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Abstract 
 

This article presents a comprehensive study of an odd Lindley-Gompertz distribution which has already 
been proposed in the literature but without any properties. The present study unlike the previous one has 
considered the derivation of several properties of the odd Lindley-Gompertz distribution with their 
graphical representations and discussions which has not been done in the first proposition of the 
distribution.  The study looks at properties such as survival (or reliability) function, the hazard function, 
the cumulative hazard function, the reverse hazard function, the odds function, quantile function, 
moments, moment generating function, characteristic function, cumulant generating function, distribution 
of order statistics and maximum likelihood estimation of the distribution’s parameters none of which was 
treated by the previous author of the model. An illustration to evaluate the goodness-of-fit of the odd 
Lindley-Gompertz distribution has also been done using two real life datasets and the results show that 
the model fits the datasets better than the five other distributions considered in this present study.  
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1 Introduction 
 
The Gompertz distribution is both skewed to the right and to the left. It is a generalization of the exponential 
distribution and is commonly used in many applied problems, particularly in lifetime data analysis [1]. The 
Gompertz distribution has been applied in the analysis of survival, in some sciences such as gerontology [2], 
computer science [3], biological science [4], and marketing science [5]. The hazard rate function of the 
Gompertz distribution is an increasing function and often applied to describe the distribution of adult life 
spans by actuaries and demographers [6]. 
 
Several methods or families of distributions have been proposed for adding parameters to all forms of 
probability distributions which makes the resulting distribution better than the standard counterparts in 
modeling skewed datasets. A short list of these recently proposed families of distributions include a Lomax-
G family by [7], a new generalized Weibull-G family by [8], a Beta Marshall-Olkin family of distributions 
by [9], Logistic-X by [10], a new Weibull-G family by [11], a Lindley-G family by [12], a Gompertz-G 
family by [13] and Odd Lindley-G family by [14] etc. Meanwhile a comprehensive list of all these families 
can be found in [15].  
 
Based on these families of probability distribution, many studies have proposed different extensions of the 
Gompertz distribution and some of the recent and known studies include the generalized Gompertz 
distribution by [16] which was based on an idea of [17], the Beta Gompertz distribution by [18], the odd 
generalized Exponential-Gompertz distribution by [19], the Transmuted Gompertz distribution by [20], the 
Lomax-Gompertz distribution by [21] and the odd Lindley-Gompertx distribution by [22].  
 
Kuje et al. [22] used the family of distributions by [14] to propose an odd Lindley-Gompertz distribution due 
to fact that the odd Lindley-Weilbull distribution which was based on the odd Lindley-G family was found 
to fit real dataset much better than other extensions of the Weibull distribution such as exponentiated 
Weibull distribution, beta Weibull distribution, Kumaraswamy Weibull distribution and the conventional 
Weibull distribution [14].  
 
This article is an improvement over the work of [22] who did not capture any of the properties of the odd 
Lindley-Gompertz distribution which are very useful in engineering and medicine. Hence, our interest in this 
article is to develop a new odd Lindley-Gompertz distribution using the odd Lindley-G family of probability 
distributions proposed by [14] with many properties such as survival (or reliability) function, the hazard (or 
failure rate) function, the cumulative hazard function, the reverse hazard function, the odds function, 
quantile function, moments, moment generating function, characteristic function, cumulant generating 
function, distribution of order statistics and maximum likelihood estimation of the distribution’s parameters 
all of which are not found in [22]. 
 
The cumulative distribution function (cdf) and probability density function (pdf) of the Gompertz 

distribution with parameters   and   are given as: 
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                                                                                                                         (1) 
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respectively. For 0, 0, 0x      where   and   are scale and shape parameters of the model 

respectively.   
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The rest of this article is organized in sections as follows: the new model with a graphical representation of 
its pdf, cdf, survival and hazard functions are given in section 2. Section 3 derived some properties of the 
new odd Lindley-Gompertz distribution. Section 4 presents the estimation of unknown parameters of the 
distribution using maximum likelihood estimation. An application of the new model to two real life datasets 
is done in section 5 with a brief summary and conclusion in section 6.  
 

