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Abstract 
The thermal and magnetic properties of a parabolic GaAs quantum dot for two-Harmonically interacting 
electrons when it exposed to an external magnetic field, taking into account the spin-Zeeman energy are 
investigated using the canonical ensemble approach. The effect of spin on these properties is also investigated. 
With the possibility of a basic and physically sensible model of electron-electron interaction, the issue is 
precisely soluble. We found a Schottky-like anomaly in the heat capacity at low temperature, while it saturates to 
the 4kB value as the temperature increases. Also it is noted that entropy enhances with temperature as expected. 
However as a function of a magnetic field, a peak structure is observed in heat capacity at very low values of 
magnetic field, while it saturates to the 2kB value as magnetic field increases. Also we noticed that these peaks 
are not presented in the spinless case. Moreover magnetic field does not show a significant effect on the entropy 
at high temperatures, but at relatively lower temperatures, the entropy shows a monotonic increase with magnetic 
field. As a function of the Lande g* factor, we found a local minima and a double peak-structure in the 
susceptibility and in the heat capacity at g*=0. It is demonstrated that the favored state for both magnetization 
and susceptibility is the diamagnetic state. The significant effect of the spin on the magnetic properties of 
quantum dot is seen at low values of temperature and magnetic field. Moreover, our results showed a very good 
agreement with reported previous works. 
Keywords: Quantum Dot, Harmonic E-E Interaction, Heat Capacity, Entropy, Susceptibility, Magnetization 
1. Introduction 
For more than two decades the research area of quantum dots has attracted great attention (Ashoori, 1996; 
Johnson, 1995; Kastner, 1992; Woggon, 1997; Jacak, Hawrylack, & Wojs, 1998; Bimberg, Grundmann, & 
Ledentsov, 1998; Mukhopadhyay & Chatterjee, 2001; Kouwenhoven, Austing, & Tarucha, 2001; Haddad, 
Nammas, Al Shorman, & Shukri, 2017). The reason is fundamentally two-fold. First and foremost, the structure 
of the quantum dots (QDs) exhibits an exciting quantum effect due to their nanoscale extension, in addition their 
fabrication flexibility enable them to be used extensively in a wide range of potential applications in 
micro-electronic devices such as solar cells, quantum lasers, quantum computers and single electron transistor. 
Secondly, QDs are an ideal quantum system that contains a discrete and variable numbers of electrons, therefore 
QDs are called artificial atoms, so they can be used to examine the predictions in quantum mechanics in a 
comprehensive and moderated manner. 
The confinement potential is the most important feature of a QD. The generalized Kohn theorem together with 
magneto-optical experiments (Sikorski & Merkt, 1989; Karrai, Drew, Lee, & Shayengan, 1989) have proposed 
that the confinement potential in a QD is less or pretty much parabolic (Peeters, 1990; Yip, 1991; Li, Karrai, Yip, 
Sarma, & Drew, 1991). This has leads to a hot pace action in the field of QD's (Maksym & Chakraborty, 1990; 
Gu & Guo, 1993; Johnson & Payne, 1992; Mukhopadhyay & Chatterjee, 1996; Mukhopadhyay & Chatterjee, 
1997). It has additionally understood that electron-electron interaction (e-e interaction) guides and controls the 
properties and the composition of QDs. Unfortunately, multi-electrons QD problem with the e-e interaction does 
not recognize exactly theoretical solution. Thus, many analytical methods and numerical approximations have 
been adopted to explore and study a multi-electrons QD problem (Beenakker, 1991; Oaknin, Palacios, Brey, & 
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Tejedor, 1994; Johnson & Reina, 1992; Reusch & Grabert, 2003; Emperador, Lipparini, & Serra, 2006; McEuen, 
Foxman, Kinaret, Meirav, Kastner, Wingreen, & Wind, 1992; Harju, Sverdlov, Nieminen, & Halonen, 1999; 
Ferconi & Vignale, 1994; Cipriani, Rosa-Clot, & Taddei, 2000; Mukhopadhyay & Chatterjee, 2000; Harju, 
Sverdlov, Barbiellini, & Nieminen, 1998; Mukhopadhyay & Chatterjee, 1999a, 1999b; Liu et al., 2017). While a 
portion of these techniques are excessively shortsighted, making it impossible to catch the fundamental features 
of QDs, some are limited just to the ground energy levels, some ignore to incorporate the correlation and 
exchange effects legitimately, some are unable to manage and work with high electron density and large 
magnetic field. 
Several numerical studies have been applied to QDs to investigate their thermal and magnetic properties 
(Nammas, Sandouqa, Ghassib, & Al-Sugheir, 2011; Kuros & Okopinska, 2015; Maksym & Chakraborty, 1990; 
Shaer, Elsaid, & Elhasan, 2016; Climente, Planelles, & Movilla, 2004; Shaer, Elsaid, & Elhasan, n. d.; Boda & 
Chatterjee, 2014; Mukhopadhyay & Chatterjee, 1999; Merkt, Huser, & Wagner, 1991; Tavernier, Anisimovas, 
Peeters, Szafran, Adamowski, & Bednarek, 2003; Yang, MacDonald, & Johnson, 1993; Hawrylak, 1993). The 
