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ABSTRACT 
 

Objective: Multiscale entropy (MSE) analysis has been widely used to analyze the physiological 
signals in the frequency domain. Higher complexities of MSE curve present in the physiological 
system have the better ability to adapt under environmental change. Most people use the 
subjective experience to distinguish different complexity groups of MSE curves. When the 
difference between curves is hard to distinguish, the results are often misinterpreted. 
Methodology: In this study, four features were designed for the purpose to use the support vector 
machine technique to develop an automatic recognition procedure for the MSE curve.  
Results: A dataset of the electrocardiogram was used to illustrate the proposed analytical process. 
The results show that AUC is not the only MSE curve feature that should be employed, and new 
design features may increase recognition ability of MSE curves for electrocardiogram data.  
Conclusion: The study results imply that the proposed process can facilitate MSE recognition 
among nonprofessionals. 
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1. INTRODUCTION  
 
Physiological signals provide valuable 
information to analyze and monitor human health 
status. Environmental changes or physiological 
conditions may cause the physiological systems 
to be up- or down-regulated by the interacting 
mechanisms that operate across multiple spatial 
and temporal scales. Some examples are the 
output signals from physiological monitoring 
systems such as electromyography (EMG), 
electroencephalography (EEG), and electro-
cardiogram (ECG). Costa et al. [1] stated that 
these signals frequently exhibit complex 
fluctuations that contain information regarding 
the underlying dynamics. Multiscale entropy 
(MSE) analysis, as proposed by Costa et al. [2], 
is a common method for quantifying the 
complexity, irregularity, or randomness of 
physiological time series signals. Physiological 
signals with higher complexity typically indicate a 
healthier physiological system [2]. Norris et al. [3] 
suggested that complexity might be a new 
clinical biomarker for outcomes. The MSE curves 
of a patient’s heart rate within hours of hospital 
admission can be used to predict his or her 
mortality.  
 
Traditional MSE methods that define complexity 
involve calculating the area under the MSE curve 
(AUC) or comparing the sample entropy 
(SampEn) values on the same scale. 
Trunkvalterova et al. [4] used MSE to detect 
autonomic dysregulation in young patients with 
type 1 diabetes mellitus (DM). They found that 
the MSE of a young patient with DM was 
significantly reduced on scales 2 and 3. 
Conversely, SampEn values of SBP and DBP on 
scale 3 were significantly lower in patients with 
DM than in healthy participants. Park et al. [5] 
used MSE to analyze EEG signals from patients 
with various pathological conditions of 
Alzheimer’s disease (AD) to measure the 
complexity of the signal. They found that the 
MSE curves of patients with severe AD showed 
lower levels of entropy than those of healthy 
participants and patients with Mild Cognitive 
Impairment (MCI). Hung and Jiang [6] used MSE 
to investigate the effect of fatigue on cardiac 
dynamics during long-term web browsing. They 
found that the cardiac dynamics of participants 
who were browsing the web were less complex 
than those of healthy young participants under 
free-running conditions. MSE analysis can be 
used to analyze the signals of physiological time 

series as well as to investigate the balance 
problems. Jiang et al. [7] used three cases to 
introduce MSE analysis applied to the center of 
pressure (COP) signal and to compare the 
difference of the COP signal in young and elderly 
participants. They found higher levels of 
complexity in young participants compared with 
elderly participants. 
 
Although the MSE analysis was often sufficient 
for distinguishing physiological conditions, Park 
et al. [5] showed that different physiological 
conditions may have similar AUCs. In such 
situations, using only AUC cannot distinguish 
between the MSE curves during varying 
physiological conditions; thus, other features of 
the MSE curves must be considered. This study 
examined four features from the MSE curves and 
used a support vector machine (SVM) to classify 
the various patterns of the MSE curves according 
to combinations of the four features. The 
analytical results indicate that the new design 
features may increase the ability to recognize 
data from the MSE curves. 
 
2. METHODOLOGY 
 
To evaluate a one-dimensional discrete time-
series signal , we constructed 

the coarse-grained time series by 

averaging the increasing number of data points 
in nonoverlapping windows (Fig. 1). Each 

element of the coarse-grained time series  

was calculated as follows: 
 

                                       (1) 

 

here   represents the scale factor and 

. The length of each coarse-

grained time series is equal to the length of the 
original time series ( ) divided by . 
 