2 New Odd Lindley-Gompertz Distribution (OLinGomD) 
 
According to [14], the cumulative distribution function (cdf) and the probability density function (pdf) of the 
Odd Lindley-G family of distributions are defined as: 
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respectively, where ( )g x and ( )G x are the pdf and the cdf of any continuous distribution to be modified 

respectively and 0   is the shape parameter of the family responsible for additional skewness and 
flexibility in the modified model. 
 

Substituting equation (1) and (2) in (3) and (4) above and simplifying, we obtain the cdf and pdf of the new 
OLinGomD for a random variable X as follows: 
 

 

   

 11 1

1

ee
( ) 1 e

1 e

xx e

x

e

e
F x

  













    
 

 


 


                                                                       (5) 

 

and 

 

 

 

 2 12 1 1 ee e
( ) e

1

xxx ee

f x

    



   
 


                                                                                         (6) 

 

“respectively, where, 0, 0, 0x    
,
  and  are the shape parameters and   is the scale 

parameter”. 
 

The survival (or reliability) function, the hazard (or failure rate) function, the cumulative hazard function, the 
reverse hazard function and the odds function for the OLinGomD can be derived by substituting equation (5) 
and (6) above and simplifying to obtain (7), (8), (9), (10) and (11) respectively as follows:  
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respectively, where 0, , , 0x     and   and  are the shape parameters while   is the scale 

parameter.  
 
Graphical representation of Pdf, Cdf, survival and hazard functions of OLinGomD: The plots of pdf, 
cdf, survival and hazard functions of the OLinGomD using some parameter values are displayed in the 
figures below. 
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Fig. 1. Plots of the PDF, CDF, Survival function (SF), Hazard function (HF) of the OLinGomD for 
selected parameter values 

 
From the plots in Fig. 1 above, it shows that the pdf of the OLinGomD is skewed with various shapes and 
therefore will be a good model for different kinds of datasets. It is also found that the plots are in line with 
the standard limiting behavior of the pdf and cdf. The plot of the survival function in the figure above also 
shows that the probability of survival equals one at initial time and it decreases as time increases and equals 
zero as it approaches infinity. Also worthy to note is the fact that the hazard function increases as time 
increases. This means that the OLinGomD could be appropriate for modeling time dependent events, where 
risk or hazard increases with time or age.  
 

3 Mathematical and Statistical Properties of OLinGomD 
 
3.1 Moments 
 
Let X denote a continuous random variable, the nth moment of X is given by: 
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                                                                                           (12) 

 
where f(x) the pdf of the OLinGomD is as given in equation (6)  
 
Before substitution in (12), we perform the expansion and simplification of (6) as follows:

           
                          

 
First, by expanding the exponential term in (6) using power series, we obtain: 
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Making use of the result in (13) above, equation (6) becomes 
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Also, using the generalized binomial theorem, we can write the last term from the above result as: 
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Making use of the result in (15) above in equation (14) and simplifying, we obtain: 
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Again, using series expansion of 
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Now, using the simplified pdf of the OLinGomD in equation (17), the nth ordinary moment of the 
OLinGomD is derived as follows: 
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Making use of integration by substitution method in equation (18), we perform the following operations: 
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Substituting for ,x  and dx  in equation (18) and simplifying; we have: 
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Using the definition of complete Gamma function, we obtain the nth ordinary moment of X for the 
OLinGomD as:  
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The mean (
'
1 ), variance (

2 ), coefficient of variation ( CV ), coefficient of skewness ( CS ), coefficient 

of kurtosis ( CK ), moment generating function (mgf) and characteristics function (cf) can all be calculated 
based on the ordinary moments in equation (20) using some simple and well-defined relationships.  
 
