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Abstract
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discussed. We also describe the multiplication operators on Lorentz-Karamata spaces which
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1 Introduction

Let F (X) be a vector space of all complex-valued functions on a σ-finite measure space (X,A, µ).
Let u : X → C be a measurable function on X such that u · f ∈ F (X) whenever f ∈ F (X). This
gives rise to a linear transformation Mu : F (X)→ F (X) defined as Mu(f) = u·f , where the product
of functions is pointwise. In case F (X) is a topological vector space and Mu is continuous, we call
it a multiplication operator induced by u. The study of multiplication operators is interesting as
well as demanding with its close association with various classes of operators particularly Toeplitz
operators, Hankel operators, slant Toeplitz operators, slant Hankel operators, composition operators
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and the fact that every normal operator is similar to multiplication operator [1,2,3,4]. With the
existence and introduction of various function spaces [5], it is always interesting to extend the
study of multiplication operator on them. Motivated by the approach and direction of research by
the mathematician in [6,7,8,9,10,11,12,13,14], an effort has been made in the paper to discuss the
behavior of this class of operators on Lorentz-Karamata spaces.

Let f be a complex-valued measurable function defined on a σ-finite measure space (X,A, µ). The
distribution function µf of f is given by

µf (s) = µ{x ∈ X : |f(x)| > s}

for s ≥ 0. By f∗ we mean the non-increasing rearrangement of f given as

f∗(t) = inf {s > 0 : µf (s) ≤ t}, t ≥ 0.

Let L(p, q), 1 < p ≤ ∞, 1 ≤ q ≤ ∞, is the set of all complex-valued measurable functions f on X
such that ‖f‖∗pq <∞, where

‖f‖∗pq =


{
q
p

∫∞
0

( t1/pf∗(t))q dt
t

}1/q

, 1 < p <∞, 1 ≤ q <∞,

sup
t>0

t1/pf∗(t), 1 < p ≤ ∞, q =∞.

Lp,q spaces are linear spaces and ‖ · ‖∗pq is a quasi-norm and is a norm for 1 ≤ q ≤ p <∞ or p =
q =∞.

For t > 0, let

f∗∗(t) =
1

t

∫ t

0

f∗(s)ds and f∗∗(0) = f∗(0).

For 1 < p ≤ ∞, 1 ≤ q ≤ ∞, and for measurable function f on X define ‖f‖pq as

‖f‖pq =

{{
q
p

∫∞
0

(
t1/pf∗∗(t)

)q dt
t

}1/q
, 1 < p <∞, 1 ≤ q <∞

supt>0 t
1/pf∗∗(t), 1 < p ≤ ∞, q =∞

Lorentz space denoted by L(p,q)(X,A, µ) (or shortly L(p,q)) is defined to be the vector space of
all (equivalence classes of) measurable functions f on X such that ‖f‖pq < ∞. Also ‖ · ‖pq is a
norm and L(p, q) is a Banach space with respect to this norm. The Lp- spaces for 1 < p ≤ ∞ are
equivalent to the spaces L(p,p). For more on Lorentz spaces one can refer to [15,16,17,18].

Definition 1.1. A positive and Lebesgue measurable function b is said to be slowly varying (s.v.)
on (0,∞) in the sense of Karamata if, for each ε > 0, tεb(t) is equivalent to a non-decreasing function
and t−εb(t) is equivalent to a non-increasing function on (0,∞).

The detailed study of Karamata theory, properties and examples of slowly varying functions
can be found in [19,20,21,22,23]. Given a s.v. function b on (0,∞), we denote by γb(t), the positive
function defined by

γb(t) = b(max{t, 1/t})
for all t > 0. It is known that any slowly varying function b on (0,∞) is equivalent to a slowly
varying continuous function b̃ on (0,∞). Consequently, without loss of generality, we assume that
all slowly varying functions are continuous functions in (0,∞) [22]. We shall need the following
property of s.v. functions, for which we refer to [21, Lemma 3.1].

Lemma 1.2. Let b be a slowly varying function on (0,∞).

1. : Let r ∈ R. Then br is a slowly varying function on (0,∞) and γrb (t) = γbr (t) for all t > 0.
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2. : Given positive numbers ε and k, γb(kt) ≈ γb(t) i.e., there are positive constants cε and Cε
such that

cε min{k−ε, kε}γb(t) ≤ γb(kt) ≤ Cε max{k−ε, kε}γb(t) (1.1)

for all t > 0.

