

British Journal of Mathematics & Computer Science 17(4): 1-6, 2016, Article no.BJMCS.26697

ISSN: 2231-0851

SCIENCEDOMAIN international

www.sciencedomain.org

Cofinitely G-supplemented Modules

Berna Koşar 1^*

¹ Department of Mathematics, Ondokuz Mayis University, Kurupelit, Atakum, Samsun, Turkey.

Author's contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/26697 <u>Editor(s):</u> (1) Dijana Mosic, Department of Mathematics, University of Nis, Serbia. <u>Reviewers:</u> (1) Ergul Turkmen, Amasya University, Turkey. (2) Burcu Nisanci Turkmen, Faculty of Sciences and Arts, Amasya University, Turkey. (3) Olivier Heubo-Kwegna, Saginaw Valley State University, USA. Complete Peer review History: http://sciencedomain.org/review-history/15232

> Received: 29th April 2016 Accepted: 14th June 2016 Published: 30th June 2016

Original Research Article

Abstract

In this work, cofinitely g-supplemented modules are defined and investigated some properties of these modules. It is shown that an arbitrary sum of cofinitely g-supplemented modules is cofinitely g-supplemented. In addition, amply cofinitely g-supplemented modules are also defined and given some equivalences.

 $\label{eq:Keywords: G-small submodules; supplemented modules; g-supplemented modules; amply g-supplemented modules.$

2010 Mathematics Subject Classification: 16D60, 16D80.

1 Introduction

Throughout this paper all rings have an identity and all modules are unital left modules.

Let R be a ring and M be an R-module. We denote a submodule N of M by $N \leq M$. If M/N is finitely generated for $N \leq M$, then N is called a *cofinite submodule* of M. (See [1], [2], [3]) Let M be an R-module and $T \leq M$. If K = 0 for every $K \leq M$ with $T \cap K = 0$,

^{*}Corresponding author: E-mail: bernak@omu.edu.tr;

then T is called an essential submodule of M and it is denoted by $T \trianglelefteq M$. Let $L \le M$. If for every $T \leq M$ with M = L + T implies that T = M, then L is called a small submodule of M and denoted by $L \ll M$. K is called a generalized small (briefly, g-small) submodule of M if for every $T \leq M$ with M = K + T implies that T = M, this is written by $K \ll_g M$ (in [4], it is called an *e-small submodule* of M and denoted by $K \ll_e M$). If T is both essential and maximal submodule of M, then T is called a generalized maximal submodule of M. The intersection of all generalized maximal submodules of M is called the generalized radical of Mand it is denoted by $Rad_q M$ (in [4], it is denoted by $Rad_e M$). If M have no generalized maximal submodules, then the generalized radical of M is defined by $Rad_{g}M = M$. Let U and V be submodules of M. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a supplement of U in M. If M = U + V and M = U + Twith $T \trianglelefteq V$ implies that T = V, or equivalently, M = U + V and $U \cap V \ll_g V$, then V is called a g-supplement of U in M. If every submodule of M has a supplement in M, then M is called a supplemented module. (See [5], [6], [7], [8]) M is called a g-supplemented module, if every submodule of M has a g-supplement in M. (See [9], [10], [11], [12]) Let $U \leq M$. If for every $V \leq M$ such that M = U + V, U has a g-supplement V with $V' \leq V$, we say U has ample g-supplements in M. If every submodule of M has ample g-supplements in M, then M is called an *amply g-supplemented* module.

There are some important properties of g-small submodules in [4], [9], [10] and [11].

Lemma 1.1. Let M be an R-module and K, $N \leq M$. The following conditions are hold. (See [4], [11])

(1) If $K \leq N$ and $N \ll_g M$, then $K \ll_g M$.

(2) If $K \ll_g N$, then K is an g-small submodule in submodules of M which contain N.

(3) If $f: M \to N$ be an R-module homomorphism and $K \ll_g M$, then $f(K) \ll_g N$.

(4) If $K \ll_g L$ and $N \ll_g T$ for $L, T \leq M$, then $K + N \ll_g L + T$.