The moment generating function of a random variable X can be obtained as 
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Applying power series expansion and simplifying equation (21) gives the following: 
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Using the result in equation (22) and simplifying the integral in (21) therefore we have: 
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The characteristics function of a random variable X is defined by: 
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Again, applying power series expansion and simplifying equation (24), we obtained the characteristics 
function of X as: 
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The Cumulant generating function (CGF) is obtained as: 
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3.2 Quantile function 
 

According to [23], the quantile function for any distribution is defined in the form    1
qQ u X F u   

where  Q u  is the quantile function of F(x) for 0 1u  . 
 

Taking F(x) to be the cdf of the OLinGomD and inverting it as above will give us the quantile function as 
follows: 
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(27)

         
 

Simplifying equation (27) above gives: 
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                                                            (28) 

 

In the expression above, it can be seen that 
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  is the Lambert function of the real argument,

    11 1 eu       since the Lambert function is defined as:    ew xw x x
 

 

Also note that the Lambert function has two branches with a branching point located at  1e ,1 . The 

lower branch,  1W x  is defined in the interval 
1e ,1    and has a negative singularity for 

10x  . 

The upper branch,  0W x , is defined for 
1e ,x      . Hence, equation (28) can be written as: 
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Now for any 0   and  0,1u , it follows that 
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Therefore, considering the lower branch of the Lambert function, equation (29) can be presented as: 
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Collecting like terms in equation (30) and simplifying the result, the quantile function of the OLinGomD is 
obtained as: 
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                                (31)

     

        

       

where u is a uniform variate on the unit interval (0,1) and  1 .W represents the negative branch of the 

Lambert function. 
 

The median of X from the OLinGomD is simply obtained by setting u=0.5 and this substitution of 0.5u 
in equation (31) gives: 
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                                 (32) 

 

Also, random numbers can be simulated from the OLinGomD by setting  Q u X  and this process is 

called simulation using inverse transformation method. This means for any , , 0     and  0,1u : 
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“where u is a uniform variate on the unit interval (0,1) and  1 .W represents the negative branch of the 

Lambert function”. 
 
According to [24], the Bowley’s measure of skewness based on quartiles is defined as: 
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And [25] presented the Moors’ kurtosis based on octiles by: 
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“where  .Q  is calculated by using the quantile function from equation (31).     

 

3.3 Distribution of order statistics 
 

Suppose 1 2, ,....., nX X X  is a random sample from the OLinGomD and let 1: 2: :, ,.....,n n i nX X X  denote 

the corresponding order statistic obtained from this same sample. The pdf, ��:�(�) of the ith order statistic can 
be obtained by: 
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Using (5) and (6), the pdf of the ith order statistics��:�, can be expressed from (36) as: 
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(37) 

 

Hence, the pdf of the minimum order statistic �(�) and maximum order statistic �(�) of the OLinGomD are 

respectively given by: 
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and     
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(39) 

 

4 Estimation of Unknown Parameters of the OLinGomD 
 
Let 1 2, ,..., nX X X  be a sample of size " "n  independently and identically distributed random variables 

from the OLinGomD with unknown parameters,  ,  and   defined previously.  
 
The likelihood function is given by: 
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Let the log-likelihood function be  log | ,l L X  
 
therefore 
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Differentiating � partially with respect to  ,  and  respectively gives; 
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Equating (41), (42) and (43) to zero (0) and solving for the solution of the non-linear system of equations 

will give the maximum likelihood estimates (MLEs) of parameters  ,  and  .  
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5 Applications 
 
This section presents two datasets, their descriptive statistics and applications of some selected extensions of 
the Rayleigh distribution. The section compares the performance of the Odd Lindley-Gompertz distribution 
(OLinGomD) to that of Generalized Gompertz distribution (GenGomD), Lomax-Gompertz distribution 
(LomGomD), Transmuted Gompertz distribution (TGomD), Power Gompertz distribution (PGomD) and the 
classical Gompertz distribution (GomD). 
 