After the construction of the coarse-grained time 
series of a physiological signal, SampEn values 
for each coarse-grained time series were 
calculated and plotted as a function of the scale 
factor. This procedure is known as MSE analysis. 
For scale 1, the coarse-grained time series is 
simply the original time series. SampEn 
proposed by Richman and Moorman [8] is a

),,,,( 1 Ni xxx LL

( )jyτ

)( τ
jy

y j
τ = 1

τ
xi

i=( j−1)τ +1

jτ

∑

τ
1≤ j ≤ N τ( )

N τ



Fig. 1. The coarse
 
modification of the approximate entropy (ApEn). 
The greatest difference between these two 
entropies is that SampEn does not count self
matches, whereas ApEn does. SampEn has the 
advantage of being less dependent on the time 
series length and has greater consistenc
broad range of possible r, m, and 
finite length N, SampEn is calculated as follows:
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A two-stage process was proposed to analyze 
the MSE curve. The first stage emphasizes 
describing the features of the MSE curves, and 
the second stage classifies the MSE curves 
using SVM. 
 
2.1 Features of the MSE Curves 

Calculated 
 
The MSE curves are used to compare the 
relative complexity of normalized time series 
(same variance as scale 1) by 
guidelines: (1) If the entropy values for the 
majority of the scales are highest for the 
series, the unique series is considered the most 
complex. (2) A monotonic decrease in the 
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1. The coarse-graining procedure of scales 2 and 3 
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counted  

stage process was proposed to analyze 
the MSE curve. The first stage emphasizes 
describing the features of the MSE curves, and 

classifies the MSE curves 

Features of the MSE Curves 

The MSE curves are used to compare the 
relative complexity of normalized time series 

 the following 
guidelines: (1) If the entropy values for the 

are highest for the past 
is considered the most 

complex. (2) A monotonic decrease in the 

entropy values indicates that the original signal 
contains information only on the smallest scale. 
Because higher entropy values connect and form 
a curve with a larger area, guideline (1) can 
interpreted to mean that a greater 
MSE curve represents a more complex 
physiological signal. 
 
This study designed four features of the MSE 
curves to form a coordinated matrix and used 
this matrix to describe the curve. The features 
are defined as follows. 

 
2.1.1 Feature 1: AUC 
 
AUC is the most commonly used feature to 
describe the complexity of an MSE curve. A 
larger AUC indicates a physiological signal with 
higher complexity. We used a trapezoidal area to 
determine the AUC approximately:
 

 
where the area(i) is the ith AUC between the 
curve i and the X axis, 

represents the scale number, and 
maximum scale number. In this study, 

20.  represents the ith curve’s SampEn 

value in scale j. Fig. 2a shows the gray area 
under the MSE curve between scales 1 and 20.
 
2.1.2 Feature 2: The slope of maximum 
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The MSE curves for physiological signals 
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decrease on small scales and gradually stabilize 
on large scales. Therefore, we selected the slope 
of the maximum difference of small-scale 
entropies as a feature. According to the MSE 
curve trend, in this study, the first seven scales 
(one-third of all scales) were defined as small 
scales. Fig. 2b shows the slope of maximum 
difference in the first seven scales. Feature 2 is 
calculated as follows: 
 

                           (4) 

 

where  means the ith curve’s maximum 

slope of the SampEn of the first seven scales, 
 is the maximum SampEn value of the first 

seven scales, and  represents the 

minimum SampEn value of the first seven scales. 
The j and  variables are the numbers on the 
scales that have the maximum and minimum 
SampEn values, respectively. 
 
2.1.3 Feature 3: Average entropy value on 

large scales 
 
Although the values of entropy increase in 
smaller scales for healthy participants, in larger 
scales the entropy values become stable. 
Moreover, the values of entropy obtained from 
elderly participants are notably lower than those 
from younger participants. Therefore, different 
physiological conditions, as well as aging, may 
be defined in average entropy values on large 
scales. (4) According to the MSE curve trend, 
this study used the average entropies of the last 
of the five scales (one-fourth of all scales) as the 
third feature, as shown in Fig. 2c. Feature 3 is 
calculated as follows: 
 

                                    (5) 

 
The ael(i5) variable is the average SampEn value 
of the ith MSE curve of the last five scales.  
 