Lemma 1.2. Let M be an R-module. Then $Rad_g M = \sum_{L \ll_g M} L$. (See [9])

Lemma 1.3. Let M be an R-module, $X \leq U \leq M$ and V be a g-supplement of U. Then (V + X)/X is a g-supplement of U/X in M/X. (See [9])

2 Cofinitely G-supplemented Modules

Definition 2.1. Let M be an R-module. If every cofinite submodule of M has a g-supplement in M, then M is called a cofinitely g-supplemented module.

Clearly we see that every g-supplemented module is cofinitely g-supplemented, but the converse is not true in general.

Lemma 2.1. Assume M be a finitely generated R-module. If M is cofinitely g-supplemented, then M is g-supplemented.

Proof. Clear, since every submodule of M is cofinite.

Lemma 2.2. Let M be a cofinitely g-supplemented module. Then every factor module of M is cofinitely g-supplemented.

Proof. Let M/X be any factor module of M and U/X be a cofinite submodule of M/X. Since $\frac{M}{U} \cong \frac{M/X}{U/X}$, U is a cofinite submodule of M. Since M is cofinitely g-supplemented, U has a g-supplement V in M. Then by Lemma 1.3, (V + X)/X is a g-supplement of U/X in M/X. Hence M/X is cofinitely g-supplemented.

Corollary 2.3. Any homomorphic image of a cofinitely g-supplemented module is cofinitely g-supplemented.

Proof. Clear from Lemma 2.2.

Proposition 2.1. Let M be a cofinitely g-supplemented module. Then every cofinite submodule of M/Rad_gM is a direct summand.

Proof. Let U/Rad_gM be a cofinite submodule of M/Rad_gM . Then U is a cofinite submodule of M. Since M is cofinitely g-supplemented, U has a g-supplement V in M. Hence M = U + V and $U \cap V \ll_g V$. Then $\frac{M}{Rad_gM} = \frac{U}{Rad_gM} + \frac{V+Rad_gM}{Rad_gM}$. Since $U \cap V \ll_g V$, by Lemma 1.1 and Lemma 1.2, $U \cap V \leq Rad_gM$. Hence $\frac{U}{Rad_gM} \cap \frac{V+Rad_gM}{Rad_gM} = \frac{U \cap V+Rad_gM}{Rad_gM} = 0$ and U/Rad_gM is a direct summand of M/Rad_gM .

Lemma 2.4. Let M be an R-module, $M_1 \leq M$, U be a cofinite submodule of M and M_1 be a cofinitely g-supplemented module. If $M_1 + U$ has a g-supplement in M, then so does U.

Proof. Let X be a g-supplement of $M_1 + U$ in M. Then $M_1 + U + X = M$ and $(M_1 + U) \cap X \ll_g X$. Since U is a cofinite submodule of M, U + X is also a cofinite submodule of M. Then by $\frac{M_1}{M_1 \cap (U+X)} \cong \frac{M_1 + U + X}{U+X} = \frac{M}{U+X}$, $M_1 \cap (U+X)$ is a cofinite submodule of M_1 . Since M_1 is cofinitely g-supplemented, $M_1 \cap (U+X)$ has a g-supplement Y in M_1 , i.e. $M_1 \cap (U+X) + Y = M_1$ and $M_1 \cap (U+X) \cap Y \ll_g Y$. Following this, we have $M = M_1 + U + X = M_1 \cap (U+X) + Y + U + X = U + X + Y$ and $U \cap (X+Y) \leq X \cap (U+Y) + Y \cap (U+X) \leq X \cap (M_1+U) + Y \cap M_1 \cap (U+X) \ll_g X + Y$. Hence X + Y is a g-supplement of U in M. □

Corollary 2.5. Let M be an R-module, U be a cofinite submodule of M and $M_i \leq M$ for i = 1, 2, ..., n. If $U + M_1 + M_2 + ... + M_n$ has a g-supplement in M and M_i is a cofinitely g-supplemented module for every i = 1, 2, ..., n, then U has a g-supplement in M.

Proof. Clear from Lemma 2.4.

Lemma 2.6. Any sum of cofinitely g-supplemented modules is cofinitely g-supplemented.

Proof. Let $\{M_i\}_{i \in I}$ be family of cofinitely g-supplemented submodules of an R-module M and $M = \sum_{i \in I} M_i$. Let U be any cofinite submodule of M. Since U is cofinite submodule of M, there exists a finite subset $\{i_1, i_2, ..., i_n\}$ of I such that $M = U + M_{i_1} + M_{i_2} + ... + M_{i_n}$. Since $U + M_{i_1} + M_{i_2} + ... + M_{i_n}$ has a g-supplement 0 in M and M_{i_k} is cofinitely g-supplemented for k = 1, 2, ..., n, then by Corollary 2.5, U has a g-supplement in M.