diagonalization method was used to explore the effect of e-e interaction on the magnetization and susceptibility 
of a parabolic GaAs QD with two interacting electrons in the presence of a uniform magnetic field and the 
spin-Zeeman energy (Boda, Kumar, Sankar, & Chatterjee, 2016). It was found that a sharp diamagnetic peaks 
were observed in these magnetic properties due to the singlet-triplet transitions and the number and the position 
of theses peaks depends crucially both on the interaction strength and confinement strength. The same method 
was used to investigate the magnetization and susceptibility of a Gaussian GaAs QD of two interacting electrons 
in the presence of a magnetic field with spin-Zeeman term (Boda & Chatterjee, 1942). It was concluded that the 
oscillatory behavior seen in these magnetic properties is due to singlet-triplet transitions in the ground state 
which caused by the e-e interaction. A variational method was used to study the heat capacity for two interacting 
electrons confined in a two-dimensional parabolic QD (2DPQD) and subjected to an external magnetic field 
(Shaer, Elsaid, & Elhasan, 2016). The main result is that the heat capacity shows a peak structure at low 
temperature and it saturates in the high temperature region at a specific confining frequency. The magnetization, 
susceptibility and heat capacity have been calculated numerically for two interacting electrons confined in 
2DPQD where the spin interaction has been included in the Hamiltonian (De Groote, Horonos, & Chaplik, 1992). 
It was shown that, the heat capacity shows an additional structure and the susceptibility exhibits a sharp peak. 
Recently, the energy spectrum, the magnetic moment and the susceptibility were calculated for two-electron 
Gaussian GaAs quantum dot with spin-Zeeman term by numerical diagonalization method (Sharma et al., 2019). 
They concluded that the magnetic moment and the magnetic susceptibility are shown to have zero-temperature 
diamagnetic peaks due to the exchange-induced singlet-triplet oscillations. 
It was understood that e-e interaction effectively affects the energy spectrum of QDs and in this manner 
numerous studies have investigated the effect of e-e interaction on the electronic properties of QD. But a large 
part of these investigations depends mainly on approximation and numerical calculations (Oaknin, Palacios, Brey, 
& Tejedor, 1994; Johnson & Reina, 1992; Reusch & Grabert, 2003; Emperador, Lipparini, & Serra, 2006; 
Hawrylak, 1993; Yang, MacDonald, & Johnson, 1993). Numerical techniques are generally suffered from 
convergence issues; consequently it might be valuable to look for a potential model that simulates the Coulomb 
interaction. One of these models is the Johnson-Payne potential (Johnson & Payne, 1991) that makes the QD 
Hamiltonian totally solvent with the goal that all many body effects are incorporated accurately (Nammas, 2018; 
Al Shorman, Nammas, Haddad, & Shukri, n. d.). Since this model is completely solvable, we won't need to make 
any other rough estimation. This model depicts the real system well for a particular set of electronic electrons 
Separation. Therefore, we expect that the basic characteristics of the actual state will be recognized through our 
calculations, at least for a certain range of electron- electron separation. Several investigations have been made 
on a few-electron QD to study their thermal and magnetic properties in the presence of either magnetic field or 
spin-Zeeman interaction or both. In most previous studies the e-e interaction has been taken as Coulomb 
interaction. As far as we know no investigation has been made on the temperature (magnetic field) -dependent 
heat capacity, magnetization and susceptibility in a parabolic QD in the presence of both Harmonic e-e 
interaction and the spin-Zeeman interaction. The motivation of this study is to make an endeavor toward this 
path. Furthermore, we shall investigate the behavior of the thermal and magnetic properties when the QD is 
exposed to a uniform magnetic field. For comparison purposes, we have plotted the spinless case in the same 
figure for all thermal and magnetic properties. 
The paper is arranged as follows. In Section 2, we introduce the mathematical formalism of our system. We 
analyze and discuss the obtained results for GaAs QD in Section 3. In Section 4, we conclude this study with 
some particular remarks. 
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2. Mathematical Formalism 
In a 2D system the electron is restricted in one direction but free to move around in the other two, quantization 
along the confined direction gives rise to an energy sub-band in addition to the usual energy bands arising due to 
the 2D periodic core potential. The effect on the conduction electron of the periodic core potential is captured by 
the effective electron mass (Sze, 1981; Sze, 1985; Chang & Sze, 1996; Liu, 2012). In the effective mass 
approximation, the Hamiltonian for two interacting electrons confined in a 2DPQD in a perpendicular magnetic 
field is given by: 

