

17(4): 1-6, 2016, Article no.BJMCS.26697 *ISSN: 2231-0851*

SCIENCEDOMAIN *international*

www.sciencedomain.org

Cofinitely G-supplemented Modules

Berna Koşar^ı*

¹ Department of Mathematics, Ondokuz Mayis University, Kurupelit, Atakum, Samsun, Turkey.

Author's contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/26697 *Editor(s):* (1) Dijana Mosic, Department of Mathematics, University of Nis, Serbia. *Reviewers:* (1) Ergul Turkmen, Amasya University, Turkey. (2) Burcu Nisanci Turkmen, Faculty of Sciences and Arts, Amasya University, Turkey. (3) Olivier Heubo-Kwegna, Saginaw Valley State University, USA. Complete Peer review History: http://sciencedomain.org/review-history/15232

Original Research Article Published: 30th June 2016

[Received: 29](http://sciencedomain.org/review-history/15232)th April 2016 Accepted: 14th June 2016

Abstract

In this work, cofinitely g-supplemented modules are defined and investigated some properties of these modules. It is shown that an arbitrary sum of cofinitely g-supplemented modules is cofinitely g-supplemented. In addition, amply cofinitely g-supplemented modules are also defined and given some equivalences.

Keywords: G-small submodules; supplemented modules; g-supplemented modules; amply g-supplemented modules.

2010 Mathematics Subject Classification: 16D60, 16D80.

1 Introduction

Throughout this paper all rings have an identity and all modules are unital left modules.

Let *R* be a ring and *M* be an *R*-module. We denote a submodule *N* of *M* by $N \leq M$. If M/N is finitely generated for $N \leq M$, then *N* is called a *cofinite submodule* of *M*. (See [1], [2], [3]) Let *M* be an *R*-module and $T \leq M$. If $K = 0$ for every $K \leq M$ with $T \cap K = 0$,

^{}Corresponding author: E-mail: bernak@omu.edu.tr;*

then *T* is called an *essential submodule* of *M* and it is denoted by $T \leq M$. Let $L \leq M$. If for every $T \leq M$ with $M = L + T$ implies that $T = M$, then L is called a *small submodule of M* and denoted by $L \ll M$. *K* is called a *generalized small* (briefly, *g-small*) *submodule* of *M* if for every $T \leq M$ with $M = K + T$ implies that $T = M$, this is written by $K \ll_q M$ (in [4], it is called an *e-small submodule* of *M* and denoted by $K \ll_e M$). If *T* is both essential and maximal submodule of *M*, then *T* is called a *generalized maximal submodule* of *M*. The intersection of all generalized maximal submodules of *M* is called the *generalized radical* of *M* and it is denoted by $Rad_{q}M$ (in [4], it is denoted by $Rad_{e}M$). If M have no generalized maximal submodules, then the generalized radical of *M* is defined by $Rad_gM = M$. Let *U* and *V* be sub[mo](#page-4-0)dules of M. If $M = U + V$ and V is minimal with respect to this property, or equivalently, $M = U + V$ and $U \cap V \ll V$, then *V* is called a *supplement* of *U* in *M*. If $M = U + V$ and $M = U + T$ with $T \subseteq V$ implies that $T = V$, or equivalently, $M = U + V$ and $U \cap V \ll_g V$, then V is called a *g-supplement* of *U* in *M*. If ev[ery](#page-4-0) submodule of *M* has a supplement in *M*, then *M* is called a *supplemented module*. (See [5], [6], [7], [8]) *M* is called a *g-supplemented module*, if every submodule of *M* has a g-supplement in *M*. (See [9], [10], [11], [12]) Let $U \leq M$. If for every $V \leq M$ such that $M = U + V$, *U* has a g-supplement V' with $V' \leq V$, we say *U* has *ample g-supplements* in *M*. If every submodule of *M* has ample g-supplements in *M*, then *M* is called an *amply g-supplemented module*.

