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Abstract 
 

The objective of this research is to investigate the conjugate effects of dependent viscosity and dependent 
thermal conductivity on natural convection flow of an electrically conducting fluid over an isothermal 
sphere with heat generation. Viscosity is considered to be variation and also thermal conductivity is taken 
as a linear function of temperature. The governing equations are solved numerically by numerical 
solution strategy as per requirement and suitability. Solution method such as finite difference method 
with keller box scheme has been employed. The computational findings for dimensionless velocity 
profiles, temperature profiles, local skin friction coefficient and local heat transfer coefficient are 
displayed graphically. 
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1 Introduction 
 
Natural convection takes place while the density difference occurred due to the temperature variations in the 
fluid. Natural convection has a great deal in attention to the researchers because of its presence both in 
nature and engineering applications. In addition the problem of natural convection flow over sphere has 
much interest to the scientists and researchers for their various applications. In engineering applications 
convection is commonly visualized in the formulation of microstructures during the cooling of molten metal 
and flowing of fluid around shrouded heat dissipation fins, solar ponds, petroleum reservoir, nuclear energy, 
fire engineering etc. A very common industrial application of natural convection is free air cooling without 
the aid of fans. Moreover, viscosity is a measure of internal fluid friction due to the resistance of fluid flow. 
On the other hand, thermal conductivity is a measure of the ability of heat transfer. Considering, the 
importance of viscous dissipation and thermal conductivity a lot of research works have been accomplished 
by many researchers. Alam et al. [1] investigated the viscous dissipation effects on MHD natural convection 
flow over a sphere in the presence of heat generation. The effect of viscous dissipation on natural convection 
flow along a sphere with heat generation is considered by Akter, S. et al. [2]. Miraj et al. [3] discussed the 
conjugate effects of radiation and viscous dissipation on natural convection flow over a sphere with pressure 
work. Molla M.M. et al. [4] have been investigated the effects of temperature dependent viscosity on MHD 
natural convection flow from an isothermal sphere. The effects of temperature dependent thermal 
conductivity on MHD free convection flow alone a vertical flat plate with heat generation and Joule heating 
have been examined by Islam et al. [5]. Nasrin R., et al. [6] have investigated the combined effects of 
viscous dissipation and temperature dependent thermal conductivity on magneto hydrodynamic (MHD) free 
convection flow with conduction and joule heating along a vertical flat plate. Gitima [7] presented analysis 
of the effect of variable viscosity and thermal conductivity in micro polar fluid for a porous channel in 
presence of magnetic field. Nasrin R. et al. [8], have been investigated MHD free convection flow along a 
vertical flat plate with thermal conductivity and viscosity depending on temperature. Nabil Eldabe T.M. et 
al. [9] analyzed the effects of temperature dependent viscosity and viscous dissipation on MHD convection 
flow from an isothermal horizontal circular cylinder in the presence of stress work and heat generation. 
Safiqul Islam K. M. et al. [10], have been discussed the effects of temperature dependent thermal 
conductivity on natural convection flow along a vertical flat plate with heat generation. Molla et al. [11] 
analyzed the effect of temperature dependent viscosity on MHD natural convection flow from an isothermal 
sphere. Alim M. M., et al. [12], analyzed the heat generation effects on MHD natural convection flow along 
a vertical wavy surface with variable thermal conductivity. Md. Raihanul Haque et al. [13] analyzed the 
effects of viscous dissipation on natural convection flow over a sphere with temperature dependent thermal 
conductivity. In all of the aforementioned studies, the thermal conductivity was mentioned as a constant 
quantity and temperature dependent thermal conductivity. This physical property may change with the 
change of temperature and viscosity. To the best of our knowledge effect of dependent viscosity and 
temperature dependent thermal conductivity on natural convection flow over a sphere in presence of heat 
generation has not been studied yet. So, the present work demonstrates this issue. The non- dimensional 
transformed boundary layer equations which govern the flow are solved numerically by using finite 
difference method together with keller-box [14] method. Numerical calculations were carried out for 
different values of the various non-dimensional quantities and then presented in figures. 
 

2 Formulation of the Problem  
 
We consider a steady two-dimensional natural convection boundary layer flow of an electrically conducting 
and viscous incompressible fluid over a sphere of radiusa . The surface temperature of the sphere is 

assumed as wT and ∞T  being the ambient temperature of the fluid. When ∞>TTw  an upward flow is 

established along the surface due to free convection and the flow is downward for ∞< TTw . The 

mathematical model for the assumed physical problem is prescribed by the following conservation equation 
of mass, momentum and energy. 
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Fig. 1. Physical model and coordinate system 

 
Under these considerations the governing equations are 
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∞−∗+∞= )(1 TTkk γ , where ∞k is the thermal conductivity of the ambient fluid and 

where ∗γ  is a constant .Equation (3) can be 

reduced into the following form  
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3 Transform of the Govern Equations 
 
The above equations are non-dimensional as usual manner by the following substitutions: 
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 (11) 

 

Here, ( ) 2νβ 3
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In practical application, the physical quantities of principal interest are the heat transfer and the skin- friction 
coefficient, which can be written in non- dimensional form as 

 and 
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the new variables (7), we have the simplified form of the heat transfer and the skin- friction coefficient as 
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4 Method of Solution 
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5 Results and Discussion 
 
The problem considered here involves a number of parameters on the basis of which a wide range of 
numerical results have been derived. Of these results, a small section is presented here for brevity. The 
numerical results of velocity and temperature profiles and also for local skin frictions as well as local heat 
transfer coefficient are shown in Fig. 2(a) to Fig. 9(b) for various values of parameters entering into the 
problem. 
 

