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ABSTRACT 
 

Aim: This paper reviews the literature on the pathogenic genotypes of S. mutans that may be more 
virulent colonizers and the phenotypic variability of its main virulence factors. 
Methods: A thorough literature search on S. mutans was performed and the relevant datas 
supporting its association to dental caries were extracted. 

Review Article 
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Results: Dental caries is a microbial disease caused by frequent intake of dietary sugars. 
Fermentation of sugars by biofilm microbiota produces acids that disrupt microbial homeostasis 
and cause dissolution of tooth minerals. Identifying S. mutans as the most important cariogenic 
microorganism has led to the design of target specific preventive measures that intend to reduce its 
presence in oral cavity.  
Conclusion: Due to environmental changes and selective pressure in the oral cavity, 
Streptococcus mutans endure extensive genotypic diversity thereby exhibiting new physiological 
and metabolic properties. However, the role of the variants are poorly understood.  
 

 
Keywords: Dental caries; genotypic diversity; Streptococcus mutans. 
 

1. INTRODUCTION 
 
Dental caries is a ubiquitous chronic diseases 
affecting people all through their lives. It is a 
complex multifactorial microbial disease affecting 
billions of people globally, thereby posing a major 
public health concern. Although diverse factors 
aid in the development of dental caries, the 
disease is mainly driven by the resident 
cariogenic microbiota which produces acids by 
metabolizing the dietary carbohydrates. The 
production of such acids and maintenance of its 
low pH over prolonged duration in the biofilm of 
the microbiota, present in proximity to the teeth, 
predisposes to formation of dental caries by 
dissolution of the tooth minerals, in an 
opportunistic manner. Currently the models of 
dental caries etiology focuses on relating this 
disease to a microbial ecological shift, which is 
based on a physiologic imbalance between tooth 
mineral and biofilm [1,2]. While dental caries is 
not a typical infectious disease it is important to 
know about the infectious and transmissible 
characteristics of the endogenous oral microflora. 
 

Amongst the plethora of microorganisms present 
in the oral cavity, the Mutans streptococci have 
been implicated as the primary agent related to 
dental caries initiation in humans [3-5]. By virtue 
of its contribution to the formation of the dental 
biofilm matrix, its capacity to produce large 
quantities of organic acids, and its propensity to 
outcompete non-cariogenic commensal species 
at low pH conditions [6]. Decades of research on 
Mutans Streptococci association to dental caries 
has conclusively narrowed down on to S. 
mutans. However S. mutans can be isolated from 
individuals either with or without a history of 
caries [7,8]. Thus existence of variations among 
the colonizingS. mutans is the reason for the 
subsequent development and progression of 
caries among different individuals. To understand 
the infectious nature of dental caries it may be 
useful to study the genotypes of S. mutans to 
appreciate its diversity. According to the official 

Guidelines for Human Gene Nomenclature, a 
gene is defined as a DNA segment that 
contributes to phenotype/function [9]. Genotype 
is the genetic constitution of a cell, an individual 
or an organism. Also gene regulation is found to 
play a vital role in the control of the expression of 
virulence factors such as synthesis of polymeric 
substances, adhesion, acidogenicity, aciduricity 
and variability. Diversity is the number of different 
S. mutans genotypes found within an individual. 
Genetic diversity of S. mutans remains as a topic 
of interest, as this provides an explanation for the 
contrasting caries status in people harbouring it 
[10]. Thorough understanding of these microbial 
species and their colonisation stratagems may 
help in the diagnosis, risk assessment, 
development of new treatment strategies for 
caries, so as to prevent disease and promote 
health in addition to standard prevention 
treatments. 
 
Human oral microflora is composed of an 
abundant mix of microorganisms that are part of 
a multispecies biofilm complex. The oral cavity 
being a dynamic environment allows for the 
selection of certain organisms to not only adapt 
metabolically but also to develop its potential and 
genomic content in the biofilm [11]. Although 
microorganisms belonging to the same genus 
and species present a common gene set 
denoted core-genome, which is essential for 
cellular functioning and the survival of the 
species, they can differ in their physiological and 
virulent properties because of their strain specific 
genes [12-15]. The rest of the genome, referred 
to the accessory functions, is generally known as 
the not essential or dispensable genome and is 
not shared by all strains. Comparative genomic 
analysis between multiple genomes of individual 
species has revealed an extensive intra-species 
genomic diversity. The dispensable genome 
contributes to the diversity of the species and 
probably provides functions that are not essential 
for survival. It also confers selective advantages 
such as survival and adaptation to different 
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ecological niches, antibiotic resistance, and the 
capacity to colonize new hosts [14]. This diversity 
is generated by a variety of processes which 
include genome rearrangements, horizontal gene 
transfer by natural genetic transformation, and 
exposition to genetic mobile elements such as 
bacteriophages, plasmids, insertion elements, 
transposons, and genomic islands [12,16]. With 
the advent of new molecular tools over the past 
few decades there has been a substantial 
change in the understanding of dental caries 
microbial pathogenicity relative to bacterial 
detection and genotyping. 
 