Aiming to evaluate the performance of the models listed above, the Akaike Information Criterion (AIC) is 
being used in this article as previously considered by [15]. The formula for this statistic is given as: 
 

 2 2AIC ll k    
 
Where ƖƖ denotes the value of the log-likelihood evaluated at the maximum likelihood estimates (MLEs) and 
k is the number of model parameters. 
 
Meanwhile the model with the smallest value of AIC is to be considered as the best model that fit the data. 
 
Dataset I: This dataset represents the lifetime’s data relating to relief times (in minutes) of 20 patients 
receiving an analgesic and reported by [26] and has also been used by [27,28,29,30] and [31]. 
 

 
 

Fig. 2. A graphical summary dataset I 
 

Table 1. Summary statistics for dataset I 
 

Parameters n Minimum 
1Q  Median 

3Q  Mean Maximum Variance Skewness Kurtosis 

Values 20 1.10 1.475 1.70 2.05 1.90 4.10 0.4958 1.8625 7.1854 
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Based on the descriptive statistics in Table 1 and Fig. 2, it is clear that the first dataset (dataset I) is skewed 
to the right or positively skewed and could be good for flexible models like OLinGomD.  

 
Table 2. Performance of the fitted distributions based on the value of AIC using dataset I 

 

Distributions Parameter estimates  Log-likelihood 
value 

AIC Rank of models  

OLinGomD ̂  =1.1183 

̂ =0.1854 

̂ =0.1676  

161.8985 -317.7970 1st  

GenGomD 
 ̂  =0.0797 

̂ =1.7179569 

̂ =1.4005451  

115.988  -225.9759  2nd  

LomGomD ̂  =0.04256 

̂ =2.133 

̂ =3.561  

̂ =3.323  

105.7131  -203.4261  3rd  

TGomD ̂  =0.5493 

̂ =0.4126 

̂ =-0.9593  

24.11346  -42.22693  4th  

PGomD ̂  =0.11856 

̂ =0.02237 

̂ =2.15954  

-19.12861  44.25723  5th  

GomD ̂  =0.14509 

̂ =0.69852 

-24.5907  53.18141  6th  

 

Table 2 presents the parameter estimates and the values of AIC for the six fitted models using dataset I. The 
values in the above table reveal that the OLinGomD has a smaller value of AIC compared to the other five 
distributions and is therefore taken to fit the dataset better than the other models.  
 

From the estimated pdf and cdf plots in Fig. 3, it is very clear that the OLinGomD fits the data much better 
than the other five distributions. This performance shows that the OLinGomD is flexible and can take 
different shapes or fit various datasets. 
 

Looking at the probability plots in Fig. 4, it can be seen that the data points are closer to the straight line of 
the plot for OLinGomD than the other distributions which is a confirmation that the OLinGomD has a better 
fit for the data as already demonstrated in Table 2 and Fig. 3.  
 

Data set II: This dataset represents the strength of 1.5cm glass fibers initially collected by members of staff 
at the UK national laboratory. It has been used by [32,33,34,35,36,37] as well as [38].  Its summary is given 
as follows: 
 

Table 3. Descriptive statistics for dataset II 
 

n Minimum 
1Q  Median 

3Q  Mean Maximum Variance Skewness Kurtosis 

63 0.550 1.375 1.590 1.685 1.507 2.240 0.105 -0.8786 3.9238 
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Fig. 3. Histogram and Plots of the Estimated Densities and Cdfs of the Fitted Distributions based on 
Datasets I 

 

 
 

Fig. 4. Probability plots for the fitted distributions based on dataset I 
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Fig. 5. A graphical summary dataset II 
 

Looking at the descriptive statistics in Table 3 and the histogram, box plot, density and normal Q-Q plot 
shown in Fig. 5 above, it is revealed that second dataset (dataset II) is negatively skewed, that is, skewed to 
the left and could also be suitable for skewed distributions like the OLinGomD.  

