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ABSTRACT 
 

In this research article, a Three Point Single Hybrid Block Method for Direct solution of general 
second order ordinary differential equations is considered. The method was derived by collocation 
and interpolation of power series approximation to generate a continuous linear multistep method. 
The resultant method was evaluated at selected grid and off grid points to generate a discrete 
block method. The basic properties of the method such as order, error constant, zero Stability and 
consistency are investigated. The new method was tested on some numerical examples which 
ranges from linear, non-linear and real life problem of initial value problems and was found to be 
more efficient and give better approximation than the existing methods. 
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1. INTRODUCTION 
 

In this paper, initial value problem (IVP) of 
general second order ordinary differential 
equations (ODEs) of the form: 

 

0 0( , , ), ( ) ,y f x y y y a y y     
   

     (1) 

 
is considered. 
 
Many problems in the form of (1) may not be 
easily solved analytically, therefore, an 
approximate numerical integrations are often 
developed to solve (1). We often reduce them to 
systems of first order ordinary differential 
equations and use appropriate method to solve 
them. The reduction appraoch has been 
discussed by several authors such as Fatunla [1] 
and Lambert [2]. To avoid the rigour of reducing 
(1) to equivalent system of first order ordinary 
differential equations, authors proposed linear 
multistep method to solve equaion (1) directly. 
Among such authors are Awoyemi [3,4], 
Awoyemi and Kayode [5], Adesanya et al. [6], 
Badmus and Yahaya [7]. According to Awoyemi 
[3], continuous linear multistep method has 
greater advantages over the discrete method in 
that they give better error estimation, provide a 
simplified coefficient for further analytical work at 
different points, and guarantee easy 
appropriation of solution at all interior points of 
the integration interval. In Lambert [2], an optimal 
two step method called the numerov’s method 
was discussed. Among the authors that 
proposed continuous linear multistep methods 
are Awoyemi [4], Onumanyi et al. [8], Adesanya 
et al. [6], Okunuga [9],  to mention a few. These 
authors individually implemented their methods 
with predictor-correct, block method and adopted 
Taylor series expansion to supply starting values. 
According to Adesanya [10], the setback of the 
predictor-corrector method is that it is very costly 
as subroutines are very complicated to write 
because of the special techniques required to 
supply starting values and for varying the step 
size which leads to longer computer time and 
more human effort. The predictors they 
developed are not of the same order with the 
correctors. Hence, it affects the accuracy of the 
method. 
 
Also, various authors such as Olanegan et al.  
[11], Bolarinwa et al. [12] developed the hybrid 

method. And Ali Shokri [13] proposed a 
symmetric P-Stable hybrid Obrechkoff method 
for the numerical solution of general second 
order initial value problems. This hybrid method, 
while retaining certain charateristics of the 
continuous linear multistep method, shares with 
Runge-Kutta methods the property of utilizing 
data at other points, other than the step point

, 0 ,1 1n jx j n   . This method is useful in 

reducing the step number of a scheme and the 
scheme still remain zero stable. Since the 
predictor-corrector method has not met the 
requirements above, hence there is a need to 
develop other method to cater for the draw-
backs. Therefore, scholars developed block 
method to cater for the setback of predictor-
corrector method. Among such authors are 
Awoyemi [4], Jator and Li [14], Majid et al. [15] 
and Adesanya [16]. Fatunla [17] and Mohammed 
et al. [18] independently proposed the use of 
block method as predictors for the numerical 
solution of second order ordinary differential 
equations. 
 
Recently, single hybrid three-step and non hybrid 
four-step block methods for solving third order 
ordinary differential equations was considered by 
Ogunware et al. [19]. 
 
In this article, we are motivated by the need to 
develop a new continuous three point single 
hybrid block method with one-off point for direct 
solution of general second order ordinary 
differential equation of initial value problems 
which can handle general second order ordinary 
differential equation more accurately and 
efficiently than the existing methods. 
 

2. METHODOLOGY 
 

We consider power series as an approximate 
solution to the general second order ordinary 
differential equations initial value problems of the 
form (1) to be 

 
1

0

( )
r s

j
j

j

y x a x
 



                                         (2) 

 
where aj are parameters to be determined, r and 
s are number of interpolation and collocation 
points. 