There are some important properties of g-small submodules in [4] *,* [9] *,* [10] and [11].

Lemma 1.1. Let M be an R-module and K, $N \leq M$. The following conditions are hold. (See [4], [11])

- (1) *If* $K \leq N$ *and* $N \ll_q M$ *, then* $K \ll_q M$ *.*
- (2) If $K \ll_q N$, then K is an g-small submod[ul](#page-4-0)e in submodules [o](#page-4-0)f [M](#page-4-0) which [con](#page-4-0)tain N.
- (3) *If* $f : M \to N$ *be an R-module homomorphism and* $K \ll_g M$ *, then* $f(K) \ll_g N$ *.*
- (4) If $K \ll_g L$ and $N \ll_g T$ for $L, T \leq M$, then $K + N \ll_g L + T$.

Lemma 1.2. *Let M be an R*-module. Then $Rad_{g}M = \sum_{L \ll_{g}M} L$. (See [9])

Lemma 1.3. Let M be an R-module, $X \leq U \leq M$ and V be a g-supplement of U. Then $(V + X) / X$ *is a g-supplement of* U/X *in* M/X *.* (*See* [9])

2 Cofinitely G-supplemented Modules

Definition 2.1. Let *M* be an *R*-module. If every cofin[ite](#page-4-0) submodule of *M* has a g-supplement in *M*, then *M* is called a cofinitely g-supplemented module.

Clearly we see that every g-supplemented module is cofinitely g-supplemented, but the converse is not true in general.

Lemma 2.1. *Assume M be a finitely generated R-module. If M is cofinitely g-supplemented, then M is g-supplemented.*

Proof. Clear, since every submodule of *M* is cofinite.

Lemma 2.2. *Let M be a cofinitely g-supplemented module. Then every factor module of M is cofinitely g-supplemented.*

Proof. Let *M/X* be any factor module of *M* and *U/X* be a cofinite submodule of *M/X*. Since *M* $\frac{M}{U}$ \cong $\frac{M/X}{U/X}$, *U* is a cofinite submodule of *M*. Since *M* is cofinitely g-supplemented, *U* has a gsupplement *V* in *M*. Then by Lemma 1.3, $(V + X)/X$ is a g-supplement of U/X in M/X . Hence M/X is cofinitely g-supplemented. \Box

 \Box

Corollary 2.3. *Any homomorphic image of a cofinitely g-supplemented module is cofinitely gsupplemented.*

Proof. Clear from Lemma 2.2.

Proposition 2.1. *Let M be a cofinitely g-supplemented module. Then every cofinite submodule of M/RadgM is a direct summand.*

Proof. Let *U/RadgM* be a cofinite submodule of *M/RadgM*. Then *U* is a cofinite submodule of *M*. Since *M* is cofinitely g-supplemented, *U* has a g-supplement *V* in *M*. Hence $M = U + V$ and $U \cap V \ll_g V$. Then $\frac{M}{Rad_gM} = \frac{U}{Rad_gM} + \frac{V+Rad_gM}{Rad_gM}$. Since $U \cap V \ll_g V$, by Lemma 1.1 and Lemma 1.2, $U \cap V \leq Rad_{g}M$. Hence $\frac{U}{Rad_{g}M} \cap \frac{V+Rad_{g}M}{Rad_{g}M} = \frac{U \cap V+Rad_{g}M}{Rad_{g}M} = 0$ and $U/Rad_{g}M$ is a direct summand of *M/RadgM*.