 

Also the result in Table 4 presents the parameter estimates and the values of AIC for the six fitted models 
using dataset II. From this table, it is noticed that the OLinGomD has a smaller value of AIC compared to 
the other five distributions and is therefore taken to fit the second dataset better than the other five fitted 
models.  

 

Also, looking at the estimated pdf and cdf plots in Fig. 6, the plots indicate that the OLinGomD fits the 
second data (dataset II) better than the other five distributions. This performance shows that the OLinGomD 
is flexible and can take different shapes or fit various datasets. 

 

Considering the probability plots in Fig. 7, it can be noted that the points in the p-p plot are closer to the 
straight line of the plot for OLinGomD than the other distributions which is a confirmation that the 
OLinGomD has a better fit for the data as already demonstrated in Table 4 and Fig. 6.  
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Table 4. Performance of the fitted distributions based on the value of AIC using dataset II 
 

Distributions Parameter estimates  Log-likelihood 
value 

AIC Rank of models  

OLinGomD ̂  =0.7452 

̂ =2.0747 

̂ =-0.9999  

535.9007 -1065.8013 1st  

LomGomD ̂  =0.0002651 

̂ =5.4073836 

̂ =3.2158189  

̂ =6.1656918 
 

452.9747  -897.9494  2nd  

GenGomD 
 ̂  =0.001143 

̂ =5.447001 

̂ =3.531687  

299.0638  -592.1276  3rd  

TGomD ̂  =1.07580 

̂ =0.43643 

̂ =-0.090758  

88.33262  -170.6652  4th  

GomD ̂  =0.008418 

̂ =3.689379 

-14.57588  33.15175  5th  

PGomD ̂  =0.02154 

̂ =2.46556 

̂ =1.30117 

-15.27265  36.54529  6th  

 

   
 

Fig. 6. Histogram and plots of the estimated densities and Cdfs of the fitted distributions based on 
datasets II 
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With reference to the results in Table 2 and Table 4 above and comparing the values of the AIC for the six 
fitted distributions, it is obvious that the OLinGomD fits the two datasets better than the other five 
distributions. This is base on the decision statement which says that the distribution with a smaller value of 
the test statistic (AIC) will be considered as the most efficient model as considered in this study. 
 

 
 

Fig. 7. Probability plots for the fitted distributions based on dataset II 
 
Also, the estimated pdfs and cdfs displayed in Fig. 3 for dataset I and Fig. 6 for dataset II as well as the P-P 
plots presented in Fig. 4 for dataset I and Fig. 7 for dataset II clearly support and confirm the results in Table 
2 and Table 4. 
 
Relating the present result to the result of [22], it can be seen that the odd Lindley-G family by [14] is a very 
good method for defining compound distributions with greater level of performance and flexibility 
irrespective of the nature of the datasets to be analyzed. 
 

6 Summary and Conclusion 
 
In this paper, the three-parameter model named the “odd Lindley-Gompertz distribution” introduced 
previously by [22] has been studied and evaluated extensively. The article has provided a comprehensive 
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study of some mathematical and statistical properties of the odd Lindley-Gompertz distribution which 
include the derivation of explicit expressions for its ordinary moment, moment generating function, 
characteristics function, cumulant generating function, survival function, hazard function, reverse hazard 
rate, cumulative hazard function, odds function and the quantile function which is useful for obtaining the 
median, skewness and kurtosis and simulation of random numbers from the OLinGomD. It also obtained the 
density function of its minimum and maximum order statistics. The estimation of the unknown model 
parameters using the method of maximum likelihood estimation has also being considered. The performance 
of the odd Lindley-Gompertz distribution has also been checked in this present article using two real life 
datasets and the results reveal that the odd Lindley-Gompertz distribution is more flexible compared to the 
other fitted distributions due to its ability to fit the two datasets better than the Generalized Gompertz 
distribution (GenGomD), Lomax-Gompertz distribution (LomGomD), Transmuted Gompertz distribution 
(TGomD), Power Gompertz distribution (PGomD) and the classical Gompertz distribution (GomD).  
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