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Abstract 
 

The effect of viscous dissipation and temperature dependent viscosity on MHD free convection flow over 
a sphere with heat conduction has been analyzed in the article. The governing equations are transformed 
into dimensionless non-similar equations by using a set of useful transformations and solved numerically 
by finite difference method along with Newton’s linearization approximation. Attention has been focused 
on the evaluation of shear stress in terms of local skin friction and local Nusselt number, the velocity and 
the temperature profiles over the whole boundary layer are shown graphically by using Tecplot-10 and 
tabular form for different values of the Prandtl’s number Pr, magnetic parameter M, the temperature 
dependent viscosity  , viscous dissipation parameter N and the Joule heating parameter J.  
 

 
Keywords: Free convection; Joule-heating; Magneto hydrodynamics; Variation viscosity and viscous 

dissipation. 
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NOMENCLATURES 
 
a Radius of the sphere u, v dimensionless velocity components 
Cp specific heat u0 characteristic velocity 

xCf
 

Skin friction coefficient X, Y Cartesian coordinates  

f dimensionless stream function  x, y dimensionless Cartesian coordinates 
g acceleration due to gravity  X/a angle of the sphere 
Gr Grashof number  

0H
 

Magnetic field strength GREEK SYMBOLS 

J Joule heating parameter  
M Magnetic parameter  co-efficient of thermal expansion 
N viscous dissipation parameter  Temperature dependent viscosity parameter 

xNu
 

Nusselt number  
K thermal conductivity 

Pr Prandtl’s number   dynamic viscosity of the fluid 

  
the ambient dynamic viscosity 

r Radius of the radical distance  kinematic viscosity of the fluid  
T temperature   dimensionless temperature  
Tw temperature at the wall    density of the fluid    

T Temperature at  ambient fluid   electrical conductivity  
U, V velocity components   stream function  

 

1 Introduction 
 
Free convection flow is often encountered in cooling of nuclear reactors or in the study of the structure of 
stars and planets. Along with the free convection flow the phenomenon of the boundary layer flow of an 
electrically conducting fluid over a sphere in the presence of a Joule-heating term and magnetic field are also 
very common because of their applications in nuclear engineering in connection with the cooling of reactors. 
Numerical study of viscous dissipation and temperature dependent viscosity on magnetohydrodynamic 
(MHD) free convection flow with heat conduction have been taken on various geometrical shapes such as a 
vertical flat plate, cylinder, sphere etc. studied by many investigators and it has been a very popular research 
topic for many years. Alam et al. [1] investigated the viscous dissipation effects on MHD natural convection 
flow over a sphere in the presence of heat generation. The effect of viscous dissipation on natural convection 
flow alone a sphere with heat generation is considered by Akter, S. et al. [2]. Miraj, M. et al. [3] discussed 
the conjugate effects of radiation and viscous dissipation on natural convection flow over a sphere with 
pressure work. Molla, M. M. et al. [4] carried out the effects of temperature-dependent thermal conductivity 
on MHD natural convection flow from an isothermal sphere. The effects of temperature-dependent thermal 
conductivity on MHD free convection flow along a vertical flat plate with heat generation and Joule heating 
examined by Islam, S. et al. [5]. Nasrin, R. et al. [6] performed the combined effects of viscous dissipation 
and temperature dependent thermal conductivity on magnetohydrodynamic (MHD) free convection flow 
with conduction and Joule heating along a vertical flat plate. Gitima [7] presented the analysis of the effect 
of variable viscosity and thermal conductivity in micropolar fluid for a porous channel in presence of 
magnetic field. Cebeci, T., & Brashaw, P.[8] established the physical and computational aspects of 
convective heat transfer.  Keller H.B. [9] developed the numerical methods in boundary layer theory.  
Nasrin, R. et al. [10] made the MHD free convection flow along a vertical flat plate with thermal 
conductivity and viscosity depending on temperature. Nabil Eldabe T.M., et al. [11] explored the effects of 
temperature-dependent viscosity and viscous dissipation on MHD convection flow from an isothermal 
horizontal circular cylinder in the presence of stress work and heat generation. Safiqul Islam K. M., et al. 
[12] established the effects of temperature-dependent thermal conductivity on natural convection flow along 
a vertical flat plate with heat generation. Molla, M. M., et al. [13] studied the effect of temperature 
dependent viscosity on MHD natural convection flow from an isothermal sphere. Alim, M. A. et al. [14] 
showed the heat generation effects on MHD natural convection flow along a vertical wavy surface with 
variable thermal conductivity. Md. Raihanul Haque et al. [15] observed the effects of viscous dissipation on 
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natural convection flow over a sphere with temperature-dependent thermal conductivity. Charruaudeau, J. 
[16] examined the influence de gradients de properties physiques en convection force application au cas du 
tube. Nazar et al. [17] established the free convection boundary layer on an isothermal sphere in a micro 
polar fluid. Molla, M.M. et al. [18] performed the natural convection flow along a vertical wavy surface with 
uniform surface temperature in presence of heat generation / absorption. Md.,M.Alam et al. [19], analyzed 
the free convection from a vertical permeable circular cone with pressure work and non-uniform surface 
temperature. Pinakee Dey et al. [20] studied the effects of an asymptotic method for over-damped forced 
nonlinear vibration systems with slowly varying coefficients. 
 