3. : Let α > 0. Then

t∫
0

τα−1γb(τ)dτ ≈ tαγb(t) and

∞∫
t

τ−α−1γb(τ)dτ ≈ t−αγb(t) (1.2)

for all t > 0.

Let b be a slowly varying function on (0,∞). Let Lp,q;b, 1 < p ≤ ∞, 1 ≤ q ≤ ∞, be the set of
all complex-valued measurable functions f on X such that ‖f‖p,q;b <∞, where

‖f‖p,q;b =


{∫∞

0
( t1/pγb(t)f

∗(t))q dt
t

}1/q

, 1 < p <∞, 1 ≤ q <∞,

sup
t>0

t1/pγb(t)f
∗(t), 1 < p ≤ ∞, q =∞.

Lp,q;b spaces are linear spaces and ‖ · ‖p,q;b is a quasi-norm. The Lorentz-Karamata (LK) space
L(p,q;b), (X,A, µ) (or shortly L(p,q;b)) is defined to be the set of complex-valued measurable functions
f on X for which

‖f‖(p,q;b) =


{∫∞

0
( t1/pγb(t)f

∗∗(t))q dt
t

}1/q

, 1 < p <∞, 1 ≤ q ≤ ∞,

sup
t>0

t1/pγb(t)f
∗∗(t), 1 < p ≤ ∞, q =∞.

is finite.

The Lorentz, Lorentz-Zygmund and generalised Lorentz-Zygmund spaces are all special cases of
these spaces, obtained by making particular choices of the slowly varying function b. With this
tendency of LK spaces to coincide with various spaces, the study over these spaces becomes more
demanding. It is also known that the LK spaces endowed with a convenient norm (‖ · ‖∗(p,q;b)), are
rearrangment-invariant Banach function spaces with upper and lower Boyd indices both equal to
1
p

and have absolutely continuous norm when p ∈ (1,∞) and q ∈ [1,∞). Also, the dual (L(p,q;b))
∗

coincides with the associate space L(p′,q′;b−1), where 1 < p, q < ∞ and p′, q′ are the conjugate
exponent of p, q respectively. It is clear that, for 0 < p < ∞, the LK space L(p,q;b) contains the
characteristic function of every measurable subset of X with finite measure and hence, by linearity,
every µ-simple function. In this case, with a little thought, it is easy to see that the set of simple
functions is dense in the LK space as the LK spaces have absolutely continuous norm for p ∈ (1,∞)
and q ∈ [6,∞).

Multiplication operators have been studied on various function spaces in [7,11,13,14,24], and references
therein. Along the line of their arguments, we study the multiplication operators on the Lorentz-
Karamata spaces Lp,q;b, 1 < p ≤ ∞, 1 ≤ q ≤ ∞. In the last section, which is the main section of the
paper, we discuss some spaces isomorphic to the spaces Lp,q;b and then characterize the boundedness
of multiplication operators between them in terms of the inducing function. The symbol L∞(µ)
is used to denote the space of all essentially bounded complex-valued measurable functions on the
measure space X.

3



Datt et al.; BJMCS, 11(2), 1-10, 2015; Article no.BJMCS.19278

2 Multiplication Operators

In this section, we study some properties of the multiplication operators Mu in terms of the inducing
function u. In [16], the study is made with respect to the positive function generated by γb(t) =
1 + | log t|, which contains the results and ideas generated in [11]. However, we find that results can
be extended in more general setting. The results obtained in this section follow almost along the
lines of arguments applied for the same results in case of Lorentz spaces [7], Orlicz spaces [14] and
Orlicz-Lorentz spaces [8], Lorentz-Zygmunds spaces [16].

Theorem 2.1. The linear transformation Mu : f → u.f on the Lorentz-Karamata space L(p,q;b),
1 < p ≤ ∞, 1 ≤ q ≤ ∞ is bounded if and only if u is essentially bounded. Moreover, ‖Mu‖ = ‖u‖∞.