 



 
 
 
 

Omole and Ogunware; JSRR, 20(3): 1-11, 2018; Article no.JSRR.19862 
 
 

 
3 
 

The first and second derivatives of (2) are 
obtained as 

 
1

1

0

( )
r s

j
j

j

y x ja x
 





                           (3) 

 

1
'' 2

0

( ) ( 1)
r s

j
j

j

y x j j a x
 





                         (4) 

 

The combination of (4) and (1) gives the 
differential system below 

 

1
2 '

0

( ) ( 1) ( , , )
r s

j
j

j

y x j j a x f x y y
 





   
  

(5) 

 

Collocating (5) at 
1

0, ,1, 2,3
2

j  and 

interpolating (2) at 
1

, ,1
2

n jx j  . Also rewriting 

them in matrix form as 
 
 

2 3 4 5 6
1/2 1/2 1/2 1/2 1/2 1/2

2 3 4 5 6
1 1 1 1 1 1

2 3 4

2 3 4
1/2 1/2 1/2 1/2

2 3 4
1 1 1 1

2 3 4
2 2 2 2

3

1

1

0 0 2 6 12 20 30

0 0 2 6 12 20 30

0 0 2 6 12 20 30

0 0 2 6 24 60 120

0 0 2 6 24

n n n n n n

n n n n n n

n n n n

n n n n

n n n n

n n n n

n

x x x x x x

x x x x x x

x x x x

x x x x

x x x x

x x x x

x x

     

     

   

   

   



0 1/2

1 1

2

3 1/2

4 1

5 2

2 3 4
6 33 3 3

   (6)               

60 120

n

n

n

n

n

n

nn n n

a y

a y

a f

a f

a f

a f

a fx x











  

     
     
     
     
     
     
     
     
     
     
     
            (6)

 

 

Solving for , 0(1)6ja j   in (6) using Gaussian elimination method and substituting into (2) gives a 

linear multistep method with continuous coefficients in the form: 
 

1
2

0 0

( ) ( ) ( ) ( )
k k

j n j j n j v n v
j j

y x x y h x f x f  


  
 

 
   

 
                                       (7) 

Where ( )y x  is the numerical solution of the initial value problem and
1

2
v  . j   and j  are 

continuous coefficients. And that o  and o  are not both zero since (7) is continuous and 

differentiable. Hence it is evaluated along with its derivatives at the entire grid and off grid points. This 
generate a block method for the general second order ordinary differential equation of the form 

 
(0) ( ) ( ) (0)

1 1[ ]i i
n n n nA Y A Y h B F B F

   
 

 

Where 
 

1 2[ , , ..., ]Tn n n n rY y y y  
, 1 1 2[ , , ..., ]Tn n n nY y y y   , 1, 2[ , , ..., ]Tn n n n n kF F f f f    

1 1 2, 3[ , , ..., ]Tn n n n nF f f f f   
, and 


 is the order of the differential equation. 

 

This gives the independent solution { },   1(1)n jy i k 
 
without overlapping 

 

, ,( )n j n j n j n jf f x y y   
                                                                                                    (8) 

 

Using the transformation  
 

2

1 1
( ),nt x x dt dx

h h
                                                                                                        (9) 
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The coefficients of n jy   and n jf   are obtained as: 

 

1
2
( ) 2 2t t   

 
 

1( ) 3 2t t  
 

 

2
3 4 5 6

0 ( ) 171 411 480 160 144 64
5760

h
t t t t t t        

 
 

2
3 4 5 6

1

2

( ) 93 269 320 80 96 32
900

h
t t t t t t


                                                              (10) 

 
2

3 4 5 6
1( ) 1371 2075 960 80 240 64

1920

h
t t t t t t        

 
 

2
2 3 4 5 6

2 ( ) 669 2381 2880 1120 320 336 64
5760

h
t t t t t t t         

 
 

2
3 4 5 6

3 ( ) 189 477 960 1040 432 64
28800

h
t t t t t t         

 
 

Equation (10) is substituted in (7) and evaluated at the non-interpolation points i.e. 1, 0, 2t   , gives 