In the present work, we have investigated the viscous dissipation and temperature dependent viscosity with 
MHD and Joule heating effect on the skin friction and the local heat transfer coefficient in the entire region 
from upstream to downstream of a viscous incompressible and electrically conducting fluid over a sphere. 
The transformed non-similar boundary layer equations governing the flow together with the boundary 
conditions based on conduction and convection were solved numerically using the implicit finite difference 
method with Keller box [9] scheme by Cebeci and Bradshaw [8] along with Newton's linearization 
approximation method. We have studied the effect of the Prandtl’s number Pr, the viscous dissipation 

parameter N, the Joule heating parameter J, Magnetic parameter M and variation viscosity parameter   on 
the velocity and temperature fields as well as on the skin friction and local heat transfer coefficient. All the 
investigations for the fluid with low Prandtl’s number appropriate for the liquid metals are carried out. 
 

2 Formulation of the Problem  
 

We consider a steady two-dimensional natural convection boundary layer flow of an electrically conducting 

and viscous incompressible fluid over a sphere, 0H  is the magnetic field strength and   is the electrical 

conductivity. The surface temperature of the sphere is assumed as wT
and T  being the ambient 

temperature of the fluid. When TTw  an upward flow is established along the surface due to free 

convection and the flow is downward for  TTw .  
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Fig. 1. Physical model and coordinate system 
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The mathematical model for the assumed physical problem is prescribed by the following conservation 
equation of mass, momentum and energy. Under these considerations the governing equations are 

    0
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The boundary conditions for the governing equations are   
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Where a is the radius of the sphere and r  is the radial distance from the symmetrical axis to the surface of 

the sphere. Here we will consider
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3 Transform of the Governing Equations 
 
The above equations are made dimensionless by using the following substitutions: 
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Using the above transformations into equations (1) to (3), we have 
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The boundary conditions associated with (9) to (10) become 
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Joule heating parameter. To solve equations (9) and (10) subject to the boundary conditions (11), we assume 

the following variables 
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The momentum and energy equations (9) to (10) reduce to 
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The corresponding boundary conditions are  
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In practical application, the physical quantities of principal interest are the heat transfer and the skin- friction 
coefficient, which can be written in non- dimensional form as 
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, k being the thermal conductivity of the fluid. Using the new 
variables (6), we have the simplified form of the heat transfer and the skin- friction coefficient as 
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4 Method of Solution 
 
This paper deals with the natural convection flow on variation viscosity and viscous dissipation of viscous 
incompressible fluid over a heated sphere with Joule heating and magneto hydrodynamics being investigated 
using the very efficient implicit finite difference method known as the Keller box scheme developed by 
Keller [9], which has been well documented by Cebeci and Bradshaw [8].  
 