2.1.4 Feature 4: The variation in the absolute 

difference between the two scales that 
comprise the first half of the scale 

 
In this study, although the slope of the maximum 
difference in the first seven scales is a feature, 
the MSE curves may have differing patterns but 

similar slopes. Therefore, feature 4 was selected 
to overcome this situation. Feature 4 is the 
variation of two entropy values in the two scales 
that comprise the first half of the scale. The left 
side of Fig. 2d is an MSE curve plot. Each dot on 
the right side of Fig. 2d is the absolute value               
of the difference calculated from every two 
SampEn values. Feature 4 is calculated as 
follows:  
 

 (6) 

 
where the suffix  is the number of the scale, 
and vhs(i) means the ith curve’s standard 
deviation of the absolute difference between the 
two scales that comprise the first half of the 

scale. The variable  

represents the standard deviation of all 

 from  to 

 in the ith curve. Because of 

limited data length, signals are used only to 
calculate the entropies of the first 20 scales; 
thus, feature 4 focuses on the variations of the 
first ten scales. 
 
After calculating the four features of the MSE 
curves in an MSE plot, we normalized each 
feature vector to avoid differing scale 
measurements for each feature. The 
normalization formula is calculated as follows: 
 

                                     (7) 

 
where  and  are the standardized value 

and real value of the ith curve, respectively. For 
example, 
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Here norm_area(i) is the normalization value of 
the area of the ith curve. The mean(area) variable 
refers to the average of all the curve areas, and 
stdev(area) is the standard deviation of all the 
curve areas. After normalization, the analysis 
produces four normal vectors of the features; 
each curve can be drawn in spatial coordinates 
according to the four features. 
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(a) Feature 1 
 

(b) Feature 2 
 

 
 

(c) Feature 3 
 

 
 

(d) Feature 4 
 

Fig. 2. Features of the MSE curves 
 

2.2 Using SVM to Classify the MSE Curves  
 
SVM is a supervised learning technology for classification [9,10]; Chen et al. [11] have stated that 
SVM performs appropriately for problems with low training sets and nonlinear and multidimensional 
data. Thus, we used SVM to test the classification accuracy of various physiological states using 
different feature combinations of the MSE curves. Assuming a set of points as follows: 
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where  indicates the class of participant , and each  is a p-dimensional singular values vector. 

The term ji ,,2,1 K=  is the participant’s number. The aim of the SVM is to identify a maximum-

margin hyperplane that divides the points into different physiological states (healthy middle-aged, 
healthy elderly, or patients with congestive heart failure - CHF). This hyperplane can be written as the 
set of points  and is expressed as: 
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where  is a normal vector perpendicular to the 

hyperplane, and  is the offset of the 

hyperplane from the origin along the normal 
vector . Geometrically, the width of the margin 

is  under the minimum . 
 

3. ANALYSIS AND DISCUSSION 
 
In this study, a dataset from PhysioNet [12] was 
used to demonstrate the performance of the 
proposed method. The dataset included two 
subsets of participants. The first subset was 
labeled as the regular sinus rhythm R–R interval 
database. The data comprised the heart rate R–
R interval of 54 healthy participants. The 46 
elderly patients were aged 65.87±3.97 years, 
ranging between 58 and 76 years and eight 
middle-aged male patients were aged 
35.44±4.52 years, ranging between 28.5 and 40 
years. The other subset was labeled the CHF R–
R interval database and contained 29 patients 
(aged 55.28±11.60 years) diagnosed with CHF. 
All data were recorded using an ECG Holter 
monitor (sampled at 128 Hz) for six-hour when 
the participants were awake. This study used the 
R–R interval of healthy participants and patients 
with CHF and calculated the MSE values of each 
participant by setting the parameters of MSE to 
m = 2 and r = 0.15. The MSE curves of the R–R 
interval signals for all participants are presented 
in Fig. 3. 
 
