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Abstract 
In genera Anastrepha, Bactrocera and Ceratitis of the tephritid fruit flies the auto-regulatory function of gene 
transformer is assumed to be activated by maternal derived mRNA or the proteins of the gene transformer (tra-2 
mat) and transformer-2 (tra-2mat). However, this maternal effect was not yet been demonstrated. The objective of 
the present study was to test the effect of absence of tra-2mat in the eggs on the sex determination of A. sp.1 
affinis fraterculus. This was achieved by silencing gene tra-2 in the parental females via the pRNA interference. 
The data showed that tra-2 was transiently silenced in the female for three weeks period. The progenies sex ratio 
produced by these females during the silencing of tra-2 depart from 1:1 in favor of males. The excess of males 
was due to the transformation of a fraction of genotypical female XX embryos into XX males, the so-called 
pseudomales, Individual F1 males from the offspring of treated females crossed to females from the stock, 
revealed that majority of them showed regular mating behavior and were fertile. However, no offspring was 
produced in the crosses by a fraction of males that have produced sperms, showed regular mating behavior but 
did not transfer sperms to the females. The data allow the conclusion that the absence of tra-2mat

 in the eggs had 
impaired the self-regulation of the embryonic gene tra resulting in the transformation of XX embryos into 
pseudomales and also that these pseudomales are sterile. This effect may be useful improve more sustainable 
technologies for fruit fly control such as SIT. 
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1. Introduction 
Some fruit fly species of the Tephritidae family are considered one of the most devasting insect pests of 
agriculture The species of economic and quarantine importance (ca.78 species) damage the horticulture industry 
worldwide, reaching losses of billions of US dollars every year (Rendón & Enkerlin, 2021). The most important 
genera include Anastrepha (Schiner) indigenous to the Americas, Bactrocera (Macquart) in Asia and Oceania, 
Dacus (Fabricius) in Africa, Rhagoletis (Loew) in more temperate areas of Europe, North and South America, 
and the Zeugodacus (Hendel) in Asia (White & Elson-Harris, 1992; Rendón & Enkerlin, 2021). 

The genus Anastrepha is endemic to the American tropics and subtropics, and many of its pest species have a 
wide distribution within this range (Norrbom & Foote, 1989). The South American fruit fly, Anastrepha 
fraterculus (Wiedemann) is a complex of cryptic species that has a wide geographic distribution almost the same 
as the genus and uses many host plants for larval development (Zucchi & Moraes, 2008; Norrbom et al., 2013). 
This species involves a complex of cryptic species, the so-called Anastrepha fraterculus complex of cryptic 
species that is being currently characterized (Selivon et al., 2004, 2005; Hernández-Ortiz et al., 2012, 2015; 
Hendrichs et al., 2015; Vaníčková et al., 2015; Prezotto et al., 2019). Due to the economic importance of the 
Anastrepha species programmes for their control, SIT for example, have been established in several countries 
along the continent (Rendón & Enkerlin, 2021). However, the effectiveness of such programs can in some cases 
be increased with the establishment of so-called sexing system to eliminate females allowing male-only releases. 
Therefore, new strategies to improve the massive production of males in the biofabrics are ever since being 
pursued, one of which is based on the knowledge of the genetic/molecular mechanism of sex determination of 
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Experimentally, the role of the three genes in sex determination of tepritid species has been elucidated by the 
embryonic RNAi methodology. Injection of tradsRNA, of tra2dsRNA and/or dsxdsRNA, in the eggs of Ceratitis 
(Pane et al., 2002, 2007; Salvemini et al., 2009), Bactrocera (Chen et al., 2008; Liu et al., 2015; Peng et al., 
2015), Anastrepha (Sarno et al., 2010; Schetelig et al., 2012) as well as of MoYdsRNA in C. capitata and species 
of Bactrocera (Meccariello et al., 2019), results in the male-specific splicing of pre-mRNA of tra and of dsx in 
genotypic female embryos. This leads to transformation of a fraction of females into XX male individuals, the 
pseudomales. Moreover, functional role of the three genes, tra, tra-2 and dsx of Anastrepha, was also 
demonstrated by introduction of cDNA of the Anastrepha genes in intersexual Drosophila melanogaster and the 
development of sexually dimorphic structures were monitored. It was shown that genes tra (Ruiz & Sanchez, 
2010), tra-2 (Sarno et al., 2011) and dsx (Alvarez et al., 2010) of Anastrepha promoted the transformation 
Drosophila XY male flies into females, i.e., the Anastrepha genes have changed the male splicing of the 
Drosophila pre-mRNAs into the female mode of splicing corroborating the role of the genes in Anastrepha sex 
determination. Similarly, it was demonstrated that the dsx gene of Ceratitis capitata induces masculinization of 
transgenic XX Drosophila flies (Saccone et al., 2008). 