To apply the aforementioned method, equations (11) and (12) with their boundary conditions (13) are first 
converted into the following system of first order equations. For this purpose we introduce new dependent 

variables
 ,u x y

,
 ,v x y

, 
 ,p x y

 and 
 ,g x y

 so that the transformed momentum and energy equations 
can be written as 
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and the boundary conditions (13) are 
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Now we consider the net rectangle on the 
 ,x y

 plane as shown in the Fig. 2 and denote the net points by  
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The finite difference approximation according to box method to the three first order ordinary differential 

equation (18)-(20) are written for the mid - point 
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 shown in Fig. 2. 
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The finite difference approximation to the first order differential equation (19) and (20) are written for the 
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The above equations are to be linearized by using Newton’s Quasi-linearization method. The program used 
was developed with Lahey Fortran 90. Then linear algebraic equations can be written in block matrix which 
form a coefficient matrix. The whole procedure, namely reduction to first order followed by central 
difference approximations, Newton’s Quasi-linearization method and the block Thomas algorithm, is well 
known as the Keller-box method.   
 

5 Results and Discussion 
 
For getting appropriate solutions and proper curves by using suitable data for some test values of Prandtl’s 
number Pr = 0.10, 0.72, 1.00, 1.74 and for a wide range of the values of the viscous dissipation parameter N 

= 0.90, 0.70, 0.50, 0.20, temperature dependent viscosity parameter   = 1.50, 1.20, 1.00, 0.70, 0.40, 0.20, 
magnetic parameter M = 1.50, 1.20, 0.90, 0.60, 0.30 and the Joule heating parameter J = 0.90, 0.70, 0.30, 
0.10. First demarcate the area of a sphere and also satisfy its boundary conditions. Then for worthy vaIues of 
various paprameters the programe is convergent so that it gives suitable data. we know the values of the 

functions 
 ,f x y

, 
 ,x y

 and their derivatives for the different values of the Prandtl’s number Pr, the 

temperature dependent parameter  , the viscous dissipation parameter N, the magnetic parameter M and the 
Joule heating parameter J. Also we may calculate the numerical values of the heat transfer coefficient 

 , 0x 
 and the velocity gradient 

 ,0f x
 on the surface that are important from the physical point of 

view. 
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Fig. 3 (a) and Fig. 3 (b) deal with the effect of the viscous dissipation parameter N (= 0.20, 0.50, 0.70, 0.90) 
for distinct values of the controlling parameters Pr = 0.72, J = 0.80, M = 0.50 and   = 2.00 on the velocity 

profiles 
 ,f x y

 and the temperature profiles
 ,x y

. From Fig. 3(a), it is revealed that the velocity profile

 ,f x y
 increases very small with the increase of the viscous dissipation parameter N which indicates that 

viscous dissipation increases the fluid motion slowly. In Fig. 3 (b) it is shown that the temperature profiles

 ,x y
small increase for increasing values of N with other controlling parameter.  

 
The effects of magnetic parameter or Hartmann number M for Pr = 0.72, J = 0.70, N = 0.50 and  = 2.00 on 
the velocity profiles and temperature profiles are shown in Figs. 4(a) to 4(b). Fig. 4(a) and Fig. 4(b) 
represent respectively the effects of magnetic parameter M on the velocity and temperature profiles. From 
these figures, it is seen that the velocity profiles decrease with the increasing values of M and the 
temperature profiles increase with the increasing values of M. 
 
From Fig. 5(a) shows the effects of the velocity profile for various values of the temperature dependent 

parameter   = 0.20, 0.40, 0.70, 1.00, 1.20, 1.50 while the other controlling parameters Pr = 0.72, J = 0.90, 
M = 1.00 and N = 0.60.  Corresponding distribution of the temperature profile is shown in Fig. 5(b). From 
Fig. 5(a), it is seen that if the temperature dependent viscosity parameter increases, the velocity of the fluid 
also increases. On the other hand, it is observed that the temperature profile increases within the boundary 

layer due to increase of temperature dependent viscosity parameter   which is evident from Fig. 5(b). 
 