 
2

3 1 1 1 1 2 3
2

2

2

2 1 1/ 2 1 1 2 3

2

2

1 1/ 2 1 1

2

5 4 25 96 1355 1055 61 (11)
960

3 2 5700 19840 137100 22300 1260 (12)
192000

2 390 4032 370
19200

n n n n n nn n

n n n n n n n
n

n n n n n
n

h
y y y f f f f f

h
y y y f f f f f

h
y y y f f f

     

     


  


 
       

 

 
       

 

     2 310 2 (13)n nf f 

 
  

 
  

Also the first derivative of (10) gives: 

 
'
1

2

'
1

' 2 3 4 5
0

' 2 3 4 5
1/2

' 2 3 4 5
1

' 2 3 4
2

2
( )

2
( )

( ) 411 1440 640 720 384
5760

( ) 269 960 320 480 192
900

( ) 2075 2880 320 1200 384
1920

( ) 2381 5760 3360 1280 1680 3
5760

t
h

t
h

h
t t t t t

h
t t t t t

h
t t t t t

h
t t t t t


















      


      

      

      5

' 2 3 4 5
3

84

( ) 477 2880 4160 2160 384
28800

t

h
t t t t t

  

       

                                                              (14) 
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Equation (14) is also substituted in (7) and evaluated at the entire grid and off-grid points i.e at

2, 1, 1 / 2, 0,1t     which gives the following equations: 

 

 

 

2
1 1/2 1/2 1 2 3

2
1/2 1 1/2 1/2 1 2 3

2
1 1 1/2

5760 11520 11520 997 3360 81 51 7 (15)

14400 28800 28800 150 2576 1245 80 9 (16)

28800 57600 57600 256 265

n n n n n n n n

n n n n n n n n

n n n n

hy y y h f f f f f

hy y y h f f f f f

hy y y h f

     

      

  

        

       

      

 
1/2 1 2 3

2
2 1 1/2 1/2 1 2 3

2
3 1 1/2 1/2 1 2

6 4965 175 19 (17)

28800 57600 57600 2055 8608 31125 11905 477 (18)

28800 57600 57600 2825 10848 6885 40785 9107

n n n n

n n n n n n n n

n n n n n n n

f f f f

hy y y h f f f f f

hy y y h f f f f f

   

      

     

  

       

         3 (19)n

 

3. MATHEMATICAL FORMULATION OF THE METHOD 
 

Normalizing the combination of equation (11), (12), (13) and (15) give equation (20) below: 
 

'
1/2 1/2 1/2

'
1 1 1

'
2 2 2

'
3

2

1 0 0 0 0 0 0 1 0 0 0 1 / 2

0 1 0 0 0 0 0 1 0 0 0 1

0 0 1 0 0 0 0 1 0 0 0 2

0 0 0 1 0 0 0 1 0 0 0 3

49 101 1

600 3840 25

n n n

n n n

n n n

n n n

y y y

y y y
h

y y y

y y y

h

  

  

  



         
         
           
         
         
           



1/2 1/2

1 12

2 2

3

29 763
0 0 0

6 57600 11520

28 1 1 1 11
0 0 0

75 30 120 900 72

64 2 2 2 16
0 0 0

75 3 15 225 45

36 27 9 3 21
0 0 0

25 20 8 50 40

n n

n n

n n

n n

f f

f f
h

f f

f f

 

 

 



   
   
             
                  
      
   
   
   

                                         (20) 

 

Writing out (20) explicitly, we have 
 

' 2
1 1/2 1 2 3

2

1 763 49 101 1 29
     (21)

2 11520 600 3840 256 57600
n n n n n n n

n
y y hy h f f f f f   



   
         

     

 

' 2
1 1/2 1 2 3

11 28 1 1 1
                                   (22)

72 75 30 120 900
n n n n n n n ny y hy h f f f f f    

 
       

   

 

' 2
2 1/2 1 2 3

16 64 2 2 2
2                                                 (23)

45 75 3 15 225
n n n n n n n ny y hy h f f f f f    

 
       

   
 

' 2
3 1/2 1 2 3

21 36 27 9 3
3                                                       (24)

40 25 20 8 50
n n n n n n n ny y hy h f f f f f    

 
       

 

 
Substituting (21)-(24) into (16)-(19) gives the following: 

 

 

 

 