 𝐻෡ = ∑ ቀ ଵଶ௠∗ ൫𝑝⃗௜ + 𝑒𝐴(𝑟௜)൯ଶ + ଵଶ 𝑚∗𝜔ଶ𝑟௜ଶቁଶ௜ୀଵ + 𝑉(𝑟ଵ, 𝑟ଶ) + 𝐻෡௦௣௜௡ (1) 

where r⃗୧ is the electron’s position vector in a QD, 𝑝⃗௜ is the momentum operator of electron, 𝑚∗ is the effective 
mass of the electron; in order to incorporate the effect of the host semiconductor material, ω is the confinement 
frequency of the parabolic potential, Aሬሬ⃗  is the vector potential corresponding to the magnetic field Bሬሬ⃗ = 𝐵𝑘෠ , 𝑉൫𝑟௜, 𝑟௝൯ represents the electron-electron interaction and the spin-Zeeman Hamiltonian is given by 𝐻෡௦௣௜௡ =ଵଶ 𝜔௖𝑔∗𝑆መ௧௢௧,௭, where 𝑔∗ = −0.44 is the effective Lande-g factor for GaAs QD, 𝜔௖ = 𝑒𝐵/𝑚∗ is the electron's 

cyclotron frequency, 𝑆መ௧௢௧,௭ is the total z-component of the spin operator. 

It might be valuable to search for a model potential which emulates the coulomb interaction potential and makes 
the Hamiltonian precisely solvable so all the many-body effects are incorporated legitimately. One of these 
possibilities is the Johnson-Payne potential model (Johnson & Payne, 1991) and is given by the model potential  

 𝑉(𝑟ଵ, 𝑟ଶ) = 2𝑉଴ − ଵଶ 𝑚∗Ωଶ|𝑟ଵ − 𝑟ଶ|ଶ (2) 

Where 𝑟ଵ and 𝑟ଶ are the corresponding position vector of two electron system, 𝑉଴ and Ω are certain positive 

parameters which can be fit distinctive sorts of QD. If we choose the gauge of Aሬሬ⃗  as Aሬሬ⃗ = B(− ୷ଶ , ୶ଶ , 0) then Aሬሬ⃗  is 

divergence-less (In quantum mechanics, all computed observable ought to moreover be invariant to such changes. 
a gauge transformation changes the Hamiltonian and wave function in a way that leaves every recognizable 
property unaffected, supporting our utilization of the Coulomb gauge in our development of the Hamiltonian 
operator (Jackson, 1962)). The spin-Zeeman term is included in the Hamiltonian, and then we can write Eq. (1) as 

 𝐻෡ = ∑ ቀ ௣೔మଶ௠∗ + ଵଶ 𝑚∗𝜔଴ଶ𝑟௜ଶቁଶ௜ୀଵ + 2𝑉଴ − ଵଶ 𝑚∗Ωଶ|𝑟ଵ − 𝑟ଶ|ଶ + ଵଶ 𝜔௖𝐿෠௧௢௧,௭ + ଵଶ 𝜔௖𝑔∗𝑆መ௧௢௧,௭ (3) 

where 𝜔଴ = ඥ𝜔ଶ + 𝜔௖ଶ 4⁄  is the effective frequency, 𝐿෠௧௢௧,௭ is the total orbital angular momentum along the z 
direction. If we introduce center-of-mass coordinates Rሬሬ⃗ = (𝑟ଵ + 𝑟ଶ) √2⁄  with linear momenta Pሬሬ⃗ோ =(𝑝⃗ଵ − 𝑝⃗ଶ) √2⁄ , and relative coordinates r⃗ = (𝑟ଵ − 𝑟ଶ) √2⁄  with linear momenta Pሬሬ⃗௥ = (𝑝⃗ଵ + 𝑝⃗ଶ) √2⁄ , then 
Schrödinger equation is separable in the new coordinates into three parts, and it can be written as 

 ቀ− ℏమଶ௠∗ ∇ோଶ + ଵଶ 𝑚∗𝜔଴ଶ𝑅ଶ + ଵଶ 𝜔௖𝐿෠ோ,௭ቁ Ψே௅ = 𝐸ே௅Ψே௅ (4) 

 ቀ− ℏమଶ௠∗ ∇௥ଶ + 2𝑉଴ + ଵଶ 𝑚∗Ω଴ଶ𝑟ଶ + ଵଶ 𝜔௖𝐿෠௥,௭ቁ Ψ௡௟ = 𝐸௡௟Ψ௡௟ (5) 

 ቀଵଶ 𝜔௖𝑔∗𝑆መ௧௢௧,௭ቁ 𝜒(𝜎) = 𝐸௦௣௜௡𝜒(𝜎) (6) 

where Ω଴ଶ = 𝜔ଶ + ఠ೎మସ − 2Ωଶand 𝜒(𝜎) is the eigenstates of the spin operator 𝑆መ௧௢௧,௭. Eq. (4), Eq. (5) are a harmonic 

oscillator type with well-known eigenvalues and Eq. (6) is exactly soluble, so their eigenenergies are given by  
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 𝐸ோ = 𝐸ே௅ = ℏ𝜔଴(2𝑁 + |𝐿| + 1) + ଵଶ 𝐿ℏ𝜔௖ (7) 