Example 2.7. Consider the \mathbb{Z} -module ${}_{\mathbb{Z}}\mathbb{Q}$. Since $Rad_{\mathbb{Z}}\mathbb{Q} = {}_{\mathbb{Z}}\mathbb{Q}$, ${}_{\mathbb{Z}}\mathbb{Q}$ have no proper cofinite submodules. Hence ${}_{\mathbb{Z}}\mathbb{Q}$ is a cofinitely g-supplemented. But it is well known that ${}_{\mathbb{Z}}\mathbb{Q}$ is not g-supplemented.

3 Amply Cofinitely G-supplemented Modules

Definition 3.1. Let M be an R-module. If every cofinite submodule of M has ample g-supplements in M, then M is called an amply cofinitely g-supplemented module.

Lemma 3.1. Let M be an R-module. If every submodule of M is cofinitely g-supplemented, then M is amply cofinitely g-supplemented.

Proof. Let M = U + V with $V \le M$ and U is a cofinite submodule of M. Since $\frac{V}{U \cap V} \cong \frac{U+V}{U} = \frac{M}{U}$, $U \cap V$ is a cofinite submodule of V. Since V is cofinitely g-supplemented, $U \cap V$ has a supplement T in V. Because of this $V = U \cap V + T$ and $U \cap V \cap T \ll_g T$. Thus $M = U + V = U + U \cap V + T = U + T$ and $U \cap T = U \cap V \cap T \ll_g T$. Hence U has ample g-supplements in M and M is amply cofinitely g-supplemented. □

Corollary 3.2. Every *R*-module is cofinitely g-supplemented if and only if every *R*-module is amply cofinitely g-supplemented.

Proof. Clear from Lemma 3.1.

Lemma 3.3. If M is a π -projective and cofinitely g-supplemented module, then M is an amply cofinitely g-supplemented module.

Proof: Let M = U + V, U be a cofinite submodule of M and X be a g-supplement of U. Since M is π -projective and M = U + V, there exists an R-module homomorphism $f: M \to M$ such that $Imf \subset V$ and $Im(1-f) \subset U$. So, we have M = f(M) + (1-f)(M) = f(U) + f(X) + U = U + f(X). Suppose that $a \in U \cap f(X)$. Since $a \in f(X)$, then there exists $x \in X$ such that a = f(x). Since a = f(x) = f(x) - x + x = x - (1-f)(x) and $(1-f)(x) \in U$ we have x = a + (1-f)(x) and $x \in U$. Thus $x \in U \cap X$ and so $f(x) \in f(U \cap X)$. Therefore we have $U \cap f(X) \leq f(U \cap X) <<_g f(X)$. This means that f(X) is a g-supplement of U in M with $f(X) \subset V$. Therefore M is amply g-supplemented.

Corollary 3.4. If M is a projective and cofinitely g-supplemented module, then M is an amply cofinitely g-supplemented module.

Proof. Clear from Lemma 3.3.

Lemma 3.5. Let M be an amply cofinitely g-supplemented module. Then every factor module of M is amply cofinitely g-supplemented.

Proof. Let M/T be any factor module of M and let U/T be a cofinite submodule of M/T. Assume $\frac{M}{T} = \frac{U}{T} + \frac{V}{T}$ with $T, V \leq M$. Since U/T is a cofinite submodule of M/T, U is a cofinite submodule of M. Since $\frac{M}{T} = \frac{U}{T} + \frac{V}{T}$, M = U + V. Since M is amply cofinitely g-supplemented, U has a g-supplement K in M with $K \leq V$. Then by Lemma 1.3, (K + T)/T is a g-supplement of U/T in M/T with $(K + T)/T \leq V/T$. Hence M/T is amply cofinitely g-supplemented. \Box

Corollary 3.6. Let M be an amply cofinitely g-supplemented module. Then every homomorphic image of M is amply cofinitely g-supplemented.

Proof. Clear from Lemma 3.5.

Proposition 3.1. Let R be a ring. The following statements are equivalent.