2

1 1/2 1 2 3

2

2

1 1/2 1 2 3

2

2 1/2 1 2 3

2

3 1/2 1

5285 11520 2895 415 53
28800

295 1216 285 5
1800

55 64 240 95 4
225

15 192 45 285
200

n n n n n n
n

n n n n n n n

n n n n n n n

n n n n n

h
y y f f f f f

h
y y f f f f f

h
y y f f f f f

h
y y f f f

   


    

    

  

      

      

      

      2 363n nf f 

                                                          (25) 
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4. ANALYSIS OF THE BLOCK 
 
4.1 Order of the Block 

 
In this section, we discuss the estimation of the order and error constant of the block with the 
difference equation of the form: 

 

  2

1 0

( ), ( ) ( )
k k

m
j j

j j

L y x h a y x jh h b y x jh
 

                                                                    (26) 

 
If we assume that ( )y x has as many higher derivatives as we require, we can expand the terms in 

(11) as a Taylor series about the point x  to obtain the expansion; 
 

  2 3 ( )
0 1 2 3( ), ( ) ( ) ( ) ( ) ..... ( )p p

n n n n p nL y x h C y x C hy x C h y x C h y x C h y x                                   (27) 

 

Where the constant coefficient , 0,1,.......qc q   are given as follows 

 





k

j
jC

0
0 

 

1
1

3

1 1

.

.

.

1
[ ( 1) ]

!

k

j
j

k k
q q

q j j
j j

C j

C j q q j
q



 





 



  



 
 

 
Definition: The method (11) are said to be of order p if, in (11) 

0 1 2 3 1..... 0P PC C C C C C        and 2 0pC   . Thus 2PC  is the error constant. 

 
For our hybrid method, expanding (21)-(24) in Taylor series expansion gives 

 
2

1 49 1 101 1 292
( ) (1) (2) (3)

! 2 ! 600 2 3840 256 57600

2
28 1 1 1 12

( ) (1) (2) (3)
! ! 75 2 30 120 900

!

q q
h hq q q q q q

y y hy yn n
q qq q

q q
h hq q q q q q

y y hy yn nq qq q

q
h q

y
q q

  
       

  
       




    
          

    
          

 
 
 

0

0

2 064 1 2 2 22
2 ( ) (1) (2) (3) 0

! 75 2 3 15 225

2
36 1 25 9 32

3 ( ) (1) (2) (3)
! ! 25 2 20 8 50

q
h q q q q q

y hy yn n
q q

q q
h hq q q q q q

y y hy yn n
q qq q


 

     

  
       

 
 
 
 
   
   
   
                
 

    
            



 

 

Hence the block is of order 5, with error constant of 
37 41 313 9489

, , ,
6451200 201600 12600 22400

T
 
  
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4.2 Zero Stability of the Block 

 
Definition: The block is said to be zero stable if 

the roots , 1, 2,3,...,sz s n  of the characteristics 

polynomial ( )z defined by 

 

  ( ) detz zA E    satisfies 1sz   and the 

roots 1sz   is simple. 

 
For our hybrid method, 
 

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1
0

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1

A z

    
    
      
    
    
     

 

4 3 0, 0,0,0,1A z z z     

 
Hence the block is zero stable. Lambert [2]. 

 
Theorem 1: Convergence Lambert [2], Fatunla 
[17] 

 
The necessary and sufficient condition for a 
linear multistep method to be convergent is for it 
to be consistent and zero stable. From the 
theorem above, our block method is convergent. 

 

5.  NUMERICAL EXPERIMENTS 
 
Our method is adopted on some initial value 
problems of general second order ordinary 
differential equations ranging from linear, non-
linear and real life problem to test the accuracy of 
our method. 

 
Problem 1:  

 
We consider the non- liner scalar test equation which was solved by Ali Shokri [13] 
 

2'' , (0) 1, '(0) 0y w y y y    , (0) 1,  '(0) 0, , , 10
800 1600

y y h w
 

   
, 

 

with exact solution: ( ) cos( )y x wx
 

Table 1a. The result of test problem 1 [at
800

h


 ] 

 
Point Exact solution 

 
Computed solution 

 
Error in our new 
method 

800
h


 , P=5, K=3 

Error in Ali 
Shokri [13] 