Proof. Suppose that u is essentially bounded. Now for each f ∈ L(p,q;b), 1 < p ≤ ∞, 1 ≤ q ≤ ∞, we
have (u.f)∗∗(t) ≤ ‖u‖∞f∗∗(t) for each t > 0. This provides ‖Muf‖(p,q;b) ≤ ‖u‖∞‖f‖(p,q;b) so that
Mu is bounded. Conversely, suppose that Mu is a bounded operator on Lp,q;b, 1 < p ≤ ∞, 1 ≤ q ≤
∞. If u is not essentially bounded, then for each natural number n, the set En = {x ∈ X : |u(x)| ≥
n} has positive measure.Thus

χ∗∗En
(t) =

1

t

∫ t

0

χ∗En
(s)ds

=

{
1, if 0 ≤ t < µ(En)
1
t
µ(En), if t ≥ µ(En).

Also, ‖χEn‖
q
(p,q;b) =

∫ µ(En)

0
t
q
p
−1

(γb(t))
qdt+ (µ(En))q

∫∞
µ(En)

t
−q(1− 1

p
)−1

(γb

(t))qdt ≈ (µ(En))
q
p (γb(µ(En)))q+(µ(En))q(µ(En))

−q(1− 1
p

)
(γb(µ(En)))q = 2(µ(En))

q
p (γb(µ(En)))q <

∞. Further, for t > 0, (uχEn)∗(t) ≥ nχ∗En
(t) and this gives that ‖MuχEn‖

q
(p,q;b) ≥ nq‖χEn‖

q
(p,q;b).

This contradicts the boundedness of Mu. Hence the result.

Moreover, along the lines of proof in the case of Lorentz space [7], one can show that ‖Mu‖ =
‖u‖∞.

In order to characterize the invertibility of Mu in terms of u, we need the following result, proof
of which follows along the lines of arguments applied in case of Lorentz-Zygmunds spaces in [6]
motivated by the arguments of Conway [25, Proposition 12.4, p. 57] .

Theorem 2.2. The set of all multiplication operators on the Lorentz-Karamata space L(p,q;b), 1 <
p <∞, 1 ≤ q <∞, is a maximal abelian subalgebra of B(L(p,q;b)), the Banach algebra of all bounded
linear operators on L(p,q;b).

As a consequence of Theorem 2.2, we have the following.

Corollary 2.3. The multiplication operator Mu on L(p,q;b), 1 < p < ∞, 1 ≤ q < ∞ is invertible if
and only if u is invertible in L∞(µ).

We find that there is a dearth of compact multiplication operators on Lorentz-Karamata space
once the measure is non-atomic. By adopting the technique used in [7], we can easily obtain the
following results.

Theorem 2.4. Multiplication operator Mu on Lorentz-Karamata space L(p,q;b), 1 < p ≤ ∞, 1 ≤
q ≤ ∞ is compact if and only if L(p,q;b)(u, ε), is finite dimensional for each ε > 0, where

(u, ε) = {x ∈ X : |u(x)| ≥ ε} and L(p,q;b)(u, ε) = {fχ(u,ε) : f ∈ L(p,q;b)}.
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Corollary 2.5. If for each ε > 0, the set (u, ε) contains only finitely many atoms then Mu is a
compact multiplication operator on the Lorentz-Karamata space L(p,q;b).

Corollary 2.6. If µ is a non-atomic measure, then the only compact multiplication operator on the
Lorentz-Karamata space L(p,q;b) is the zero operator.

Theorem 2.7. Multiplication operator Mu on Lorentz-Karamata space L(p,q;b), 1 < p ≤ ∞, 1 ≤ q ≤
∞ has closed range if and only if there exists a δ > 0 such that |u(x)| ≥ δ on S = {x ∈ X : u(x) 6= 0},
the support of u.

We use Theorem 2.7 to obtain the following.

Theorem 2.8. Suppose that µ is a non-atomic measure. If Mu is a multiplication operator on the
Lorentz-Karamata space L(p,q;b), 1 < p ≤ ∞, 1 ≤ q ≤ ∞ with R(Mu) closed and codim(R(Mu)) <∞
then |u(x)| ≥ δ a.e. on X for some δ > 0, where R(Mu) denotes the range of Mu and codim(R(Mu))
is the co-dimension of Mu.