Fig. 2(a) shows the effects of the velocity profile for different values of the dependent thermal conductivity 
parameter γ  = 0.10, 0.30, 0.50, 0.70, 0.90 while the other controlling parameters Pr = 0.72, Q = 0.30 and ε  

= 1.50.  Corresponding distribution of the temperature profile is shown in Fig. 2(b). From Fig. 2(a), it is seen 
that if the dependent thermal conductivity parameter γ  increases, the velocity of the fluid also increases. On 

the other hand, it is observed that the temperature profile increases within the boundary layer due to increase 
of the dependent thermal conductivity parameter γ  which is evident from Fig. 2(b). 

 
From Fig. 3(a) and Fig. 3(b), it can also easily be seen that an increase in the dependent thermal conductivity 

γ   leads to increase the local skin friction coefficient Cfξ  and also the local rate of heat transfer coefficient 

Nuξ  increase with the increase of dependent thermal conductivity while Prandtl’s number Pr = 0.72, heat 

generation parameter Q = 0.30 and dependent viscosity parameter ε  = 1.50. Also it is observed that at any 

position ofξ , the local skin friction coefficient Cfξ  and the local Nusselt number Nuξ increase as γ  

increases from 0.00 to 1.2. This phenomenon can easily be understood from the fact that when the     
dependent thermal conductivity γ  increases, the temperature of the fluid rises and the thickness                                 

of the velocity boundary layer grows i.e. the thermal boundary layer becomes thinner than the velocity 
boundary layer. Therefore the skin friction coefficient Cfξ  and the local Nusselt number Nuξ  are 

increased. 

 

From Fig. 4(a), it may be concluded that the dependent viscosity increases the velocity field in the region η
∈[0, 12]. The changes of velocity profiles in the η  direction reveals the typical velocity profile for natural 

convection boundary layer flow i.e. the velocity is zero at the boundary of wall then it increases and reaches 
to the peak value as η  increases and finally the velocity approaches to zero for the asymptotic value. The 

maximum values of the velocity are 0.40934, 0.44132, 0.47876, 0.50425, 0.52296 for ε  = 0.10, 1.00, 1.50, 
2.00, 2.50 respectively and which occurs at η  = 1.23788 for first and second maximum values, at η  = 

1.36929 for third and fourth maximum values and η  = 1.43822 for last maximum value. Here we see that 

the velocity increases by 27.76% as η  increases from 0.10 to 2.50. In Fig. 4(b) it is clearly seen that the 

temperature distribution increases owing to increase of the values of the dependent viscosity parameter ε  
and maximum is at the wall. 
 

The effect for different values of dependent viscosity parameter ε  (= 0.`10, 1.00, 1.50, 2.00, 2.50), the local 

skin friction coefficient Cfξ  and local rate heat of transfer coefficient Nuξ  are shown in the Fig. 5(a) and 

Fig. 5(b) while Pr = 0.72,  Q = 0.90 and γ = 0.70. Here, it is seen that as the dependent viscosity parameter 

ε  increases both the local skin friction coefficient and local rate of heat transfer coefficient (Nuξ ) 

increase.  
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Fig. 6(a) and Fig. 6(b) illustrate the effect of the heat generation parameter Q (= 0.40, 0.70, 0.90, 1.10) with 
parameters Pr = 0.72, ε  = 0.60 and γ  = 0.80 on the velocity profile and the temperature profile. From Fig. 

6(a), it is revealed that the velocity profile increases with the increase of the heat generation parameter Q that 
indicates that heat generation parameter accelerates the fluid motion. Small increment is shown from Fig. 
6(b) on the temperature profile for increasing values of Q.  
 

Fig. 7(a) and Fig. 7(b) illustrate the variation of local skin friction coefficient ( )f ξ′′  and the rate of local 

heat transfer Nuξ  against ξ  for different values of heat generation parameter Q (= 0.40, 0.70, 0.90, 1.10) 

as obtained by solving numerically equations (7.13) and (7.14) where Pr = 0.72, ε  = 0.60 and γ  = 0.80. It 

is seen from Fig. 7(a) that the skin friction coefficient Cfξ  is influenced considerably and increases when 

the values of heat generation parameter Q increase at different position of ξ  with other controlling 

parameters. Fig. 7(b) indicates that the rate of local of heat transfer Nuξ  decreases owing to increase in 

values of heat generation parameter Q with other fixed parameters. 
 