Lemma 2.4. Let [M](#page-1-0) be an R-module, $M_1 \leq M$, U be a cofinite submodule of M and M_1 be a *[cofi](#page-1-1)nitely g-supplemented module. If* $M_1 + U$ *has a g-supplement in* M *, then so does* U *.*

Proof. Let *X* be a g-supplement of $M_1 + U$ in M . Then $M_1 + U + X = M$ and $(M_1 + U) \cap X \ll g$ X. Since U is a cofinite submodule of M, $U + X$ is also a cofinite submodule of M. Then by $\frac{M_1}{M_1 \cap (U+X)} \cong \frac{M_1 + U + X}{U+X} = \frac{M}{U+X}$, $M_1 \cap (U+X)$ is a cofinite submodule of M_1 . Since M_1 is cofinitely g-supplemented, $M_1 \cap (U + X)$ has a g-supplement *Y* in M_1 , i.e. $M_1 \cap (U + X) + Y = M_1$ and $M_1 \cap (U + X) \cap Y \ll_q Y$. Following this, we have $M = M_1 + U + X = M_1 \cap (U + X) + Y + U + X = U +$ $X+Y$ and $U \cap (X+Y) \leq X \cap (U+Y)+Y \cap (U+X) \leq X \cap (M_1+U)+Y \cap M_1 \cap (U+X) \ll_q X+Y$. Hence $X + Y$ is a g-supplement of U in M.

Corollary 2.5. Let M be an R-module, U be a cofinite submodule of M and $M_i \leq M$ for $i =$ 1, 2, ..., n. If $U + M_1 + M_2 + ... + M_n$ has a g-supplement in M and M_i is a cofinitely g-supplemented *module for every* $i = 1, 2, ..., n$ *, then U has a g-supplement in M.*

Proof. Clear from Lemma 2.4.

Lemma 2.6. *Any sum of cofinitely g-supplemented modules is cofinitely g-supplemented.*

Proof. Let ${M_i}_{i \in I}$ be fa[mily](#page-2-0) of cofinitely g-supplemented submodules of an *R*-module *M* and $M = \sum_{i \in I} M_i$. Let *U* be any cofinite submodule of *M*. Since *U* is cofinite submodule of *M*, there exists a finite subset $\{i_1, i_2, ..., i_n\}$ of *I* such that $M = U + M_{i_1} + M_{i_2} + ... + M_{i_n}$. Since $U + M_{i_1} + M_{i_2} + \ldots + M_{i_n}$ has a g-supplement 0 in *M* and M_{i_k} is cofinitely g-supplemented for $k = 1, 2, \ldots, n$, then by Corollary 2.5, *U* has a g-supplement in *M*. П

Example 2.7. *Consider the* Z-module ${}_{\mathbb{Z}}\mathbb{Q}$ *. Since* $Rad_{\mathbb{Z}}\mathbb{Q} = {}_{\mathbb{Z}}\mathbb{Q}$ *,* ${}_{\mathbb{Z}}\mathbb{Q}$ *have no proper cofinite submodules. Hence* $\mathbb{Z} \mathbb{Q}$ *is a cofinitely g-supplemented. But it is well known that* $\mathbb{Z} \mathbb{Q}$ *is not g-supplemented.*

3 Amply Cofinitely G-supplemented Modules

Definition 3.1. Let *M* be an *R*-module. If every cofinite submodule of *M* has ample g-supplements in *M*, then *M* is called an amply cofinitely g-supplemented module.

Lemma 3.1. *Let M be an R-module. If every submodule of M is cofinitely g-supplemented, then M is amply cofinitely g-supplemented.*

 \Box

 \Box

Proof. Let $M = U + V$ with $V \leq M$ and U is a cofinite submodule of M. Since $\frac{V}{U \cap V} \cong \frac{U + V}{U} = \frac{M}{U}$ *U* ∩ *V* is a cofinite submodule of *V*. Since *V* is cofinitely g-supplemented, *U* ∩ *V* has a supplement *T* in V. Because of this $V = U \cap V + T$ and $U \cap V \cap T \ll_q T$. Thus $M = U + V = U + U \cap V + T = U + T$ and $U \cap T = U \cap V \cap T \ll_g T$. Hence *U* has ample g-supplements in *M* and *M* is amply cofinitely g-supplemented. \Box

Corollary 3.2. *Every R-module is cofinitely g-supplemented if and only if every R-module is amply cofinitely g-supplemented.*

Proof. Clear from Lemma 3.1.