In the embryonic RNAi experiments with tephritid flies it was also detected that the transformation of females 
into XX pseudomales was usually not complete, and that fertility of pseudomales was also affected. In the XX 
pseudomales asymmetric and/or disformed testes and gynandromorphs were detected in Ceratitis capitata (Pane 
et al., 2002; Salvemini et al., 2009), Bactrocera dorsalis (Liu et al., 2015), and in Anastrepha sp.1 aff. fraterculus 
(Sarno et al., 2010). Although the XX pseudomales of Anastrepha suspensa had motile sperms, they were shown 
to be sterile (Schetelig et al., 2012). On the contrary, the XX pseudomales of Ceratitis capitata (Salvemini et al. 
2009, Meccariello et al 2019) and of Bactrocera dorsalis (Liu et al., 2015) were fully fertile. 

Most of sex determination experimental studies in tephritid fruit flies have been performed by injection of 
dsRNA into eggs which suppresses the function of the involved genes in the embryos. However, although sex 
determination also involves maternal components of genes tra and tra-2 in eggs (Pane et al., 2002; Ruiz et al., 
2007a, 2007b; Sarno et al., 2010; Luo et al., 2017), no experimental demonstration of their function has been 
made. The present report describes the results of silencing the tra-2 expression in adult females demonstrating 
that the tra-2mat is essential for the sex determination hierarchy in Anastrepha sp.1 aff. fraterculus.  

2. Method 
2.1 Biological Material 

The present study was carried out with Anastrepha sp.1 aff. fraterculus, a species of the Anastrepha fraterculus 
complex of cryptic species (Selivon et al., 2005; Hernández-Ortiz et al., 2012, 2015; Prezotto et al. 2019). The 
flies derived from laboratory colonies initiated with specimens collected in guavas (Psidium guajava) from 
Poços de Caldas, MG, Brazil (21o 47’S, 46o33’W), which were maintained accordingly to standard procedures 
(Selivon et al. 2005).   

2.2 dsRNA Preparation and Injection 

For generating Aftra2dsRNA, tra-2 cDNA fragments were produced using Superscript® III First-Strand Synthesis 
for RT-PCR kit from total RNA (5 µg per reaction), following manufacturer instructions using tra-2F primer. 
Afterwards, those fragments were amplified by PCR reaction using the following primers: tra-2F: 
ATGAGTCCACGTAC, tra-2R: CACGTCGCTTATCGTACGGA. The PCR was performed under the following 
conditions: 94 ºC for 1 min, followed by 35 cycles at 94 ºC for 20 sec, 55 ºC for 20 sec and 72 ºC for 30 sec, followed 
by a final extension step of 72 ºC for 10 minutes. PCR products were purified using GeneJET PCR Purification Kit 
(Thermo) and then sequenced using ABI Prism Big Dye Terminator Cycles Sequencing Ready Reaction kit, both 
following manufacturer instructions. Obtained sequences were manually inspected in BioEdit Sequencies 
Alignment Editor (v.7.0.9.0). Purified fragments were used in a second PCR using tra-2F and tra-2R primers 
containing T7 promoter sequences, T7tra-2F: ATGAGTCCACGTACTAATACGACTCACTATAGGGAGA and 
T7tra-2R: CACGTCGCTTATCGTACGGATAATACGACTCACTATAGGGAGA. The PCR cycling was as 
following: 94 ºC for 1 min, followed by 35 cycles at 94 ºC for 20 sec, 65 ºC for 30 sec and 72 ºC for 30 sec, followed 
by a final extension step of 72 ºC for 10 minutes. Product samples were analyzed by electrophoresis in 1% agarose 
gels in 1x TAE buffer with 1x GelRedTM Nucleic Acid Gel Stain, 1x using TAE as running buffer for 30 minutes at 
constant 60V and 60mA, as recommend by Sambrook et al. (1989). Electrophoresis gels were analyzed under UV 
transilluminator, recorded (Viber-Laumat) and transferred to computer for analysis. After confirming the presence 
of the fragments, DNA was measured by NanoDropTM 1000 Sepectrophotometer (Thermo Scientific), and this 
product was used for dsRNA synthesis. 
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About 1µg of the product was used to produce Aftra2dsRNA by in vitro reaction with T7 polymerase for 16 hours 
using Megasript kit (Ambion). dsRNA products were purified by precipitating in lithium chloride (LiCl), 
following manufacturer instructions, and resuspended in injection buffer (5 mM KCl, 0.1 mM NaH2PO4, pH 6.8) 
to a final concentration of 2 µg/µl, measured with NanoDropTM 1000 Spectrophotometer (Thermo Scientific). 
Samples were used immediately or stored at -80 ºC. 