Fig. 8(a) depicts the velocity profile for different values of the Prandtl,s  number Pr ( = 0.72, 1.00, 1.74, 
2.00, 3.00) with parameters Q = 0.70, ε  = 0.50 and γ  = 0.90.  Corresponding distribution of the 
temperature profile is shown in Fig. 8(b). From Fig. 8(a), it can be seen that if the Prandtl’s number 
increases, the velocity of the fluid decreases. On the other hand, from Fig. 8(b) we observe that the 
temperature profile also decreases within the boundary layer due to increase of the Prandtl’s number Pr. 
 

Fig. 9(a) and Fig. 9(b) illustrate the variation of local skin friction coefficient Cfξ  and the rate of local heat 

transfer Nuξ  against ξ  for different Pr ( = 0.72, 1.00, 1.74, 2.00, 3.00) with parameters Q = 0.70, ε  = 

0.50 and γ  = 0.90. as obtained by solving numerically equations (7.13) and (7.14). It is seen from figure 

9(a) that the skin friction coefficient Cfξ  is influenced considerably and decreases when the values of 

Prandtl’s number Pr increase at different position of ξ  with other controlling parameters. Fig. 7(b) indicates 

that the rate of local of heat transfer Nuξ  increases owing to increase in values of Prandtl’s number Pr with 

other fixed parameters. 
 

  
Fig. 2(a) and 2(b). Variation of dimensionless velocity profiles ( ),f η ξ′  and temperature profiles 

( ),θ η ξ against dimensionless distance η  for different values of dependent thermal conductivity 

parameter γ  with Pr = 0.72, ε  = 1.50 and Q = 0.30 
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Fig. 3(a) and 3(b). Variation of dimensionless skin friction coefficient ( )f ξ′′  and local Nusselt 

number, Nuξ against dimensionless distance ξ  for different values of dependent thermal 

conductivity parameter γ  with Pr = 0.72, ε  = 1.50 and Q = 0.30 
 

  
Fig. 4(a) and 4(b). Variation of dimensionless velocity profiles ( ),f η ξ′  and temperature profiles 

( ),θ η ξ against dimensionless distance η  for different values of dependent viscosity parameter ε  

with Pr = 0.72, γ  = 0.70 and Q = 0.90 
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Fig. 6(a) and 6(b). Variation of dimensionless velocity profiles ( ),f η ξ′  and temperature profiles 

( ),θ η ξ against dimensionless distance η  for different values of heat generation parameter Q with Pr 

= 0.72, γ  = 0.80 and ε  = 0.60 
 

  
Fig. 7(a) and 7(b). Variation of dimensionless skin friction coefficient Cfξ  and local Nusselt number, 

Nuξ against dimensionless distance ξ  for different values of heat generation parameter Q with Pr = 

0.72, γ  = 0.80 and ε  = 0.60 
 

  
Fig. 8(a) and 8(b). Variation of dimensionless velocity profiles ( ),f η ξ′  and temperature profiles 

( ),θ η ξ against dimensionless distance η  for different values of prandtl’s number Pr with Q = 0.70, 

γ  = 0.90 and ε  = 0.50 
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Fig. 9(a) and 9(b). Variation of dimensionless skin friction coefficient Cfξ  and local Nusselt number, 

Nuξ against dimensionless distance ξ  for different values of prandtl’s number Pr with Q = 0.70, γ  = 

0.90 and ε  = 0.50 
 

6 Conclusions 
 
From the present investigation, the following conclusions may be drawn: 
 

• Increase in the values of dependent thermal conductivity parameter γ  leads to increase the velocity 

profile. The temperature profile, the local skin friction coefficient Cfξ  and also the local rate of heat 

transfer Nuξ  increase with the increase of dependent thermal conductivity parameter γ  while 

Q=0.30, ε  = 1.50 and Pr = 0.72. 

• The velocity profiles, the temperature profiles, the local skin friction coefficient Cfξ  and also the 

local heat transfer coefficient Nuξ increase significantly when the values of dependent viscosity 

parameter ε  increase. 

• Significant effects of heat generation parameter Q on velocity and temperature profiles as well as on 
local skin friction coefficient and the rate of heat transfer have been found in this investigation but the 
effect of heat generation parameter Q on rate of heat transfer is more significant. An increase in the 
values of heat generation parameter Q leads to both the velocity and the temperature profiles 

decreases. The local skin friction coefficient Cfξ  increases at different position ofξ , but the local 

rate of heat transfer Nuξ  decreases at different position of ξ  for Pr =0.72, ε  = 0.60 and γ  = 0.80. 

• Increasing values of Prandtl’s number Pr leads to decrease the velocity profiles. The temperature 
profiles, the local skin friction coefficient Cfξ  but the local rate of heat transfer Nuξ  increases with 

the increase of Prandtl’s number Pr while Q = 0.70, ε  = 0.50and γ  = 0.90. 
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