 𝐸௥ = 𝐸௡௟ = 2𝑉଴ + ℏΩ଴(2𝑛 + |𝑙| + 1) + ଵଶ 𝑙ℏ𝜔௖ (8) 

 𝐸௦௣௜௡ = ଵଶ ℏ𝜔௖𝑔∗ ൣଵି(ିଵ)೗൧ଶ = ଵଶ ℏ𝜔௖𝑔∗𝑆௧௢௧,௭ (9) 

where 𝑁, 𝑛 = 0,1,2, …  are the radial quantum numbers and 𝐿, 𝑙 = 0 ± 1, ±2, … are the azimuthal quantum 
numbers, and the even and odd 𝑙  corresponds to the spin singlet (𝑆௧௢௧,௭ = 0) and triplet (𝑆௧௢௧,௭ =1) states 
respectively. 
We may notice that the energy levels in Eq. (4) are the well-known Fock-Darwin states (Chakraborty, 1999; Fock, 
1928; Darwin, 1930) with eigenfunction given by 

 Ψே௅(𝑅, 𝜃௖௠) = ଵ√గ ቆට௠∗ఠబℏ ቇଵା|௅| ට ே!(ேା|௅|)! (𝑅)|௅|𝐿ே|௅|(௠∗ఠబℏ 𝑅ଶ)𝑒ି௠∗ఠబோమ/ଶℏ𝑒௜௅ఏ೎೘ (10) 

where 𝐿ே|௅| is the associated Laguerre polynomial. The complete energy spectrum for the parabolic quantum dot 
can be obtained analytically as 

 𝐸ே,௅,௡,௟,௦௣௜௡ = ℏ𝜔଴(2𝑁 + |𝐿| + 1) + ଵଶ 𝐿ℏ𝜔௖ + 2𝑉଴ + ℏΩ଴(2𝑛 + |𝑙| + 1) + ଵଶ 𝑙ℏ𝜔௖ + ଵଶ ℏ𝜔௖𝑔∗ ൣଵି(ିଵ)೗൧ଶ (11) 

Now, we will employ the canonical approach on the total energy spectrum to evaluate thermal and magnetic 
properties of the QD. Canonical formalism describes a fixed installation system that is in a state of thermal 
equilibrium with a heat bath for specific temperatures. The canonical ensemble contains varying states of energy 
but a similar structure; the different states in the ensemble given different probabilities depending on their total 
energy. The partition function can be calculated exactly and is given by (Greiner, Neise, & Stocker, 1995; Landau 
& Lifshitz, 1975) 

 𝑍 = ∑ ∑ ∑ ∑ ∑ 𝑒ିಶಿ,ಽ,೙,೗,ೄ೟೚೟,೥ೖಳ೅ଵௌ೟೚೟,೥ୀ଴∞௅ୀି∞∞ேୀ଴∞௟ୀି∞∞௡ୀ଴  (12) 

simplify, we get 

 𝑍 = ௘షమೇబೖಳ೅×௘షℏഘ೎೒∗రೖಳ೅ ×௖௢௦௛൬ℏഘ೎೒∗రೖಳ೅ ൰൤௖௢௦௛൬ ℏഘ೎మೖಳ೅൰ି௖௢௦௛൬ℏഘబೖಳ೅൰൨൤௖௢௦௛൬ ℏഘ೎మೖಳ೅൰ି௖௢௦௛൬ℏ೾బೖಳ೅൰൨ (13) 

Now, the mean internal energy for the system 〈𝐸〉 = 𝑘஻𝑇ଶ(𝜕 ln 𝑍 /𝜕𝑇) is given by 

 〈𝐸〉 = 2𝑉଴ + ቂ𝑐𝑜𝑠ℎ ቀ ℏఠ೎ଶ௞ಳ்ቁ − 𝑐𝑜𝑠ℎ ቀℏఠబ௞ಳ்ቁቃ ቂ𝑐𝑜𝑠ℎ ቀ ℏఠ೎ଶ௞ಳ்ቁ − 𝑐𝑜𝑠ℎ ቀℏఆబ௞ಳ்ቁቃ × sech ቀℏఠ೎௚∗ସ௞ಳ் ቁ cosh ቀℏఠ೎௚∗ସ௞ಳ் ቁ  