Proof. Suppose that R(Mu) is closed and codim(R(Mu))< ∞. Then there exists δ > 0 such that
|u(x)| ≥ δ a.e. on the support S of u. Hence, it is enough to show that µ(Sc) = 0, where Sc is
the set defined as Sc = {x ∈ X : u(x) = 0}. First, we claim that Mu is onto. If possible Mu be not
onto and let f◦ ∈ L(p,q;b) \ R(Mu). Since, R(Mu) is closed, we can find a function g◦ ∈ L(ṕ,q́,b−1),

the conjugate space, where 1
p

+ 1
ṕ

= 1
q

+ 1
q́

= 1 such that
∫
f◦g◦dµ = 1 and

∫
(Muf)g◦dµ = 0 for

all f ∈ L(p,q;b). This gives that the set Eε = {x ∈ X : Re(f◦g◦)(x) ≥ ε} has positive measure for
some ε > 0. Choose a sequence {En}n of subsets ( which is feasible being µ non-atomic ) of Eε
with 0 < µ(En) <∞ and Em ∩ En = φ(m 6= n). Let gn = χEng◦. Since

Re

∫
f◦gndµ = Re

∫
En

f◦g◦dµ ≥ εµ(En) > 0,

hence each gn ∈ L(ṕ,q́,b−1) is nonzero. Furthermore, for each f ∈ L(p,q;b), χEnf ∈ L(p,q;b) and so

(M∗ugn)(f) = gn(Muf) =

∫
(Muf)gndµ =

∫
(MufχEn)g◦dµ = 0,

where M∗u is the conjugate operator of Mu. This implies gn ∈ N(M∗u), the null space of M∗u . Thus,
the sequence {gn}n forms a linearly independent subset of N(M∗u). This contradicts the fact that
dimN(M∗u) = codimR(Mu) <∞. Hence Mu is onto.

Now, it is easily seen that µ(Sc) = 0. For, if µ(Sc) > 0, then there exists a subset A of Sc with
0 < µ(A) <∞. Then χA ∈ L(p,q;b) \R(Mu), which contradicts the fact that Mu is onto. Therefore
µ(Sc) = 0, and so we have |u(x)| ≥ δ a.e. on X.

The following assertion can be easily drawn from here.

Corollary 2.9. Let Mu, u ∈ L∞(µ) be a multiplication operator on the Lorentz space L(p,q;b),
1 < p < ∞, 1 < q < ∞, where µ is a non-atomic measure. Then the following conditions are
equivalent:

1. Mu is an invertible operator.

2. Mu is a Fredholm operator.

3. R(Mu) is closed and codimR(Mu) <∞.

4. |u(x)| ≥ δ a.e. on X for some δ > 0.
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3 Multiplication Operators on Some Special Spaces

The goal of present section is to discuss multiplication operators between Lorentz-Karamata spaces.
Theorem 3.4 provides a necessary condition on the inducing function to induce a multiplication
operator between Lp,1;b and Ls,1;b for s ≥ p > 1. We discuss some spaces isomorphic to Lp,q;b for
some specific values of p and q and the techniques used here are not new and motivated by the work
of Stein and Weiss in [3] to extend the Marcinkiewicz interpolation theorem.

Consider Mp
r,b, 1 ≤ p ≤ r < ∞, the set of real-valued functions defined on X = [0, 2π] such that

‖f‖Mp
r,b

<∞, where

‖f‖Mp
r,b

= supx>0

{
r

px
1
p

∫ x

0

(
γb(t)f

∗(t)t
1
p
)r dt
t

} 1
r

We observe the following.

Lemma 3.1. ‖ · ‖Mp
r,b

is a quasi-norm on Mp
r,b.

Proof. It is obvious from the definition of non-increasing rearrangement and slowly varying function

that for each f , ‖f‖Mp
r,b
≥ 0. Moreover, ‖f‖Mp

r,b
= 0 implies that for all 0 < x ≤ 2π,

∫ x
0

(γb(t)f
∗(t)t

1
p )r dt

t
=

0. Being γb(t)t
1
p a positive function, we have f∗ = 0. As a consequence f = 0. Also, for each nonzero

real number k and f ∈Mp
r,b, (kf)∗ = |k|f∗. Thus the homogeneity condition ‖kf‖Mp

r,b
= |k|‖f‖Mp

r,b

follows trivially. Let f, g ∈ Mp
r,b. Applying the fact that (f + g)∗ ≤ f∗(t/2) + g∗(t/2), one can see

that for any x ∈ (0, 2π],∫ x

0

(
γb(t)(f + g)∗(t)t1/p

)r dt
t
≤ 2r−1

(∫ x

0

(
γb(t)f

∗(t/2)t1/p
)r dt
t

+

∫ x

0

(γb(t)g
∗(t/2)t1/p)r

dt

t

)
≤ 2r/p+r−1

(∫ x
2

0

(
γb(2t)f

∗(t)t1/p
)r dt
t

+

∫ x
2

0

(
γb(2t)g

∗(t)t1/p
)r dt
t

)
≈ 2r/p+r−1

(∫ x

0

(
γb(t)f

∗(t)t1/p
)r dt
t

+

∫ x

0

(
γb(t)g

∗(t)t1/p
)r dt
t

)
.