- (a) $_{R}R$ is g-supplemented.
- (b) $_{R}R$ is amply g-supplemented.
- (c) $_{R}R$ is cofinitely g-supplemented.
- (d) $_{R}R$ is amply cofinitely g-supplemented.
- (e) Every finitely generated R-module is g-supplemented.
- (f) Every finitely generated R-module is cofinitely g-supplemented.
- (g) $R^{(I)}$ is cofinitely g-supplemented for every index set I.
- (h) $R^{(I)}$ is amply cofinitely g-supplemented for every index set I.
- (i) Every R-module is cofinitely g-supplemented.
- (k) Every R-module is amply cofinitely g-supplemented.

Proof. (a) \iff (b) Clear from [9] Corollary 8, since _RR is projective.

 $(a) \iff (c)$ Clear from Lemma 2.1.

 $(c) \iff (d)$ Clear from Corollary 3.4, since _RR is projective.

(a) \implies (e) Assume M be a finitely generated R-module and let $M = \langle m_1, m_2, ..., m_n \rangle$. Then $M = Rm_1 + Rm_2 + ... + Rm_n$. Since $_RR$ is g-supplemented and Rm_i (i = 1, 2, ..., n) is an homomorphic image of $_RR$, by [9] Corollary 4, Rm_i is g-supplemented. Then by [9] Corollary 3, M is g-supplemented.

 $(e) \iff (f)$ Obtained from Lemma 2.1.

 $(f) \Longrightarrow (g)$ By hypothesis, $_{R}R$ is cofinitely g-supplemented. Because of this, by Lemma 2.6, $R^{(I)}$ is cofinitely g-supplemented for every index set I.

 $(g) \iff (h)$ Clear from Corollary 3.4, since $R^{(I)}$ is projective for every index set I.

 $(g) \Longrightarrow (i)$ Clear from Corollary 2.3, since every *R*-module is _{*R*}*R*-generated.

 $(i) \iff (k)$ Obtained from Corollary 3.2.

 $(i) \Longrightarrow (c)$ Clear.

4 Conclusion

In this paper, first time, the notion of cofinitely g-supplemented module is introduced. With this notion we had obtained equalities that was shown in Proposition 3.1.

Competing Interests

Author has declared that no competing interests exist.

References

- Alizade R, Büyükaşık E. Cofinitely weak supplemented modules. Communications in Algebra. 2003;31(11):5377-5390.
- [2] Alizade R, Bilhan G, Smith PF. Modules whose maximal submodules have supplements. Communications in Algebra. 2001;29(6):2389-2405.
- [3] Nebiyev C, Pancar A. Cofinitely injective and projective Modules. Hacettepe Journal of Mathematics and Statistics. 2010;39(2):171-182.
- [4] Zhou DX, Zhang XR. Small-essential submodules and morita duality. Southeast Asian Bulletin of Mathematics. 2011;35:1051-1062.
- [5] Clark J, Lomp C, Vanaja N, Wisbauer R. Lifting modules. Supplements and projectivity in Module Theory. Frontiers in Mathematics, Birkhauser, Basel; 2006.
- [6] Nebiyev C, Pancar A. On strongly ⊕-supplemented Modules. Ukrainian Mathematical Journal. 2011;63(5):662-667.
- [7] Nebiyev C, Pancar A. On supplement submodules. Ukrainian Mathematical Journal. 2013;65(7):961-966.
- [8] Wisbauer R. Foundations of module and Ring Theory. Gordon and Breach, Philadelphia; 1991.
- [9] Koşar B, Nebiyev C, Sökmez N. G-supplemented modules. Ukrainian Mathematical Journal. 2015;67(6):861-864.
- [10] Quynh TC, Tin PH. Some properties of e-supplemented and e-lifting modules. Vietnam Journal of Mathematics. 2013;41:303-312.

- [11] Sökmez N, Koşar B, Nebiyev C. Genelleştirilmiş Küçük Alt Modüller. XXIII. Ulusal Matematik Sempozyumu, Erciyes Üniversitesi, Kayseri; 2010.
- [12] Celil Nebiyev, Hasan Hüseyin Ökten. Weakly G-supplemented modules. European Journal of Pure and Applied Mathematics. (Accepted).

 \odot 2016 Koşar; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

http://sciencedomain.org/review-history/15232