMD APP SDK v Intel_sdk_for_ocl_applicatic Intel_sdk_for_ocl_applicatic
2.7 2012 2012
Compiler Intel C++ Studio Intel C++ Studio XE 2013 Intel C++ Studio XE 2013
XE 2013 update4 updated update4

All the implementations were ran several times withoatarting and the timing for each implementation
was stored in separate files. These results were theim paibles and then used to plot graphs in order to
analyze and draw conclusions. It is important to reitelnate that the focus of this research work is on the
OpenCL and Intel Cilk Plus implementations. The Implemanmtatwere run 10 times without restarting at
different rendering depths of 0, 1, 2, 3, 4 and 16.

3 Results

Here we examine the implementations at the differentresyyng depths on all the three (3) test computers.
a. Ray-tracing Depth of 0: The results obtained at this depth are as shown in Fig. 1.4

Fig. 1.4 clearly shows that the different implementatioagehslightly different behaviors on the different
test computers. The implementations on PC One and PC Thoeeasmore uniform behavior compared to
that of PC One, at rendering depth of 0, where theteeisrétically no ray fired into the rendering scene. It
is the point of minimal computational demands. It was nottbad at first run across all the PCs OpenCL
showed a rather higher run time, this can be attributed tanttiel time OpenCL takes to setup its

computing devices, context and command queues. At this deghQilk Plus seems to be performing

better than OpenCL. Overall, these differences can bibwéd to the memory management of the
Operating Systems and hardware specifications.

Gambo et al.; BJMCS, 11(2): 1-9, 2015; Article niVMBCS.19422

PC One which has an AMD processor showed a rather haphbehedior especially on the recursive
implementation. This can be explained by the fact thatrsemu algorithms utilize more memory than
iterative ones. Also, the processor in PC One is much slihaa those in PC Two and PC Three.

PCOne PCTwo
TIMEVS RUN AT DEPTH=0 TIMEVS RUN AT DEPTH=0
1 0.5
g 0.8 N g 04
§ 0.6 !:’_\j ; ~—t— (++ Recursive g 0.3 —4— (++ Recursive
‘3’ 04 ¢ = Wl —m—Ce+Iterative ‘:-‘ 0.2 —m— (++ |terative
s - s FPOY oyt iet
£ 02 OpenCLCPU £ 01l \ef-mmSngenn OpenCLCPU
0 ' Intel Cilk Plus 0 Intel Cilk Plus
1 3 5 7 9 1 3 5 7 9
No. of RUNS No. of RUNS
PCThree
TIMEVS RUN AT DEPTH=0

X

206

S ==t C++ Recursive

204

¥ oo pNErEppee T Ol

= 0 =R OpenCLCPU

Intel Cilk Plus

1 3 5 7 9
No. of RUNS

Fig. 1.4. Ray-tracing at Depth =0
b. Ray-tracing Depth of 1: The results obtained for ray-tracing at depth of 1 isass in Fig.1.5.

At this depth there are no secondary rays due to reflectitheiscene. Here Intel Cilk Plus implementation
showed varied results on the three (3) test computerthbpenCL CPU implementation showed a more
consistent behavior across the test computers. It waseddtat at first run (RUN = 1) OpenCL takes a lot
of time but stabilizes from the second run (RUN = 2). Agairs tain be attributed to the time it takes
OpenCL to setup the computing devices, context, and commaneésju@learly, OpenCL CPU performed

far better than Intel Cilk Plus implementation at thig-tracing depth.

c. Ray-tracing Depth of 2: Fig. 1.6 shows the performance of the implementations on the (B)
test PCs.

Here again, OpenCL CPU performed better than Intel Blilis in all test computers. The C++ Iterative and
OpenCL CPU implementations show more consistency in atetecomputers but the C++ Recursive and
Intel Cilk Plus showed different behaviors. Perhaps thifue to the impact of the Operating System and the
hardware specifications especially demands on memory.

Gambo et al.; BIMCS, 11(2): 1-9, 20¥&ticle no.BIMC<£19422

PCOne PCTwo
TIME V5 RUNS AT DEPTH =1 TIME VS RUNS AT DEPTH =1
__50 4 25
ﬁ 40 4ty "2 L b e
% 30 4 —#— (++ Recursive § 15 \ —#— C++ Recursive
‘:‘j' 0y pggnumtygy —8—Ciliterative ‘E‘ 10 " —m— C++ Iterative
E 10 —4— OpenCLCPU g 5 — OpenCLCPLU
0 e , 0 - Intel Cilk Plus
1 35 7 g9 Intel Cilk Plus 1385 7 9
No. of RUNS No. of RUNS
—&— C++ Recursive
—m— C++ Iterative
= o] ‘J—v— ek
No. of RUNS
Fig. 1.5. Ray-tracing at Depth = 1
PCOne PC Two
TIME VS RUNS AT DEPTH =2 TIME VS RUNS AT DEPTH=2
100 0 i
—_ — e —4— C+=Recursive
§ 60 ‘{ —+— C++ Recursive § —®— Ce+Iterative
e 4o 4 =l (C++ |terative =
w (i--u-u-u-u-u-u-a
s]l‘l‘l’“ﬂ.‘.‘l g L OpenCLCPU
= : =
0 'l—r'r'r'r'r T Inte Cilk Plus LI B e s e e | Inte Cilk Plus
i 3 5 7 35 1 3 5 7 5
No. of RUNS No. of RUNS
PCThree
TIME VS RUNS AT DEPTH=2
__ 80
%)
2 60
S C++ Recursi
3 20 e (++ Recursive
- = C++ |terative
w20
E OpenCL CPU
= O TR TETETETE
1 3 5 7 9 Inte Cilk Plus
No. of RUNS

Fig. 1.6. Ray-tracing at Depth =2

Gambo et al.; BIMCS, 11(2): 1-9, 20¥&ticle no.BIMC<£19422

d. Ray-tracing Depth of 3: Fig. 1.7shows the performance of the implementations onetieP C

Fig. 1.7shows the rendering result at -tracing depth = 3 on the three (3) test computdese OpenClL
CPU implementation still performs better than Intel Plus and it seems like as computational dem:

increases OpenCL CPU still remains consistent and stébis.is slightly not so with the Intel Cilus
implementation.