From Fig. 6(a) that an increase in the Joule heating parameter is associated with a considerable increase in 
velocity profiles but near the surface of the plate the velocity increases and become maximum and then 

decreases and finally approaches to zero. Fig. 6(b) shows the distribution of the temperature profiles 
 ,x y

 

against y  for the same values of the Joule heating parameter J and each of which attains maximum at the 
surface.  
 
Fig. 7(a) depicts the velocity profile for different values of the Prandtl’s number, Pr = 

 0.10, 0.72, 1.00, 1.74 while the others controlling parameters N = 0.80, J = 0.50, M = 1.00 and   = 2.00.  

Corresponding distribution of the temperature profile 
 ,x y

in the fluids is shown in Fig. 7(b). From Fig. 
7(a), it is illustrate that if the Prandtl’s number increases the velocity of the fluid decreases. On the other 
hand, from Fig. 7(b) it is seen that the temperature profile decreases within the boundary layer due to 
increase of the Prandtl number Pr.  
 

Numerical values of the velocity gradient 
 ,0f x

 and the heat transfer coefficient 
 ,0x 

are depicted 

graphically in Fig. 8(a) and Fig. 8(b) respectively against the axial distance x  for different values of the 
viscous dissipation parameter N (= 0.20, 0.50, 0.70, 0.90) for the fluid having Prandtl’s number Pr = 0.72, J 

= 0.80, M = 1.00 and  = 2.00. From Fig. 8(a), it is performed that the skin-friction
 ,0f x

 increases when 
the viscous dissipation parameter N increases. It is also observed in Fig. 8(b), the heat transfer coefficient 

 ,0x 
 decreases while viscous dissipation parameter N increases. 

 
The effects of magnetic parameter or Hartmann number M for various values of Pr = 0.72, J = 0.70, N = 

0.50 and  = 2.00 on the local skin friction coefficient 
 ,0f x

 and the heat transfer coefficient 
 ,0x 

are 
shown in Fig. 9(a) and Fig. 9(b). From Fig. 9(a) and Fig. 9(b) it is evident that the increasing values of 

magnetic parameter M leads to decrease both the skin friction co-efficient 
 ,0f x

and the heat transfer co-

efficient
 ,0x 

. 
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3(a) and 3(b). Variation of dimensionless velocity profiles 
 ,f x y

 and temperature profiles 
 ,x y

against dimensionless distance 
y

 for different values of viscous dissipation parameter N with Pr = 

0.72,   = 2.00, M = 1.00 and J = 0.80 

 
 

4(a) and 4(b). Variation of dimensionless velocity profiles 
 ,f x y

 and temperature profiles 
 ,x y

against dimensionless distance 
y

 for various values of magnetic parameter M with Pr = 0.72,   = 
2.00, J = 0.70 and N= 0.50. 
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6(a) and 6(b). Variation of dimensionless velocity profiles 
 ,f x y

 and temperature profiles 
 ,x y

against dimensionless distance 
y

 for different values of Joule heating parameter J with N = 0.80, M 

= 1.00,   = 2.00 and J = 0.60 

  

7(a) and 7(b). Variation of velocity profiles 
 ,f x y

 and temperature profiles 
 ,x y

against 

dimensionless distance y  for various values of Prandtl’s number Pr with N = 0.80, J = 0.50, M= 1.00 

and   = 2.00 
 

  
 

8(a) and 8(b). Variation of dimensionless skin friction coefficient 
 ,0f x

 and the heat transfer 

coefficient 
 ,0x 

against dimensionless distance x  for distinct values of viscous dissipation 

parameter N with Pr = 0.72,   = 2.00, J = 0.80 and M = 1.00 
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9(a) and 9(b). Variation of dimensionless skin friction coefficient 
 ,0f x

 and the heat transfer 

coefficient 
 ,0x

against dimensionless distance x  for different values of magnetic parameter M 

with Pr = 0.72, J = 0.70, N = 0.50 and   = 2.00 

  

10(a) and 10(b). Variation of dimensionless skin friction coefficient 
 ,0f x

 and the heat transfer 

coefficient 
 ,0x 

against dimensionless distance x  for distinct values of Joule heating parameter J 

with N = 0.80, N= 0.80, M = 1.00 and   = 2.00 
 

  