Now the fact (a+ b)1/r ≤ a1/r + b1/r for a, b > 0 yields that

‖f + g‖Mp
r,b
≤ 2

r
p

+r−1
(‖f‖Mp

r,b
+ ‖g‖Mp

r,b
)

with 2
r
p

+r−1
> 1. This completes the result.

It is interesting to observe the following.

Theorem 3.2. Mp
r,b
∼= Lpr′,∞;b, where r, r′ ≥ 1, 1

r
+ 1

r′ = 1

Proof. Suppose g ∈Mp
r,b so that C = ‖g‖Mp

r,b
<∞. Now for each x > 0.

C ≥
( r

px
1
p

∫ x

0

(
γb(t)g

∗(t)t1/p)r
dt

t

) 1
r

≥
(

r

px
1
p

(g∗(x))r
∫ x

0

(γb(t)t
1/p)r

dt

t

) 1
r

'
(
r

p
(g∗(x))r(γb(x))rx

r
p
− 1

p

) 1
r

= (
r

p
)
1
r g∗(x)γb(x)x

1
pr′ .
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Thus ( r
p
)
1
r g∗(x)γb(x)x

1
pr′ ≤ C for all x > 0. This provides that ‖g‖pr′,∞;b ≤ C( p

r
)
1
r so that

g ∈ Lpr′,∞;b.

Conversely, if g ∈ L(pr′,∞;b) then the constant C∗ = ‖g‖pr′,∞;b(
p
r
)
1
r > 0 satisfies g∗(t)γb(t)t

1/pr′ ≤
C∗ for all t > 0. Thus t1/pg∗(t)γb(t) ≤ C∗t

1
p
− 1

pr′ = C∗t1/rp. This means that (g∗(t)γb(t)t
1/p)r ≤

C∗rt1/p for all t > 0. Now, for all x > 0(
r

px
1
p

∫ x

0

(γb(t)g
∗(t)t

1
p )r

dt

t

) 1
r

≤

{
r

px
1
p

∫ x

0

(C∗rt
1
p )r

dt

t

} 1
r

= C∗r
1
r .

As a consequence of this ‖g‖Mp
r,b

< C∗r
1
r <∞ and g ∈Mp

r,b. Hence the result.

It is apparent to conclude the following from Theorem 3.2.

Corollary 3.3. Mp
∞,b
∼= Lp,∞;b and Mp

1,b
∼= L∞;b(= L∞,∞;b).

With all this preparation, we come to the main task of the section. For a measurable real-valued
function u defined on [0, 2π], (uχ[0,x])

∗(t) ≤ u∗(t) for each t > 0 and (uχ[0,x])
∗(t) = 0 for each t > x,

where x ∈ [0, 2π]. This implies that∫ 2π

0

γb(t)(Muχ[0,x])
∗(t)t

1
s
−1dt =

∫ x

0

γb(t)(Muχ[0,x])
∗(t)t

1
s
−1dt

≤
∫ x

0

γb(t)u
∗(t)t

1
s
−1dt.

We say that a measurable real-valued function u defined on [0, 2π] is having the property (P) if for
each non-negative function h defined on [0, 2π],∫ x

0

h(t)(uχ[0,x])
∗(t)dt =

∫ x

0

h(t)u∗(t)dt,

where x ∈ [0, 2π]. It is apparent to see that in case u satisfies (uχ[0,x])
∗(t) ≥ u∗(t) for each t < x

then it has the property (P). There are functions satisfying this property, in particular, every non-
increasing function u satisfies (uχ[0,x])

∗(t) ≥ u∗(t) for each t < x and hence has the property (P).
Now, we have the following.

Theorem 3.4. Let s ≥ p > 1 and u be a non-increasing real-valued function u having the property
(P). Then a necessary condition for the multiplication operator Mu : Lp,1;b → Ls,1;b to be bounded
is that u ∈ L∞,b.