 ×
⎣⎢⎢
⎢⎢⎡ ൤ଶ௏బାℏഘ೎೒∗ర ൨൤௖௢௦௛൬ ℏഘ೎మೖಳ೅൰ି௖௢௦௛൬ℏഘబೖಳ೅൰൨൤௖௢௦௛൬ ℏഘ೎మೖಳ೅൰ି௖௢௦௛൬ℏ೾బೖಳ೅൰൨ − ൤ℏఠ೎௚∗ ௧௔௡௛൬ℏഘ೎೒∗రೖಳ೅ ൰൨ସ൤௖௢௦௛൬ ℏഘ೎మೖಳ೅൰ି௖௢௦௛൬ℏഘబೖಳ೅൰൨൤௖௢௦௛൬ ℏഘ೎మೖಳ೅൰ି௖௢௦௛൬ℏ೾బೖಳ೅൰൨− ൤ି ℏഘ೎మ  ௦௜௡௛൬ ℏഘ೎మೖಳ೅൰ାℏఠబ ௦௜௡௛൬ℏഘబೖಳ೅൰൨൤௖௢௦௛൬ ℏഘ೎మೖಳ೅൰ି௖௢௦௛൬ℏഘబೖಳ೅൰൨మ൤௖௢௦௛൬ ℏഘ೎మೖಳ೅൰ି௖௢௦௛൬ℏ೾బೖಳ೅൰൨ − ൤ି ℏഘ೎మ  ௦௜௡௛൬ ℏഘ೎మೖಳ೅൰ାℏఆబ ௦௜௡௛൬ℏ೾బೖಳ೅൰൨൤௖௢௦௛൬ ℏഘ೎మೖಳ೅൰ି௖௢௦௛൬ℏഘబೖಳ೅൰൨൤௖௢௦௛൬ ℏഘ೎మೖಳ೅൰ି௖௢௦௛൬ℏ೾బೖಳ೅൰൨మ⎦⎥⎥

⎥⎥⎤  (14) 

The heat capacity of a quantum dot is derived from the partition function as  

 𝐶௏ = 𝑘஻𝑇 డమ(்௟௡௓)డ்మ  (15) 

Also, Free energy presents valuable information on how likely the system transforms from one state to another, 
spontaneously. The less the free energy is the more stable the system. The Helmholtz free energy F = −k୆T(ln Z) 
comes out to be 
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 𝐹 = 𝑘஻𝑇𝑙𝑛 ቂℏఠ೎௚∗ସ ቃ + 2𝑉଴ + 𝑘஻𝑇𝑙𝑛 ቂ𝑐𝑜𝑠ℎ ቀ ℏఠ೎ଶ௞ಳ்ቁ − 𝑐𝑜𝑠ℎ ቀℏఠబ௞ಳ்ቁቃ  

 + ቂ𝑐𝑜𝑠ℎ ቀ ℏఠ೎ଶ௞ಳ்ቁ − 𝑐𝑜𝑠ℎ ቀℏఆబ௞ಳ்ቁቃ − 𝑘஻𝑇𝑙𝑛 ቂ𝑐𝑜𝑠ℎ ቀℏఠ೎௚∗ସ௞ಳ் ቁቃ (16) 

The Helmholtz free energy is employed to obtain the entropy S = − ∂F/ ∂T as 

 𝑆 = 𝑘஻ log(𝑍) + ଵ் 〈𝐸〉 (17) 

Also, mean energy was employed to calculate magnetization (M) and magnetic susceptibility (𝜒) as 

 𝑀 = − డ〈ா〉డ஻  𝑎𝑛𝑑 𝜒 = డெడ஻  (18) 

It has been shown that in the regime of very large confinement potential the Harmonic interaction model has a 
good agreement with the full Coulomb problem; clearly the Harmonic interaction model is not valid for all electron 
separations r = |rଶሬሬሬ⃗ − rଵሬሬሬ⃗ | (Johnson & Kirczenow, 1993). In order to make the Harmonic interaction model more 
accurate in obtaining the results of the real interaction system, we could adjust the interaction parameters to 
produce the best fit for the real interaction of the dominant range of r. Equation (2) suggests that, for repulsion 

interaction V(r⃗ଵ, r⃗ଶ) > 0 only if r < rୡ, where rୡ = 2ටV଴ m∗Ωଶ⁄ . For physically true interaction, we should 

have r̅ < rୡ, where r̅ is the e-e separation implied by the wave function of the system as shown in ref. (Johnson, 
1992) and it is given by r̅ = ඥℏ m∗Ω଴⁄  . Thus, the critical e-e separation are obtained when rୡ = r̅, then we get 

 Ω = ସ௏బℏ ඨቈට1 + ቀℏఠସ௏బቁଶ − 1቉ (19) 

