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Abstract 
 

In this paper, we state the general Adomian Decomposition Method (ADM) for Fourth order linear 
differential equations. And applied it to obtain analytic solution in a rapidly convergent series to this class 
of equations. The concept of ADM was further applied to physical problems and the result showed 
excellent potentials of applying this method.  
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1 Introduction 
 
Application of fourth order linear differential equations occurs in various physical problems. Some of these 
problems describe certain phenomena related to theory of Elastic Stability. A classical fourth order 
differential equations arising in Beam-Column theory is a useful tool for modeling and studying naturally 
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occurring phenomena. Such as determining when a uniform cross section beam may break, as well as 
predicting future outcomes. These models are function of time. 
 
A general fourth order differential equation is given as 
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With initial values given as 
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The ADM introduces the solution, )t(  and the nonlinear function, ),t(g  by the infinite series 
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where the component in equation )t(n  in equation (2) is determined recurrently. nA is the Adomian 

polynomial with algorithms given in [1]. 

 
2 The Concept of ADM 
 
The theory of ADM has been given by many researchers, see [2-6,1,7]. The concept writes equation (1) as 
 

e)(D                                                                                                                                             (4) 

 

where D is a differential operator,   and e are functions of t. Equation (4) is transform into operator form as 

 

eCBA                                                                                                                               (5) 

 
where A is a linear term which is easily invertible, B is the remainder of the linear operator and C represent 

the nonlinear term. Solving for A , we have 

 

 CBeA                                                                                                                              (6) 

 
Since A is invertible, an equivalent expression is given as 
 

  CABAeAAA 1111                                                                                                  (7) 

 

where 1A , in this paper, is a four-fold integral operator. Consequently, equation (7) becomes, 
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  is decomposed into a series as given in equation (2) with 0  identified as the first five terms on then right 

hand side of equation (8). The nonlinear term which is decomposed into the Adomian polynomial is 
considered as zero in this paper. Consequently, we can write  
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This series converges when the nth partial sum 





1n

0i
in will be the approximate solution [8-11]. 

 

3 Results and Discussion 
 
Example 1. 
 
Consider 
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The exact solution of equation (9) is  
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In series form equation (10) is given as  
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Applying equations (4) to (8) of ADM on equation (9), we obtain 
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Sum of 210 oftermstwofirsttheand,  is equivalent to the first six terms of equation (11) which is 

the exact solution of the differential equation (9). We further show the similarities in the two results in            

Figs. 1 and 2. In Fig. 2 we only considered 



5

0n
n . 

 

      
 

Fig. 1. Exact solution of Example 1               Fig. 2. ADM solution of Example 1 
 
Example 2. 
 
Consider  
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)iv(                     (12) 

 
The exact solution of equation (12) is  
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In series form equation (13) is given as  
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Applying also equations (4) to (8) of ADM on equation (12), we obtain 
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Approximating 
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Comparing equations (14) and (15) we see that all terms are the same except for the last term on the right 

hand side of each equation. So further evaluation of n  gives better accuracy. The similarities between the 

two solutions are shown in Figs. 3 and 4. 
 

                     
        

Fig. 3. Exact solution of Example 2                         Fig. 4. ADM solution of Example 2 
  
Example 3. 
 
Consider 
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The exact solution of equation (9) is  
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The series form equation (17) is given as,  
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Similarly, applying equations (4) to (8) of ADM on equation (16), we obtain 
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Continuing in this order, we have 
 




8765432
5

0n
n t

384

125
t

5040

4369
t

240

487
t

120

481
t

8

55
t

6

49
t

2

21
t5               (19) 

 
where 
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The first ten terms of equation (19) are the same those of equation (18) which is the exact solution of the 

given differential equation (16). The solutions of the exact method and ADM of 



5

0n
n are shown in 

Figs. 5 and 6. 
 

             
 

    Fig. 5. Exact solution of Example 3                           Fig. 6. ADM solution of Example 3 
 
The nature of the curve in Fig. 6 is as a result of considering only a finite term of the series given in equation 
(19) as compared to an infinite series of equation (17).   
 
Example 4. 
 
Consider 
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The exact solution of equation (20) is  
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The series form equation (21) is given as  
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Similarly, applying equations (4) to (8) of ADM on equation (20), we obtain 
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Continuing in this order and summing the series we have equation (22) which is the exact solution of the 
given differential equation (20). The correlation of the exact solution and ADM solution of the given 
problem is given in Figs. 7 and 8. 
 

     
 

Fig. 7. Exact solution of Example 4                 Fig. 8. ADM solution of Example 4 
 

4 Conclusion 
 
In this paper, we have successfully applied Adomian decomposition method to find numerical solution in 
fast convergent series to fourth order linear differential equations. We gave an introduction to physical areas 
where fourth order differential equations are used in real life situations. After the introduction of ADM, we 
gave the general concept of this method in fourth order differential equations. Four test problems were used 
to validate the concept and result showed great potential of this method event when finite terms of the series 
was considered in each case. We further demonstrated the reliability of this method in Figs. 1 to 8. 
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