Fig. 3 shows the MSE curves of the heart rates 
from participants in three physiological states. As 
illustrated in Fig. 3a, most of the MSE curves of 
patients with CHF were lower than those of the 

other two groups. For healthy middle-aged 
participants, the MSE curves were mostly higher 
than the other curves. However, some of the 
patients with CHF and healthy elderly 
participants had AUCs similar to those of the 
healthy middle-aged participants. The average 
MSE curve for the healthy middle-aged 
participants was higher than that for the other 
two groups. The patients with CHF had the 
lowest average MSE curve, as shown in Fig. 3b. 
The healthy middle-aged participants had R–R 
interval signals with greater complexity than 
those of the patients with CHF. The complexities 
of the R–R signals of healthy elderly participants 
were at an intermediate level. 
 
After extracting the four features of the MSE 
curves (discussed above), we used the SVM 
method to compare the classification accuracy of 
different feature combinations. Using random 
sampling, we selected 70% of the samples as 
the training data; the remaining 30% of the data 
set were used to test the classification effect. 
Each feature combination was tested ten times, 
and we used the average accuracy rate of the 
SVM classification results to compare the 
effectiveness of all feature combinations. The 
classification results of all the feature 
combinations are shown in Table 1. 
 
As shown in Table 1, the average accuracy rate 
for ten replications of the SVM classification 
using Fig. 1 (AUC) was 60.1%. Using Feature 1, 
2 and 4 can achieve a 68.8% average accuracy 
rate. Moreover, the fewer features used           
higher was the accuracy rate. When all the         
features were used to classify the MSE curves 

 

  
 

(a) MSE curves of all participants 
 

(b) Average of MSE curves in different 
physiological states 

 
Fig. 3. MSE curves of various physiological situations 
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Table 1. The average accuracy of the SVM classification for feature combinations 
 

Feature combination1 Average accuracy rate2 Max. accuracy rate 
Feature 1 60.1 (2.6) 63.8 
Feature 2 56.9 (2.6) 62.6 
Feature 3 59.3 (2.4) 61.4 
Feature 4 56.1 (1.6) 60.2 
Feature 1 & 2 62.8 (2.2) 67.4 
Feature 1 & 3 59.7 (1.9) 62.6 
Feature 1 & 4 65.3 (4.7) 71.1 
Feature 2 & 3 59.7 (2.6) 63.8 
Feature 2 & 4 59.1 (3.1) 65.1 
Feature 3 & 4 61.5 (3.3) 65.1 
Feature 1, 2 & 3 61.6 (2.3) 63.8 
Feature 1, 2 & 4 68.8 (2.8) 72.3 
Feature 1, 3 & 4 62.4 (3.5) 66.2 
Feature 2, 3 & 4 63.1 (2.4) 66.2 
All features 65.5 (3.3) 69.8 
1In the “feature combination” column. Feature 1: AUC, Feature 2: The slope of maximum entropy difference in 

scales 1 to 7, Feature 3: Average entropy value in scales 16 to 20, Feature 4: Variation in the absolute difference 
in the following two scales for scales 1 to 10 

2The value in brackets for the “average accuracy rate” column refers to the standard deviation of the accuracy 
rate in 10 replications. For example, “60.121 (2.691)” means the average accuracy rate of 10 replications of SVM 

classification using feature 1 is 60.121, and the standard deviation is 2.691 
 
by SVM, the average accuracy rate of 10 
replications was 65.5%. However, when we used 
only features 1, 2, and 4 as a feature 
combination, we achieve an average accuracy 
rate of 68.795%. 
 
The highest accuracy rate was 72.3% for all the 
analysis results using features 1, 2, and 4 as the 
feature combination. A comparison of the 
classification results of using features 1, 2, and 4 
as a feature combination with that of using only 
AUC as the feature shows that using features 1, 
2, and 4 as a feature combination for SVM can 
provide a highest accuracy rate. 
 