For injection, solution of Af1tra2dsRNA at the concentrations of 1.8 µg/µL, 1.2 µg/µL and 0.6 µg/µL were 
prepared in buffer containing 5 mM KCL, 0.1 mM, NaH2-PO4, pH 6.8 (Sarno et al., 2010). Groups of 10 adult 
females under cold anesthesia were injected with dsRNA with a fine tip glass needle (Eppendorf) at the 
ventro-lateral pleura between abdominal segments 3 and 4. Three volumes of dsRNA solution (1 µL, 0.7 µL and 
0.5 µL) from each of the three concentrations were tested as well as control injections of plain buffer. The 
injected females were transferred to cages provided with water and food ad libitum and inspected for the next 24 
h. The female survival was higher (70 to 80%) at the dsRNA concentration of 1.2 µg/µL in a volume of 0.7 µL, 
similarly to the survival of females injected with plain buffer. These parameters for the dsRNA injection were 
employed in all the experiments. Number of flies, as well as experiment details and statistical methods of 
analysis will be explained in the Results for the sake of clarity.  

2.3 Experimental Design 

The study comprises three sets of experiments: Firstly, tests for the demonstration that the Af1tra2dsRNA 
induces the transient silencing of gene tra-2 in the adult females; secondly, analysis of sex ratio of progenies 
produced by the treated females during the period of tra-2 silencing; third, analysis of the morphology, of 
karyotypes and fitness parameters of the F1 males and morphology of F1 females from these progenies.  

2.3.1 Maternal tra-2 Silencing 

Efficiency of the Af1tra2dsRNA in promoting tra-2 gene silencing was tested by RT-PCR. For that, 18 females 
were injected with Af1tra2dsRNA and an equal number with plain buffer (BC). The injected females were 
separated in groups of 3 for RNA extraction in days 0, 3, 6, 9, 12 and 15 after injection (0 corresponding to the day 
of injection). RNA was extracted from total adult flies and employed to produce cDNA using SuperScript III® 
(Thermo Scientific) following the fabricant instruction with tra-2 specific primers (F: 5’ 
AGAGTTGGAATGAGTCCACGTAC 3’; R: 5’ CACGTCGCTTATCGTACGGA 3). Primers were constructed 
using NCBI Primer-Blast tool, from tra-2 cDNA of Anastrepha obliqua (GenBank FN658607). For the RT-PCR 
reaction 10% of cDNA was employed and the cycles were as follows: 1 minute at 94 ºC, followed by 32 
amplification cycles at 15 seconds at 94 ºC, 15 seconds at 57 ºC and 30 seconds at 72 ºC, and finally and final 
extension step of 10 minutes at 94 ºC. Then, the reactions were analyzed by running gel electrophoresis (agar 1.5% 
in TAE buffer) stained with GelRed®. Gel runs were analyzed under UV transilluminator (Viber-Loumat), 
photographed and images were edited by Photoshop 6.0 (StatSoft, Inc®). 
2.3.2 Analysis of Sex Ratio 

Four replicate experiments (A, B, C, D) for testing the effect of dsRNA, and two controls, one with plain buffer 
(BC) and the other without any treatment (UC) were made. In each experiment, pupae of A. sp.1 aff. fraterculus 
from colony were transferred to cages until emergence of adults. Soon as they emerged males and females were 
separated in individual cages and provided with water and food ad libitum. For analysis of sex ratio, 50 pairs of 
mature virgin flies (15-17 days) were transferred to standard insect rearing cubic cages (20 cm edge), and guava 
fruits were provided for oviposition and larvae development. After a week, guavas were transferred to flasks, 
containing vermiculite. After 15-20 days, pupae were collected and maintained under standard condition until 
emergence of adults. Analysis of imagoes from each progeny revealed the sex ratio produced by females before 
of dsRNA and buffer (BC) treatments. At the end of this one-week pre-injection period, females of each replica 
were injected with Af1tra2dsRNA, others were injected with buffer (BC) and a non-injected untreated group of 
females (UC) was secured. To each group guavas were furnished for oviposition during a week to obtain 
progenies and this procedure was repeated for the next four weeks. The sex ratio of emerged adults produced at 
each experimental and control group during each of the five weeks the experiment lasted was registered. 
Additionally, groups of F1 males from the offspring of the experimental replicas were secured along the 
experiments for karyotype analysis of their as well as for their mating behavior, fertility, morphology of 
reproductive structures, production and transfer of sperms. Morphology of F1 females was also analyzed.  