11(a) and 11(b). Variation of dimensionless skin friction coefficient 
 ,0f x

 and the heat transfer 

coefficient 
 , 0x 

against dimensionless distance x  for various values of variation viscosity 

parameter  with N = 0.60, J = 0.90, M = 1.00 and Pr = 0.72 
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12(a) and 12(b). Variation of dimensionless skin friction coefficient 
 ,0f x

 and the heat transfer 

coefficient 
 , 0x

against dimensionless distance x  for distinct values of Prandtl’s number Pr with 

N = 0.80, J = 0.50, M = 1.00 and   = 2.00 
 

The analysis of the effects of Joule heating parameter J (= 0.10, 0.30, 0.70, 0.90) on the surface shear 

stress  in terms of local skin-friction coefficient 
 ,0f x

 and the rate of heat transfer in terms of the 

Nusselt number 
 ,0x 

 against x  for Pr = 0.72, N = 0.80, M = 1,00 and  = 2.00 is shown in Fig. 10(a) 

and Fig. 10(b). It is found that the values of the skin-friction
 ,0f x

 and the Nusselt number 
 ,0x

 
both increases for increasing values of Joule heating parameter J. Here it has been observed that the values 

of the skin-friction 
 ,0f x

increases by 76.734% and the Nusselt number 
 ,0x

 increases by 83.264% 
while J increased from 0.10 to 0.90. 
 

From Fig. 11(a), it is found that increase in the value of the temperature dependent viscosity parameter   

leads to increase of the value of the shear stress coefficient 
 ,0f x

which is usually expected. Again 

from Fig. 11(b) it is illustrated that the increase of the temperature dependent viscosity parameter   leads 

to increase of the heat transfer coefficient
 ,0x 

. 
 
From Fig. 12(a), it is seen that increase in the value of the Prandtl’s number Pr (= 0.10, 0.72, 1.00, 1.74) 

leads to decrease of the value of shear stress
 ,0f x

.  Similar results hold in the Nusselt number 
 ,0x

shown in Fig. 12(b) for the same values of Prandtl number Pr while J = 0.50, N = 0.80, M = 1.00 and   = 
2.00. 
 

Table 1. Skin friction coefficient and Nusselt number against x for different values of magnetic 

parameter M with other controlling parameters Pr = 0.72, J = 0.70, N =0.50 and   = 2.00 
 

                             M = 0.60                              M = 0.90                              M = 1.20                                M = 1.50  
x  ,0f x

 
 ,0x 

 
 ,0f x

 
 ,0x 

 
 , 0f x

 
 ,0x 

 
 ,0f x

 
 ,0x 

 
0.00000 
0.10472              
0.20944 
0.40143             
0.50615 
0.80285 
1.01229 
1.20428 
1.30900              
1.50098              
1.57080                                                                                          

0.00000 
0.08795 
0.17522 
0.33132 
0.41318 
0.62615 
0.75407 
0.85072 
0.89399 
0.95406 
0.96930 

1.02248 
1.02141 
1.01838 
1.00768 
0.99902 
0.96344 
0.92818 
0.88812 
0.86301 
0.81068 
0.78954 

0.00000 
0.08340 
0.16613 
0.31395 
0.39132 
0.59178 
0.71112 
0.80021 
0.83950 
0.89264 
0.90550                                                                           

0.99028 
0.98919 
0.98612 
0.97528 
0.96651 
0.93047 
0.89478 
0.85425 
0.82887 
0.77603 
0.75471 

0.00000 
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0.15800 
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0.67310 
0.75569 
0.79161 
0.83900                                                                      
0.84993       

0.96003 
0.95893 
0.95582 
0.94485 
0.93597 
0.89952 
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0.79685 
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0.72206 