By choosing effective mass of electron m∗ = 0.067mୣ of a GaAs quantum dot, ℏω = 2meV and V଴ = 10meV, 
we calculate the critical interaction strength value Ωୡ (Ωୡ = 2.146 × 10ଵଶ Hz), and this gives an acceptable fit to 
the true e-e interaction, where rୡ = 1509.64 Å.  
In this study, it’s worth to mention that our study is performed in regime of large confinement potential where the 
Harmonic model can be used as a good approximation to Coulomb problem. Moreover, the main goal of this study 
is to show qualitatively the importance of taking the spin contribution into the calculation account especially when 
we study the magnetic properties of the quantum dot, since many previous studies have ignored the spin effect on 
these properties for two electrons quantum dot system. 
In the coming section, the dependence of these properties for GaAs QD as a function of temperature (T), magnetic 
field (B) and spin are analyzed. 
3. Numerical Results and Discussion 
The theory in our study was applied to GaAs QD with V଴ = 10meV, ℏω = 2meV, m∗ = 0.067mୣ and ℏΩ =1meV. Figure 1 shows the variation of the mean energy of (2DPQD) versus the temperature for different values 
of magnetic field also the spinless case is taking into account for comparison purposes. It is shown that the mean 
energy is enhanced as the temperature increases. However for higher temperatures a linear dependence on 
temperature is observed. This demonstrates a peak in the heat capacity, which in turn reminds us of entering the 
system in a mixed gas-liquid state. Also, the increase of magnetic field strength causes the increase in mean 
energy where the spin effect becomes significant. This is connected to the magnetic confinement effect that 
appears in the system strongly. The variation of the mean energy with the magnetic field for various values of 
temperature is shown in Figure 2. It is observed that the dependence of mean energy on magnetic field strength 
has a monotonic behavior. The figure shows that, at low values of magnetic field, mean energy increases 
monotonically with increasing magnetic field while at high values of magnetic field, this increase is almost linear. 
Also, it is noted for a fixed value of magnetic field, the mean energy decreases as the temperature decreases. The 
graph shows an important enhancement of the mean energy when the e-e Harmonic energy term is activated. 
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Furthermore, when the magnetic field increase, the electrons are strongly confined in the QD, consequently the 
repulsive e-e Harmonic energy increases, and in effect the energy states, i.e., as the magnetic field increases, the 
magnetic confinement effects become more and more appreciable. It is noted that the spin effect is only 
noticeable in the high magnetic field values where it decreases the mean energy slightly. 

 

Figure 1. The average thermal energy 〈𝐸〉 vs. temperature (T) of 2D parabolic GaAs quantum dot for B=5 Tesla 
and B=40 Tesla 

 

Figure 2. The average thermal energy 〈𝐸〉 vs. the magnetic field (B) of 2D parabolic GaAs quantum dot for T=5, 
100 and 200K 

 
In Figure 3, we have shown the dependence of thermal heat capacity upon temperature incorporating the effect 
of the electrons spin. We noticed that, heat capacity increases almost linearly at sufficiently low temperatures and 
a peak structure is observed due to the spin of the electrons. Also the peak shifts to the right as magnetic field is 
increased where its width becomes broader. Simply, this peak structure is attributed to Schottky anomaly for the 
heat capacity where just two states are of significance at low temperature since thermal energy picked up by 
electrons is sufficient for just the most minimal two levels. As the temperature rises, we find that, heat capacity 
reaches a saturation limit of 4kB in conformity with results reported by A. Chatterjee. J and M. M. Al Shorman 
(Boyacioglu & Chatterjee, 2012; Al Shorman, Nammas, Haddad, & Shukri, n. d.). The system exhibits a 
different behavior when subjected to a high and low magnetic field. For high magnetic field like B=15T, heat 
capacity increases steeply from 0 to 2kB and develops a shoulder and for small range of temperature it remains 
constant and with further increase in temperature heat capacity again starts to rise. While for low magnetic field 
like B=2T, heat capacity increases sharply and reach the saturation limit more quickly with value of 4kB within a 
small temperature window. Additionally, to see the effect of spin on the heat capacity we have plotted the spin 
case and the spinless case in the same figure. It is clear that the significant effect of the spin appears in heat 
capacity at sufficiently high magnetic fields (results shown for B=15T, 10T) and at low temperatures. The 
inclusion of spin in Hamiltonian gives an amazing behavior in the thermal and magnetic properties of the QD. 
The variation of heat capacity with magnetic field for distinct values of temperature is shown in Figure 4. For 
comparison purposes the spinless case is also plotted (g*=0). We observed that, heat capacity exhibits a peak 
structure at very low values of magnetic field. These peaks related to a Schottky-like anomaly which is absent in 
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the spinless case. Also the figure indicates that for high values of magnetic field, heat capacity curves merges 
and it reaches a constant value of 2kB and becomes independent of spin and temperature. Furthermore, at all 
temperatures, the hat capacity sharply decreases at very small B values except that for T=5K where it increases. 

 
Figure 3. Heat capacity (CV/kB) vs. temperature (T) of 2D parabolic GaAs QD for B=2, 10 and 15 Tesla 

 

Figure 4. Heat capacity (CV/kB) vs. magnetic field (B) of 2D parabolic GaAs QD for T=5, 10, 30 and 50 K 
In Figure 5, we display the dependence of the heat capacity of the QD on the effective Lande g factor (g*) for B= 
15 T and T=5, 30 and 50K. The first observation we make is that heat capacity exhibits a double-peak structure 
and it shows a symmetric behavior about g*=0 where a local minima is observed. Second, it increases by 
increasing the Lande g factor g*, after which reaches its maximum value and then begins to decrease by 
increasing the Lande g factor g* and finally at a specific value of g*(|g∗|~1), it saturates to the value of 2kB and 
becomes independent of g*, while the saturation for T=50K takes place at much larger g* values. The saturation 
of heat capacity at large g* is attributed to the fact that within a strong magnetic field, the spin moment of 
electron is saturated and the contribution of the Zeeman term to the mean energy becomes independent of 
temperature, beyond a specific value of g* and as a result, there is no effect of g* on heat capacity. 