Proof. It is convenient to use Mp
1,b in place of L∞,b. Assume that ‖Muf‖s,1;b ≤ C‖f‖p,1;b for each

f ∈ Lp,1;b and some C > 0. Let x ∈ (0, 2π] and f = χ[0,x]. Now for each t > 0,∫ x

0

γb(t)u
∗(t)t

1
s
−1dt =

∫ x

0

γb(t)(Muχ[0,x])
∗(t)t

1
s
−1dt

≤ ‖Muf‖s,1;b ≤ C‖f‖p,1;b

≤ C

∫ x

0

γb(t)χ
∗
[0,x](t)t

1
p
−1
dt

≈ C(x)
1
p γb(x) ≈ C(2π)

1
p γb(2π).

This yields that∫ x

0

γb(t)u
∗(t)t

1
p
−1
t
p−s
ps dt =

∫ x

0

γb(t)u
∗(t)t

1
s
−1dt ≤ C(x)

1
p γb(x).

7



Datt et al.; BJMCS, 11(2), 1-10, 2015; Article no.BJMCS.19278

Since t → t
p−s
ps is decreasing on [0, x], 0 < x ≤ 2π, so we have x

p−s
ps
∫ x

0
γb(t)u

∗(t)t
1
p
−1
dt ≤∫ x

0
γb(t)u

∗(t)t
1
p
−1
t
p−s
ps dt. This along with the definition of γb and the facts that for each ε > 0, tεb(t)

is equivalent to a non-decreasing function and t−εb(t) is equivalent to a non-increasing function on
(0,∞), provides that

1

px
1
p

∫ x

0

γb(t)u
∗(t)t

1
p
−1
dt ≤ C

p
x

s−p
ps γb(x)

≤

{
C
p

(1/x)−εb(1/x), x < 1,
C
p
xεb(x), x ≥ 1

≤ C

p
K,

where ε = s−p
ps

andK is a constant given byK = max{γb(1), (2π)εγb(2π)}. This on taking supremum

over all x > 0 yields that u ∈Mp
1,b.

It is interesting to see that if s ≥ p > 1 then for each non-increasing real-valued function u,
‖Muχ[0,x]‖Ms

1,b
≤ ‖χ[0,x]‖Ms

1,b
, where 0 < x ≤ 2π. This, we can see as if w > 0 then

1

sw1/s

∫ w

0

γb(t)(uχ[0,x])
∗(t)t

1
s
−1dt ≤ 1

pw
1
s

∫ w

0

γb(t)(uχ[0,x])
∗(t)t

1
s
−1dt.

Now in case w < x, then

1

pw
1
s

∫ w

0

γb(t)(uχ[0,x])
∗(t)t

1
s
−1dt ≤ 1

pw
1
s

∫ w

0

γb(t)χ
∗
[0,x](t)t

1
s
−1dt

=
1

pw
1
s

∫ w

0

γb(t)t
1
s
−1dt =

1

p
γb(w)

=
1

pw
1
p

∫ w

0

γb(t)χ
∗
[0,x](t)t

1
p
−1
dt

≤ ‖χ[0,x]‖Ms
1,b
.

Also, we find that in case w ≥ x, we have

1

pw
1
s

∫ w

0

γb(t)(uχ[0,x])
∗(t)t

1
s
−1dt =

1

pw
1
s

∫ x

0

γb(t)(uχ[0,x])
∗(t)t

1
s
−1dt

≤ 1

pw
1
s

∫ x

0

γb(t)χ
∗
[0,x](t)t

1
s
−1dt

= (
x

w
)
1
s

1

p
γb(x) ≤ 1

p
γb(x)

=
1

px1/p

∫ x

0

γb(t)χ
∗
[0,x](t)t

1
p
−1
dt

≤ ‖χ[0,x]‖Ms
1,b
.

As a consequence, we have supw>0{ 1

sw1/s

∫ w
0
γb(t)(uχ[0,x])

∗(t)t
1
s
−1dt} ≤ ‖χ[0,x]‖Ms

1,b
, equivalently,

‖Muχ[0,x]‖Ms
1,b
≤ ‖χ[0,x]‖Ms

1,b
.
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4 Conclusion

Multiplication operators are discussed on more general Banach function spaces, the Loretnz-Karamata
spaces, which has Lorentz, Lorentz-Zygmund and Generalized Lorentz-Zygmund spaces as its
particular cases. Along with the routine behaviour of multiplication operators on Lorentz-Karamata
spaces, we obtained some spaces isomorphic to these spaces that helped us to characterize the
boundedness of multiplication operators between Lorentz-Karamata spaces.
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