800
h


 , 

P=6,K=2 
5  0.809016994374948 0.809016994188417 1.86531E-10 1.6532E-07 

10  0.233445363855907 0.233445363717165 1.38742E-10 3.1128E-07 

15  -0.271440449865071 -0.271440449668074 1.96997E-10 6.8875E-07 

20  -0.785316930880744 -0.785316929948751 9.31993E-10 9.5563E-06 
 

Table 1b.  The result of test problem 1 [at 
1600

h


 ] 

 

Point Exact solution Computed solution 
 

Error in our new 
method 

1600
h


 , P=5, K=3 

 Error in Ali Shokri 
[13] 

1600
h


 ,P=6,K=2 

5  0.951056516295154 0.951056516359792 6.4638E-11 2.5567E-09 

10  0.785316930880745 0.785316930909005 2.8260E-11 5.2398E-09 

15  0.603555941953572 0.603555941917062 3.6510E-11 6.9971E-08 

20  0.327630179561695 0.327630179319564 2.4213E-10 9.20138E-08 
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Problem 2: 
 

Consider a slightly stiff linear second order problem 
 

'' 'y y , (0) 1,  '(0) 0, 0.1y y h  
 

 

Exact solution: ( ) 1 exp( )y x x    

 

Table 2. The result of test problem 2 
 

X Exact Solution Computed 
Solution 

Error in Our New Method 
k=3, h=0.1,P=5        

Error in Anake [2011] 
k=1, h=0.1, P=6        

0.1 -0.10517091808 -0.1051709180 7.56500E-11 0.84736252E-07 
0.2 -0.2214027582 -0.2214027580 1.60170E-10 0.11719652E-05 
0.3 -0.3498588076 -0.3498588074 1.76000E-10 0.32170472E-05 
0.4 -0.4918246976 -0.4918246983 6.07843E-10 0.64094269E-05 
0.5 -0.6487212707 -0.6487212722 1.47289E-09 0.10967802E-04 
0.6 -0.8221188004 -0.8221188029 2.53363E-09 0.1744180E-04 
0.7 -1.0137527074 -1.0137527122 4.78762E-09 0.25228466E-04 
0.8 -1.2255409285 -1.2255409358 7.27701E-09 0.35553649E-04 
0.9 -1.4596031112 -1.4596031213 1.01696E-08 0.48501651E-04 
1.0 -1.7182818285 -1.7182818433 1.48265E-08 0.64509947E-04 

 

Problem 3: Real-life Problem  
 

Cooling of a Body 
 

The temperature y  degrees of a body, t  minutes after being placed in a certain room, satisfies the 

differential equation 
2

2
3 0 .
d y dy

d t d t
   By using the substitution ,

d y
z

d t
  or the otherwise, find y  in 

terms of t  given that 60y    when 0t   and 35y   when 6 ln 4.t   Find after how many minutes 

the rate of cooling of the body will have fallen below one degree per minute, giving your answer 
correct to the nearest minute. 
  
Formulation of the Problem 

 

'
''

3

y
y


 , 

80
(0) 60,  '(0) ,  0.1

9
y y h   

 

     

 

Analytical Solution 
 

1

380 100

3
( )

3

x

ey x
 
 
  

 
 

Table 3. The result of test problem 3 (Real-life Problem) 
 

X Exact-Solution Computed-Solution Error in Our New 
Method 
K=3, h=0.1, P=5 

Error in 
Olanegan[2014] 
K=2, h=0.1, P=5 

0.1 59.1257626795201 59.1257626795556 3.55E-11 7.476427E-06 
0.2 58.2801862675098 58.2801862675556 4.58E-11 2.939419E-05 

0.3 
 

57.4623311476256 57.4623311475556 7.00E-11 6.480165 E-05 

0.4 56.6712885078119 56.6712885078054 6.50E-12 1.127905 E-05 
0.5 55.9061793304163 55.9061793304496 3.33E-11 1.724976E-04 
0.6 55.1661534154128 55.1661534153708 4.20E-11 2.431027E-04 
0.7 54.4503884356475 54.4503884356913 4.38E-11 3.238270 E-04 
0.8 53.7580890230572 53.7580890231646 1.07E-10 4.139307 E-04 
0.9 53.0884858848458 53.0884858849116 6.58E-11 5.127120E-04 
1.0 52.4408349486343 52.4408349488036 1.69E-10 6.195049E-04 
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Problem 4: 
 