2.3.3 Karyotype Analysis 

For this analysis, 40 F1 males derived from progenies of dsRNA injected females of each experimental replica 
and 40 from the control group (BC) were karyotyped as described by Selivon and Perondini (1967). Briefly, the 
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testicles of recent emerged males (1 to 2 days after emergence) were dissected, transferred to a 0.2% solution of 
sodium citrate for 10 min, immersed in a drop of 2% acetic orcein, and squashed between slide and coverslip. 
Analysis of the preparations was made under a BX60 Olympus microscope under regular illumination or phase 
contrast. Digital images were captured by a DC100 Leica camera coupled to the microscope and edited by 
Photoshop 6.0 (StatSoft, Inc.®).  

2.3.4 Morphology and Reproductive Performance of Males 

For these tests, 20 F1 males at the 1st week and 20 at the 3rd week from each experimental replica and from the 
control group (BC) were individually transferred to cages together with 2-3 virgin females from the stock. These 
cages were provided with water, food, and guavas as oviposition site for two weeks. The guavas from each 
replica were retrieved and maintained until pupae recovering. After emergence, adults were employed for in 
cross fertility tests. During this period, 5 males from replica A, 5 from replica B and 6 from replica C, died for 
unknown causes. Hence, the analysis of F1 male characteristics were based on 35 males from each experimental 
replica A and B, and 34 from replica C. 

The males from each cross were observed daily for two weeks and their behavior related to courtship and mating 
were registered: everted anal pouch membranes (indicative of pheromone emission), wing fanning and copulas 
or copula attempts (Gomes-Cendra et al., 2011). After this period, the guavas were retrieved, maintained until 
adult emergence, and the presence of progenies derived from these fruits indicated fertility of the crosses. 

After these two weeks, the F1 males were retrieved, anesthetized under cold and examined in a stereomicroscope 
for the external morphology of their terminalia. After, they were dissected for analysis of their internal 
reproductive organs. The testicles were removed and squashed between slide and coverslip in a drop of insect 
Ringer and examined for the presence of motile sperm. The external terminalia of the females involved in these 
crosses were also examined. After female dissection, their spermathecae were removed, squashed in drop of 
insect Ringer under a slide and coverslip, and examined for the presence of sperms. Hence, it was ascertained 
whether each one of the males was fertile or not and this information correlated with their morphological and 
other biological parameters analyzed. These analyses were made in a BX60 Olympus microscope under phase 
contrast. Digital images were taken by a DCC Leica camera coupled to the microscope and edited by Photoshop 
6.0 software (Statsoft Inc.®).  

3. Results 
3.1 Maternal tra-2 Silencing 

In females injected with buffer (BC control) amplification of a fragment of about 300 bp was detected along 
three weeks after injection with no visible differences in the size of the tra-2 fragment compared to the fragment 
amplified from non-treated control females (UC). The fragments were sequenced and was confirmed that they 
correspond to tra-2 sequences (Sarno et al., 2010) (data not shown). In Af1tra2dsRNA injected females, 
amplification of a fragment of 300 bp was observed at the day of injection (day 0). However, on the 3rd day after 
injection a faint band was still obtained, followed by a period in which no amplification of tra-2 was detected, 
but on day 15 a faint fragment was detected again, indicating that expression of tra-2 was being resumed (Figure 
2).  
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been resumed. This apparent inconsistence may be explained, considering that the eggs collected at day 21 had 
initiated their development 7-10 days before, thus during the period that tra-2 was still silenced in the parental 
female, as indicated in Figure 3B. Moreover, the fact that absorption of substances by the developing oocyte 
occurs only during the initial stages of their development (vitellogenesis stage), or in other words, before the 
stages the egg covers, vitelline and chorion membranes, are deposited in the oocyte (Telfer, 2009), may also be 
an explanation for the observed results. 