4. CONCLUSION 
 
MSE analysis is frequently used to measure 
system complexity. Although MSE was easily 
employed when comparing various physiological 
conditions, feature selection for the MSE curves 
is a critical task. This study identified four 
features to describe MSE curves and compared 
the feature combinations applied to classify the 
MSE curves with SVM. The electrocardiogram 
data from PhysioNet was used to illustrate the 
proposed analytical process. The results showed 
that the feature combination of AUC, the slope of 
maximum entropy difference in scales 1 to 7, and 
the variation in the absolute difference of the 
following two scales for scales 1 to 10 can 

provide the highest accuracy rate for all the 
feature combinations. The contributions of this 
paper can be summarized into two points. First, 
AUC is not the only feature that can be used for 
clustering the MSE curves. We suggest the slope 
of maximum entropy difference for scales 1 to 7 
and the variation in the absolute difference 
between the two scales following scales 1 to 10 
as additional features. Second, fewer the 
features used, higher is the accuracy rate. 
 
After classifying the MSE curves into several 
groups, creating estimation models with groups 
is a critical task. The use of estimation models 
can help to assess the complexity and 
physiological condition of patients and can 
provide invaluable information. 
 
CONSENT 
 
It is not applicable. 
 
ETHICAL APPROVAL 
 
It is not applicable. 
 
COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 



 
 
 
 

Wang and Chang; BJMMR, 12(12): 1-8, 2016; Article no.BJMMR.22890 
 
 

 
8 
 

REFERENCES 
 
1. Costa M, Pen CK, Goldberger AL, 

Hausdorff JM. Multiscale entropy analysis 
of human gait dynamics. Physica A. 2003; 
330:53-60.  

2. Costa M, Goldberger AL, Peng CK. 
Multiscale entropy analysis of complex 
physiologic time series. Physical Review 
Letter. 2002;89:068102. 

3. Norris PR, Anderson SM, Jenkins JM, 
Williams AE, Morris Jr JA. Heart rate 
multiscale entropy at three hours predicts 
hospital mortality in 3,154 trauma patients. 
Shock. 2008;30:17-22.  

4. Trunkvalterova Z, Javorka M, 
Tonhajzerova I, Javorkova J, Lazarova Z, 
Javorka K, Baumert M. Reduced short-
term complexity of heart rate and blood 
pressure dynamic in patients with diabetes 
mellitus type 1: Multiscale entropy 
analysis. Physiological Measurement. 
2008;29:817-828.  

5. Park JH, Kim S, Kim CH. Multiscale 
entropy analysis of EEG from patients 
under different pathological conditions. 
Fractals. 2007;15:399-404.  

6. Hung CH, Jiang BC. Multi-scale entropy 
approach to physiological fatigue during 
long-term web browsing. Human Factors 

and Ergonomics in Manufacturing. 2009; 
19:478-493.  

7. Jiang BC, Yang WH, Shieh JS, JFan JSZ, 
Peng CK. Entropy-based method for COP 
data analysis. Theoretical Issues in 
Ergonomics Science. 2013;14:227-246.  

8. Richman JS, Moorman JR. Physiological 
time-series analysis using approximate 
entropy and sample entropy. American 
Journal of Physiology Heart and 
Circulatory Physiology. 2000;278:2039-
2049. 

9. Wang T, Huang H, Tian S, Xu J. Feature 
selection for SVM via optimization of kernel 
polarization with Gaussian ARD kernels. 
Expert Systems with Application. 2010;37: 
6663-6668. 

10. Shieh MD, Yang CC. Multicall SVM-RFE 
for product from feature selection. Expert 
Systems with Applications. 2008;35:531-
541. 

11. Chen Y, Zhang L, Zhang D. Computerized 
wrist pulse diagnosis using modified auto-
regressive models. Journal of Medical 
Systems. 2011;35:321-328. 

12. Goldberger AL, Amaral LAN, Glass L, 
Hausdorff JM, Ivanov PC, Mark RG, 
Mietus JE, Moody GB, Peng CK,  Stanley 
HE. PhysioBank, PhysioToolkit, and 
PhysioNet: components of a new research 
resource for complex physiologic signals. 
Circulation. 2000;101(23):215-220. 

_________________________________________________________________________________ 
© 2016 Wang and Chang; This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited. 
 
 
 Peer-review history: 

The peer review history for this paper can be accessed here: 
http://sciencedomain.org/review-history/12711 