0.00000 
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0.80142 

0.93160 
0.93045 
0.92731 
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0.87053 
0.83415 
0.79291 
0.76711 
0.71350 
0.69192 
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The values of the local skin friction coefficient 
 ,0f x

 and the heat transfer coefficient 
 , 0x 

for 

different values of magnetic parameter or Hartmann number M while Pr = 0.72, N = 0.50, J = 0.70 and   = 
2.00 are given in Table 1 which is shown in below. Moreover, it is examined that the values of local skin 

friction coefficient 
 ,0f x

 decrease at various position of x  for magnetic parameter M = 0.60, 0.90, 1.20, 

1.50. The rate of the local skin friction coefficient 
 ,0f x

 decreases by 14.72% as the magnetic parameter 
M changes from 0.60 to 1.50 and x  = 0.80285. Furthermore, it is seen that the numerical values of the heat 

transfer coefficient 
 ,0x

decrease as magnetic parameter or Hartmann number M rising. The rate of 

decrease of the heat transfer coefficient 
 ,0x

is 9.64% at position  x  = 0.80285 as the magnetic 
parameter M changes from 0.60 to 1.50. 
 

Table 2. Comparisons of the present numerical results of xNu or the Prandtl numbers Pr = 0.70, 7.00 
without effect of the viscous dissipation parameter, Joule heating parameter and temperature 
dependent viscosity parameter with those obtained by Molla et al. [18] and Nazar et al. [17] 

 
                           Pr = 0.70                                    Pr = 7.00 
x  in degree Naza et al.  [17] Molla et al. [18]   Present Naza et al. [17] Molla et al. [18] Present 

0 0.4576 0.4576 0.4492 0.9595 0.9582 0.9527 
10 0.4565 0.4564 0.4485 0.9572 0.9558 0.9487 
20 0.4533 0.4532 0.4467 0.9506 0.9492 0.9410 
30 0.4480 0.4479 0.4401 0.9397 0.9383 0.9279 
40 0.4405 0.4404 0.4340 0.9239 0.9231 0.9140 
50 0.4308 0.4307 0.4259 0.9045 0.9034 0.8945 
60 0 .4189 0.4188 0.4106 0.8801 0.8791 0.8611 
70 0.4046 0.4045 0.3982 0.8510 0.8501 0.8395 
80 0.3879 0.3877 0.3769 0.8168 0.8161 0.8133 
90 0.3684 0.3683 0.3607 0.7774 0.7768 0.7707 

 
The comparison of the heat transfer coefficient between the present work and the work of Nazar et.al. and 
Molla et.al. are presented in Table 2 respectively. We observed that the comparison without the effect of 
viscous dissipation parameter, temperature dependent viscosity parameter, magnetic parameter and Joule 
heating parameter in the present problem is similar to the previous work. 
 

6 Conclusions 
 
From the present investigation, the following conclusions may be drawn: 
 
 Increase in the values of viscous dissipation parameter N leads to an increase in the velocity profile, 

the temperature profile, the local skin friction coefficient 
 ,0f x

 but the rate of heat transfer 

 ,0x 
 decreases with the increase in viscous dissipation parameter N for J =0.80,   = 2.00, M = 

1.00 and Pr = 0.72. 

 The velocity profile, the skin friction coefficient
 ,0f x

 and the rate of heat transfer 
 ,0x 

 all are 
decreasing for increasing values of the magnetic parameter or Hartmann number M, but the 
temperature profile increase with the increase of magnetic parameter M. 

 The velocity profiles, the temperature profiles, the local skin friction coefficient 
 ,0f x

 and also the 

heat transfer coefficient 
 ,0x 

increase significantly when the values of variable viscosity parameter 
  increase. 
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 Significant effects of Joule heating parameter J on velocity and temperature profiles as well as on 
local skin friction coefficient and the rate of heat transfer have been found in this investigation. An 
increase in the values of Joule heating parameter J leads to an increase in both velocity and 

temperature profiles. The local skin friction coefficient 
 ,0f x

 increases at a different position of x , 

also the rate of heat transfer 
 ,0x 

 increases at different position of x  for Pr =0.72,   = 2.00 M = 
1.00and N = 0.80. 

 Increasing values of Prandtl’s number Pr leads to decrease the velocity profiles. The temperature 

profiles, the local skin friction coefficient 
 ,0f x

 and also the local rate of heat transfer 
 ,0x 

 

increases with the increase of Prandtl’s number Pr when J = 0.50,   = 2.00, M = 1.00 and N = 0.80. 
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