In species of tephritid fruit flies, as in other insect species (Sánchez, 2008; Verhlust et al., 2010; Bopp et al., 
2014), the increase in male frequency following injection of tradsRNA and/or tra2dsRNA in embryos cause the 
default expression of zygotic tra leading to the development of a fraction of genotypic XX embryos to 
development as males, the so called XX pseudomales (Salvemini et al., 2009; Sarno et al., 2010; Schetelig et al., 
2012; Liu et al., 2015). It shall made clear that in the present study the XX pseudomales were identified by 
chromosome analysis in a sample of F1 males derived from the sex ratio analysis. However, the karyotypes of 
another sample of 104 sister F1 males could not be determined because they were employed in the crosses to 
evaluate their reproductive status. Thus, one may assume that among these 104 F1 males a fraction must have 
had the XX chromosome pair while the majority were regular males bearing XY sex chromosomes. The analysis 
of these 104 F1 males showed they exhibited the typical mating behavior of the species herein analyzed (Selivon 
et al., 2005; Roriz et al., 2017). Hence, if pseudomales of A. sp.1 were present, they would show similar 
biological characteristics as the pseudomales of A. suspensa that although displaying regular mating behavior 
and producing motile spermatozoids, are sterile (Schetelig et al., 2012). Another aspect suggestive that the 
pseudomales herein produced were sterile is the fact that single sex progenies composed only by females were 
not found among the 72 fertile crosses of the present analysis. These only female offsprings would be produced 
by XX pseudomales if they were fertile as was observed in C. capitata (Savemini et al., 2009) and B. dorsalis 
(Liu et al., 2015). Hence, as pointed out by Schetelig et al. (2012), it seems that in C. capitata and B. dorsalis 
male fertility is not dependent of the Y chromosome while in A. suspensa the Y chromosome may carry factor(s) 
related to fertility. The results herein obtained for A. sp.1 aff. fraterculus, seems to be in line with these 
inferences. 

Sterile crosses in which sperms were not transferred may be related to failure to complete the copula or to 
alteration in the female receptivity to mate, as shown in A. sp.1 from Argentina (Abrahams et al., 2011).  

Since every male from the offspring of treated females, including the existent XX ones, was able copulate it was 
not expected morphological alterations in their terminalia, a fact that indeed was observed, as well as the 
presence of mobile sperms. Moreover, in the present study some of these males had altered testicles, usually 
hypertrophied ones and these characteristics were similar to those observed for males that develop from eggs of 
A. suspensa in which gene tra-2 had been silenced by injection of tra2dsRNA (Schetelig et al., 2012). Another 
morphological alteration in the progenies of treated females is a rare case of a female that had a deformed 
ovipositor. This morphological malformation seems to be similar to that described in B. dorsalis treated by 
parental dsxdsRNA in which a fraction of the F1 females showed shorter ovipositor (Chen et al., 2008).  

Hence, in the present study it is assumed that in the absence of tra-2mat in XX embryos the auto-regulatory 
expression of the zygotic tra were not activated and truncated/default Tra protein must have been produced 
leading XX embryos to follow male development. Clearly, regular XY embryos are not affected by the treatment 
given origin to regular male flies. It must be noted that the sex ratio deviation in favor of males was not caused 
by differential mortality of females as attested by the rate of adult emergence in progenies of the treated females 
(Table 2) but was due to the transformation of a fraction of genotypic XX embryos into pseudomales. This effect 
may be useful to generate improvements in the mass rearing of flies, since sexing of the insects is a significant 
bottleneck for the application of the SIT to insect pest. The production of pseudomales may be enhanced by 
association of dsRNA of the genes tra and tra-2 as reported for A. suspensa (Schetelig et al., 2012), and the 
dsRNAs for adult females could be delivered by other methods more suitable for the large-scale application in 
the biofabrics (Katoch et al., 2013; Zhang et al., 2013; Yu et al., 2013; Pomerantz & Hoy, 2015; Song et al., 
2017). Improvements in modern and more sustainable technologies, as SIT, integrated with other control 
methods may lead to a more environmentally friendly strategies for insect pest control (Liedo et al., 2021).  

5. Conclusion 
The present report describes the results of the transient silencing of gene transformer-2 by parental dsRNA 
interference methodology in A. sp.1 aff. fraterculus. It is concluded that the tra-2mat in the egg is a necessary 
factor for the auto-regulatory activity of embryonic gene transformer, the key gene for the sex determination 
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hierarchy in Anastrepha. This effect may be useful to improve more sustainable technologies for fruit fly control 
such as SIT. 
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