Consider a stiff second order problem 
 

2'' ,  2y y    , (0) 1,  '(0) 2 0.01y y h  
 

 

Exact solution: ( ) cos2 sin 2y x x x 
 

 

Table 4. The result of test problem 4 
 

X Exact Solution Computed 
 Solution 

Error in our 
New Method 
k=3, h=0.01, 
P=5  

Error in Adesanya  
(2011)  
 P = 6, k=5, 
h=0.01, 

Error in 
Okunuga (2008)  
P =4, k=1, 
h=0.01, 

0.01 1.01979867335991 1.019798673394 3.409E-11 2.657762E-11 - 
0.02 1.03918944084761 1.03918944088 3.239E-11 1.853988E-10 2.65 E – 06 
0.03 1.05816454641465 1.05816454638 3.465E-11 4.736862E-10 3.98 E – 06 
0.04 1.07671640027179 1.07671640027203 2.40E-13 8.885585E-10 5.30 E – 06 
0.05 1.09483758192485 1.09483758192307 1.780E-12 1.427033E-10 6.62 E – 06 
0.06 1.11252084314278 1.11252084306812 7.467E-11 2.086028E-09 7.94 E – 06 
0.07 1.12975911085687 1.12975911081783 3.904E-11 2.862367E-09 9.25 E – 06 
0.08 1.14654548998987 1.14654548994855 4.132E-11 3.752772E-09 1.06 E – 05 
0.09 1.16287326621394 1.16287326609424 1.197E-10 4.753892E-09 1.19 E – 05 
1.00 1.17873590863630 1.17873590855288 8.342E-11 5.862260E-09 1.32 E – 05 

 

 

 

Fig. 1. Comparison of Error of Okunaga [9], Adesanya [16] and our proposed Method 
 

6. DISCUSSION OF RESULT 
 

We have proposed a direct method for the 
solution of general second order initial value 
problems of ordinary differential equations using 
a three-step single hybrid block method. The 
results of our new continuous implicit hybrid 
block method (CIHBM) with step length three and 
order of accuracy five were compared with other 
researchers.  

 
In Table 1(a) and 1(b), our method is more 
accurate than that of Ali Shokri [13] which was 
executed by of break method. 

 

In Table 2, our new method performs better than 
Anake [20] which was implemented in block 
method. 
 

Table 3 shows the comparison of the results of 
our method with that of Olanegan [21] which was 
implemented in Taylor series. It is observed that 
our method is more efficient and accurate than 
that of Olanegan [21]. 

 

Table 4 shows the comparison of the results of 
our method with that of Okunuga [9] and 
Adesanya [16]. Okunuga [9] was implemented in 
Predictor-corrector method while Adesanya [16] 
was implemented in block method. It is obvious 
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2.000000E-09

3.000000E-09

4.000000E-09

5.000000E-09

6.000000E-09

7.000000E-09
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2.0000E-11

4.0000E-11

6.0000E-11

8.0000E-11

1.0000E-10

1.2000E-10

1.4000E-10

1 2 3 4 5 6 7 8 9 10

Error in our New Method 

Error in Okunuga (2008) 

Error in Adesanya  (2011)  
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Fig. 2. Comparison of Error of Anake [20] and our proposed Method 
 

 
 

Fig. 3. Comparison of Error of Ali Shokri [13] and our proposed Method 
 

that our method is better in accuracy and also 
efficient than Okunuga [9] and Adesanya [16]. 
 

Fig. 1 shows the comparison of Numerical error 
with Okunuga 2008, adesanya 2011 and our 
proposed method for problem 4, Fig.  2 shows 
the comparison of numerical error of Anake 2011 
with our method for problem 2 while Fig. 3 shows 
the comparison of Ali Shokri [13] with our 
developed method for problem 1. This shows 
that our developed method compare favourably 
with the existing method in the literature. 
 

7. CONCLUSION 
 

In this article, we have proposed a new 
continuous implicit hybrid method for numerical 
treatment of general second order ordinary 
differential equations initial value problems which 
was implemented in continuous block method. 
The results show that our method is more 

efficient and give better approximation than the 
existing methods. Hence our method is 
recommended for the solution of general second 
order ordinary differential equations initial value 
problems. 
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