C++ lterative

TIME (Se:conds)

OpenCL CPL

1 3 5 7 9
MNo. of RUNS

Fig. 1.7. Ray-tracing at Depth =3

PC Three seems to give a more accurate result commaR@d One and PC Two. This is because a pla
program is expected to be faster than its serial verSlerhaps there are still some racie conditioribe
Intel Cilk Plus implementation or perhajas the number of processors increase, the Intéd Elilis
implementation will perform better.

e. Ray-tracing Depth of 4: Fig. 1.8 shows the performance at this ray-tracing depth.

Here the consistency of Open€hnnot be equaled across the test computers. Again Pee gave a mo
acceptable result because it has more computing devicked at 2.4GHz and the more computing de
the more parallel implementations perform better teréam limit.

f. Ray-tracing Depth of 16: Fig. 1.9 shows the performance at tegeing depth of 16 the maximu
depth for our implementatic

Again, PC Three gives a more realistic result a-tracing depth of 16. Also, OpenCL CPU still ¢

performs Intel Cilk Plus at this géh. It was observed that the average time of run inaleaas the renderi
depths increased.

Gambo et al.; BIMCS, 11(2): 1-9, 20¥&ticle no.BIMC<£19422

== (++ Recursive

u".‘

Inte Cilk Plus

No. of RUNS

Fig. 1.8. Ray-tracing at Depth =4

PCOne PC Two
150 4 60 - _
. J s50 |TYTTY T
w o
s ettty g j
£ : £40 -
S | —+— C++Recursive o i ——t— C++ Recursive
3 ‘ Z 30 {
w @
PR i —m— =+ lterative b —f— C++ Iterative
U - . s
E ‘ OpenCL CPU ~ 10 “ OpenCL CPU
a e e e B i Inte Cilk Plus 0 +——rT 717 rrrm Inte Cilk Plus
1 3 5 7 89 1 3 5 7 9
No.of RUNS No.of RUNS
PCThree
TIME VS RUNS AT DEPTH = 16
100
¥ 20 M
b=
S 60 —+— C+=+ Recursive
A
o 40 -_.—._._.-.—I—.‘l —— C+=+lterative
E 20 OpenCL CPU
Y i T g Inte Cilk Plus

1 3 5 7 9
Mo. of RUNS

Fig. 1.9. Ray-tracing at Depth = 16

Gambo et al.; BJMCS, 11(2): 1-9, 2015; Article niMBCS.19422

4 Conclusion

The research shows that at all the varied deptipgnOL showed more consistency after the first run
without restarting than Intel Cilk Plus. Also, assaall rendering depths OpenCL seems to take Idimger

at first run before evening out. Overall a moreegtable result is that of PC Three because parallel
implementations are expected to outperform serias@specially in an embarrassingly parallel prodike

we have in this research. It would be interestiogee the performance of OpenCL and Intel Cilk Plus
implementation of ray-tracing in a massively paladlystem.

Finally, it was observed that as the ray-tracingtdeincreases the performance difference between th
parallel and the serial implementations widens esnsin PC Three but between the two parallel
implementations, OpenCL performed better than It Plus from these results.

Competing Interests

Authors have declared that no competing interegst.e

References

[1] Lester BP. The Art of Parallel Programming. Preastiall; 1993.

[2] Quinn MJ. Parallel Programming in C with MPI ande@MP. McGraw-Hill; 2004.

[3] Lorin H, Victor RB. A preliminary empirical studp compare MPI and Open MP. 2011;ISI-TR-676.

[4] CUDA NVIDIA Corporation; 2011 [Online].
Available;http://www.nvidia.com/object/cuda_homewnietml

[5] Khronos, Khronos Group, 2010, June. Open CL Intctidn and Overview; 2010. [PDF,Online].
Available;http://www.khronos.org/assets/uploadsédepers/library/overview/OpenCL-Overview-

Jun10.pdf

[6] Khronos Open CL Working Group. (2010, Sep.). OfénSpecification. Version: 1.1. Revision:
36. [PDF, Online].

[7] Stream Computing Performance Engineers (Online gsaxk 13 Nov. 2012)
Available: http://www.streamcomputing.eu/blog/2008-22/opencl-vs-cuda-misconceptions/

[8] Intel (2012) Intel Cilk Plus Open Source Retriestld December, 2012.
Available: fromhttp://www.cilkplus.org/

[9] Phoronix, (2012), Easy Parallel Programming: CillkispPorted to GCC Retrieved 5-12-2012
Available: http://www.phoronix.com/scan.php?pagesseitem&px=0Tc5NQ

[10] Luis M. E., Rajkumar B. Parallel Programming Modealsd Paradigms in R. Buyya (ed.), High
Performance Cluster Computing: Architectures anste3ys.1999;2. Prentice Hall PTR, NJ, USA,
1999; Chapter 1 Pg. 9.

© 2015 Gambo et al.; This is an Open Access artilif¢ributed under the terms of the Creative Commaétisbution License
(http://creativecommons.org/licenses/byj4 ®Which permits unrestricted use, distributiondareproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be aceg$ere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/11164