 

Figure 5. Heat capacity (CV/kB) vs. g* of 2D parabolic GaAs QD for T=5, 30 and 50 K at B=15 Tesla 
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Figure 6 shows the variation of the entropy with temperature for various values of magnetic field. As we expect, 
entropy increases monotonically as the temperature increases. The increase in entropy with temperature is caused 
by the thermal enhancement of electrons which are working to bring more and more disorder in a random 
movement. It is noted that, entropy increases sharply at low temperatures where the effect of magnetic field 
becomes more and more pronounced, while in the high temperature region, entropy saturates. It should be noted 
that the spin does not show much change in the entropy, also at a fixed temperature, entropy increases by 
increasing the magnetic field. It is clear that the degree of random order of the system is confirmed by the 
interplay between the magnetic field and the temperature. 
The dependence of entropy upon the magnetic field is shown in Figure 7 for different values of temperatures. It 
is seen that, at sufficiently low temperature like T=5K, entropy enhances as the magnetic field increases. But at 
relatively higher temperature like T=100K, entropy does not show a significant change in its value and becomes 
independent of both spin and magnetic field. However the spin does not affect the entropy significantly. This 
behavior can be mainly explained as follows, order brought into the system by magnetic field , can be balanced 
by kinetic energy due to confinement with the disturbance of thermal dynamics at higher temperatures. 

 

Figure 6. Entropy (S/kB) vs. temperature (T) of 2D parabolic GaAs QD for B=5 Tesla and B=40 Tesla 

 

Figure 7. Entropy (S/kB) vs. magnetic field (B) of 2D parabolic GaAs QD for T= 5K and T=100K 
 
The magnetization as a function of temperature is shown in Figure 8. For comparison purposes, we have 
computed the magnetization with and without spin for different values of the magnetic field. One can observe 
that the magnetization is almost constant at sufficiently low temperatures up to a certain temperature (which 
depends on the magnetic field), the magnetization |M| decreases with increasing temperature at least, for the 
magnetic fields considered in this work. The decrease is faster whenever the magnetic field is larger. It is 
important to note that the characteristic behavior for GaAs quantum dots of diamagnetic materials fits the 
approach followed in our study (Ghaltaghchyan et al., 2016). It should be noted that at a fixed temperature the 
spin effect becomes more pronounced as the magnetic field increases. 
In Figure 9, we plot the magnetization as a function of the applied magnetic field. We have shown the behavior 
of magnetization for four values of temperature with and without spin. We note from the figure that the 
magnetization decreases with increasing magnetic field and it is diamagnetic this is clear from the curves 
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signature. We also observe that magnetization saturates to a constant for both g*=0 and g*=-0.44 within a small 
range of magnetic field since the system becomes fully polarized and becomes independent of temperature. It 
can also be seen that the effect of the spin is significantly increased by increasing the magnetic field strength; 
moreover the spin causes an increase in the magnetization in comparison with the spinless case. 

 

Figure 8. Magnetization (𝑀/𝜇஻) vs. temperature (T) of 2D parabolic GaAs QD for B=5, 10 and 30 Tesla 

 

Figure 9. Magnetization (𝑀/𝜇஻) vs. magnetic field (B) of 2D parabolic GaAs QD for T=10, 50, 150 and 200 K 
 
Variation of susceptibility with temperature is given in Figure 10 for different magnetic fields. For comparison 
purposes the spinless case is also plotted. The figure shows that the susceptibility initially decreases with 
temperature, because thermal agitation works to cause fluctuations in the polarized state of the system, then it 
reaches a minimum and then starts increasing with increasing temperature and finally at very large temperature 
the susceptibility attains a negative value and becomes independent of magnetic field and remains in a 
diamagnetic state. It can be noticed that the spin increases the susceptibility for all the values of temperature and 
magnetic field considered in this work. The reduction is more rapid for a lower magnetic field. The explicit 
magnetic field dependence of the susceptibility of the system at different temperatures with and without spin is 
shown in Figure 11. It is noted that, at lower temperatures like T=5K, 25 and 10K, the susceptibility enhances as 
the magnetic field increased, while at higher temperatures like T=50K, the susceptibility turns out to be 
independent of magnetic field at low magnetic field, at least, for the temperatures we have considered in this 
study. However, above a certain magnetic field value, the susceptibility increases with the increase in magnetic 
field. Finally, at very large magnetic field, the system is fully polarized, as a result, the overall susceptibility 
reduces to zero and becomes independent of temperatures. This is in conformity with magnetization behavior 
shown in Figure 9. One can observe that the spin does not show a significant effect on the susceptibility also the 
susceptibility is diamagnetic for the present system. 
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Figure 10. Susceptibility (𝜒/𝜇஻) vs. temperature (T) of 2D parabolic GaAs QD for B=5, 10 and 15 Tesla 

 