 \Box

Lemma 3.3. *If M is a π-projective and cofinitely g-supplemented module, then M is an amply cofinitely g-supplemented module.*

Proof: Let $M = U + V$ $M = U + V$ $M = U + V$, *U* be a cofinite submodule of *M* and *X* be a g-supplement of *U*. Since *M* is π -projective and $M = U + V$, there exists an *R*-module homomorphism $f : M \to M$ such that $Im f ⊂ V$ and $Im (1 - f) ⊂ U$. So, we have $M = f (M) + (1 - f) (M) = f (U) + f (X) + U =$ $U + f(X)$. Suppose that $a \in U \cap f(X)$. Since $a \in f(X)$, then there exists $x \in X$ such that $a = f(x)$. Since $a = f(x) = f(x) - x + x = x - (1 - f)(x)$ and $(1 - f)(x) \in U$ we have $x = a + (1 - f)(x)$ and $x \in U$. Thus $x \in U \cap X$ and so $f(x) \in f(U \cap X)$. Therefore we have $U \cap f(X) \leq f(U \cap X) \lt \lt_g f(X)$. This means that $f(X)$ is a g-supplement of *U* in *M* with $f(X) \subset V$. Therefore *M* is amply g-supplemented.

Corollary 3.4. *If M is a projective and cofinitely g-supplemented module, then M is an amply cofinitely g-supplemented module.*

Proof. Clear from Lemma 3.3.

 \Box

 \Box

Lemma 3.5. *Let M be an amply cofinitely g-supplemented module. Then every factor module of M is amply cofinitely g-supplemented.*

Proof. Let *M/T* be any fa[ctor](#page-3-0) module of *M* and let *U/T* be a cofinite submodule of *M/T*. Assume $\frac{M}{T} = \frac{U}{T} + \frac{V}{T}$ with $T, V \leq M$. Since U/T is a cofinite submodule of M/T , *U* is a cofinite submodule of *M*. Since $\frac{M}{T} = \frac{U}{T} + \frac{V}{T}$, $M = U + V$. Since *M* is amply cofinitely g-supplemented, *U* has a g-supplement \overline{K} in \overline{M} with $K \leq V$. Then by Lemma 1.3, $(K+T)/T$ is a g-supplement of U/T in *M/T* with $(K+T)/T \leq V/T$. Hence *M/T* is amply cofinitely g-supplemented. \Box

Corollary 3.6. *Let M be an amply cofinitely g-supplemented module. Then every homomorphic image of M is amply cofinitely g-supplemented.*

Proof. Clear from Lemma 3.5.

Proposition 3.1. *Let R be a ring. The following statements are equivalent.*

- (*a*) *^RR is g-supplemented.*
- (*b*) *^RR is amply g-sup[plem](#page-3-1)ented.*
- (*c*) *^RR is cofinitely g-supplemented.*
- (*d*) *^RR is amply cofinitely g-supplemented.*
- (*e*) *Every finitely generated R-module is g-supplemented.*
- (*f*) *Every finitely generated R-module is cofinitely g-supplemented.*
- (*g*) $R^{(I)}$ is cofinitely g-supplemented for every index set I.
- (*h*) $R^{(I)}$ is amply cofinitely g-supplemented for every index set I .
- (*i*) *Every R-module is cofinitely g-supplemented.*
- (*k*) *Every R-module is amply cofinitely g-supplemented.*

Proof. (*a*) \Longleftrightarrow (*b*) Clear from [9] Corollary 8, since *RR* is projective.

 $(a) \Leftrightarrow (c)$ Clear from Lemma 2.1.

 $(c) \Leftrightarrow (d)$ Clear from Corollary 3.4, since $_R R$ is projective.