Figure 11. Susceptibility (𝜒/𝜇஻) vs. B of 2D parabolic GaAs QD for T=5, 10, 25 and 50 K 

 

Figure 12. Susceptibility (𝜒/𝜇஻) vs.g of 2D parabolic GaAs QD for B=0.5, 1, 2 and 3 Tesla at T=5K 
 
In Figure 12 we display the dependence of the susceptibility upon the Lande g factor (g*) for four values of 
magnetic field strength at T=5K. We note that the susceptibility shows a symmetric behavior about g*=0. This 
can be comprehended from the susceptibility equation which can be acquired from Eq. (18). It is very simple to 
see that at finite values of magnetic field and temperature ℏ𝜔௖𝑔∗ ≪ 𝑘஻𝑇, and therefore susceptibility is 
proportional to the square of the Lande g factor (g*). In addition, a local minimum is observed in susceptibility at 
g*=0 and susceptibility is completely diamagnetic. This is too effortlessly reasonable. For g*=0 the magnetic 
susceptibility is in a diamagnetic state. Also, the maximum is noticeable at a lower values of g* for the lower 
magnetic field (results shown for B=0.5T and B=1T). But, as g* increases, at a fixed magnetic field, 
susceptibility begins increasing and this justifies the minimum at g*=0. However, as g* increases diamagnetic 
effect increases until magnetization saturates. So, one would expect a maximum in susceptibility at this value of |g∗|. Beyond this value of g*, diamagnetism decreases rapidly. While, for B=2T and 3T we notice that the 
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susceptibility increases as g* increases, and then with further increase in g* the susceptibility decreases smoothly 
till susceptibility becomes independent of g*. Also, a double-peak structure is observed and it becomes noticeable 
as the magnetic field decreases (results shown for B=0.5T and B=1T). This study of susceptibility as a function 
of Lande g factor can be utilized to find the correct materials parameters to achieve certain magnetic properties. 
4. Conclusion 
The thermal and magnetic properties of a two Harmonically interacting electrons in a GaAs quantum dot with 
parabolic confinement are investigated as a function of temperature and magnetic field taking into consideration 
the spin-Zeeman energy. We obtained the energy spectrum of the system in closed form by solving Schrodinger 
equation analytically and then we find heat capacity, entropy, magnetization and susceptibility using the 
canonical ensemble approach. As a function of temperature, it was demonstrated that the heat capacity exhibits a 
peak structure at a very low temperature, while at high temperature it saturates to the value of 4kB and it was 
noted that the spin increases heat capacity only at low temperature and at high magnetic field. We also found that, 
at low temperature entropy increases steeply as the temperature increases, and at very high temperatures the 
entropy reaches the saturation limit. It was found that the spin does not affect the entropy significantly. Also it 
was shown that, at large magnetic field like B=30T, the magnetization remains constant with a temperature up to 
a certain value, beyond which the magnetization begins to increase. As it turns out that the spin leads to an 
increase in magnetization. It is found that, at very large temperatures the susceptibility saturates to a negative 
value and becomes independent of magnetic field. However, it was noted that the diamagnetic state is the 
preferred state of our system. Also, it was noted that the spin always increases the susceptibility irrespective the 
value of magnetic field and temperature. As a function of magnetic field, the heat capacity shows at very low 
values of magnetic field a Schottky-like anomaly which is absent in the spinless case, but with further increase in 
magnetic field, heat capacity becomes independent of the spin and temperature and attains a constant value of 
2kB. It was also shown that, for sufficiently low temperatures like T=5K, entropy enhances with increasing in 
magnetic field. While at T=100K, entropy is almost constant and does not show a significant change in its value 
and it shows very little dependence on both the magnetic field and the spin. It was observed that the 
magnetization decreases sharply with increasing magnetic field and it is diamagnetic and saturates to a constant 
as the magnetic field increases. Moreover, the inclusion of the spin on the magnetization is tangible as the 
magnetic field increases. The susceptibility was found to increase with increasing magnetic field and then 
reaches zero at high values of the magnetic field, also the spin does not show a significant effect on the 
susceptibility. As a function of the Lande g factor, the heat capacity exhibits a local minima at g*=0, and it 
saturates at a certain value of g* with value of 2kB, while the susceptibility shows a double-peak structure at very 
low magnetic field, but at comparatively large magnetic field, susceptibility becomes almost independent of g* 
with further increase in g*. It was concluded that, the main effect of the spin is an increase in the magnitude of 
these properties; moreover in the absence of spin, there is no change in the general behavior of these properties. 
The possibility of controlling the properties of these magnetic materials would be significantly charming in the 
coming technology from key points of view, especially in context of the continuous headways in magneto- 
devices and spintronics. 
In future work, it is planned to investigate these properties of two Harmonically interacting electrons confined in 
two-dimensional Gaussian quantum dot in the presence of both magnetic field and spin-Zeeman energy using the 
canonical ensemble approach and study their behavior on temperature, magnetic field, QD dot size and other 
relevant parameters. 
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