(*a*) \implies (*e*) Assume *M* be a finitely generated *R*-module and let $M = \langle m_1, m_2, ..., m_n \rangle$. Then $M = Rm_1 + Rm_2 + \ldots + Rm_n$. Since $_R R$ is g-supplemented and Rm_i $(i = 1, 2, \ldots, n)$ is an homomorphic image of $_R R$, [by](#page-4-0) [9] [C](#page-1-2)orollary 4, Rm_i is g-supplemented. Then by [9] Corollary 3, *M* is g-supplemented.

 $(e) \Longleftrightarrow (f)$ Obtained from Lem[ma](#page-3-2) 2.1.

 $(f) \Longrightarrow (g)$ By hypothesis, *RR* is cofinitely g-supplemented. Because of this, by Lemma 2.6, $R^{(I)}$ is cofinitely g-supplemented for every index set *I*.

 (g) \Longleftrightarrow \Longleftrightarrow \Longleftrightarrow (*h*) Clear from Corollary 3.4, since $R^{(I)}$ is projec[t](#page-4-0)ive for every index set *I*.

 $(q) \Longrightarrow (i)$ Clear from Corollary 2.[3, si](#page-1-2)nce every *R*-module is *RR*-generated.

 $(i) \Leftrightarrow (k)$ Obtained from Corollary 3.2.

 $(i) \Longrightarrow (c)$ Clear.

 \Box

4 Conclusion

In this paper, first time, the notion of cofinitely g-supplemented module is introduced. With this notion we had obtained equalities that was shown in Proposition 3.1.

Competing Interests

Author has declared that no competing interests exist.

References

- [1] Alizade R, Büyükaşık E. Cofinitely weak supplemented modules. Communications in Algebra. 2003;31(11):5377-5390.
- [2] Alizade R, Bilhan G, Smith PF. Modules whose maximal submodules have supplements. Communications in Algebra. 2001;29(6):2389-2405.
- [3] Nebiyev C, Pancar A. Cofinitely injective and projective Modules. Hacettepe Journal of Mathematics and Statistics. 2010;39(2):171-182.
- [4] Zhou DX, Zhang XR. Small-essential submodules and morita duality. Southeast Asian Bulletin of Mathematics. 2011;35:1051-1062.
- [5] Clark J, Lomp C, Vanaja N, Wisbauer R. Lifting modules. Supplements and projectivity in Module Theory. Frontiers in Mathematics, Birkhauser, Basel; 2006.
- [6] Nebiyev C, Pancar A. On strongly *⊕*-supplemented Modules. Ukrainian Mathematical Journal. 2011;63(5):662-667.
- [7] Nebiyev C, Pancar A. On supplement submodules. Ukrainian Mathematical Journal. 2013;65(7):961-966.
- [8] Wisbauer R. Foundations of module and Ring Theory. Gordon and Breach, Philadelphia; 1991.
- [9] Koşar B, Nebiyev C, Sökmez N. G-supplemented modules. Ukrainian Mathematical Journal. 2015;67(6):861-864.
- [10] Quynh TC, Tin PH. Some properties of e-supplemented and e-lifting modules. Vietnam Journal of Mathematics. 2013;41:303-312.
- [11] Sökmez N, Koşar B, Nebiyev C. Genelleştirilmiş Küçük Alt Modüller. XXIII. Ulusal Matematik Sempozyumu, Erciyes Üniversitesi, Kayseri; 2010.
- [12] Celil Nebiyev, Hasan Hüseyin Ökten. Weakly G-supplemented modules. European Journal of Pure and Applied Mathematics. (Accepted).

 $\mathcal{L}=\{1,2,3,4\}$, we can consider the constant of $\mathcal{L}=\{1,2,3,4\}$ *⃝*c *2016 Koşar; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review history for this [paper can be accessed here \(Please copy paste](http://creativecommons.org/licenses/by/4.0) the total link in your browser address bar) http://sciencedomain.org/review-history/15232