 
Rationale: The dental biofilm is composed of 
complex bacterial community, specific strains of 
S. mutans have to compete with other strains to 
establish colonization [17]. Gene regulation 
resulting in differences in genetic content of each 
S. mutans strain will also influence exhibition of 
phenotypic variability between the strains [18-
20]. Knowledge of the various genotype of S. 
mutans with varied virulence factors and their 
correlation with other species is fundamental to 
understand their colonization and establishment 
in the same individual [21]. It has been 
suggested that not all strains have the same 
virulence capacity to promote the formation of 
dental caries [20,22]. Therefore, it seems 
reasonable to expect that at least some of the 
genes related to virulence are not distributed in 
the same way in the strains according to their 
caries status [23]. 
 

2. S. mutans SEROTYPES 
 
S. mutans belong to the Mutans streptococci 
group along with nineteen other species [24]. It 
can be further classified into specific serotypes 
based on the cell wall antigenic polysaccharides 
known as rhamnose-glucose polymers [25,26]. 
S. mutans is found to have the highest genetic 
variation than other species present in humans 
and is classified into fourserotypes (c, e, f, and k) 
[18]. Use of polymerase chain reaction (PCR) 
with primers designed based on the sequence 
differences of the rgpgene [18,27], has facilitated 
in determining the frequencies and distribution of 
these serotype in clinical isolates. Studies have 
revealed that serotype c is the frequent one 
corresponding to approximately 70-80% of the 
isolates in the oral cavity, followed by serotype e 
(20%), and serotypes f and k corresponding to 
less than 5% and 2% respectively [18,28-30]. 
This distribution also highlights different 
pathogenic patterns in S. mutans. 

Environmental changes, selective pressures, and 
the presence of a variable genome in S. mutans 
cues its adaptation as well as strongly influence 
the acquisition of new physiological and 
metabolic properties that alter the dental biofilm 
homeostasis, leading to development of dental 
caries. Natural genetic transformation is a 
genetically programmed process which offers the 
recipient microorganism with the ability to acquire 
new phenotypic traits by facilitating the 
integration of dispensable genes [21,31]. 
Resulting in generation of a wide range of 
genome heterogeneity thereby promoting the 
emergence of resistance, genetic variation, and 
the rapid evolution of virulence factors 
[14,21,31,32]. This process is carried out as long 
as the cells have the ability to enter a 
physiological state known as competence which 
allows them to take up exogenous DNA from 
their environment and incorporate it into their 
genome [33]. It a mechanism of ecological 
importance as S. mutans manages to adapt to 
the changing environments, originating from 
different selective pressures [21,34]. 
 
Although the existence of heterogeneity of S. 
mutans is widely known, very little is known 
about the mechanisms for the expression of 
pathogenic properties in specific genotypes. The 
employment of the state of the art molecular 
biology techniques in the various studies on S. 
mutans has provided enormous information on 
the evolution, pathogenesis, diversity, metabolic 
activities, and virulence properties of this species 
[35]. The three main natural strategies that 
generate genetic variations are: 
 

(1) Small local changes in the nucleotide 
sequence of the genome, which explains 
the presence of four serotypes 

(2) Intragenomicreorganization of segments of 
genomic sequences, and 

(3) Acquisition of DNA sequences from 
another organism 

 

3. INTRAGENOMIC REARRANGEMENTS 
 
Genomic rearrangements are mutations that 
change the gene content of a genome or the 
arrangement of the genes in a genome.They can 
be categorised as deletions, duplications, 
insertions, inversions, and translocations. They 
occur due to break in long stretches of DNA 
involving at least two different locations, followed 
by a re-ligation of the broken ends to produce a 
new chromosomal arrangement [36]. Sometimes 
this rearrangement could encompass a cluster of 
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genes depending on the size of the rearranged 
fragment [37]. Rearrangements therein influence 
the structure of the chromosome through 
disruption of an existing gene or by creation of a 
new gene, thereby affecting its expression 
instigating phenotypic variability [36]. 
 
In 2002 the complete genome sequencing of the 
S. mutans strain UA159 has helped unriddle the 
complexity and genetic specificity of S. mutans 
[21]. Since then UA159 is frequently used as a 
reference strain for variability studies [13]. Till 
date, a large number of S. mutans genomes 
have been sequenced and 188 genomic 
sequences of S. mutans are available in the 
NCBI database for the researchers. In 
comparative genomics studies the genomic 
sequences are often used to identify the 
virulence factors. It involves comparing genomes 
from different strains, then detecting the 
differences and similarities, thereby revealing 
common molecular and pathogenic mechanisms 
which can be related to specific phenotypic 
characteristics [38]. 
 
A pioneering study by Maruyama et al on S. 
mutans using comparative genomic analysis 
provided extensive information on the species-
specific genetic content of S. mutans, while 
comparing strain UA159 with strain NN2025. The 
findings of the study were, although these strains 
belonged to the same serological group(serotype 
c) with expression of the same biochemical, 
adhesive, and cariogenic properties as well as 
similarity in 90% of their genes the strains 
presented eight variable regions with more than 
30 genome rearrangements. The NN2025 strain 
genome contained eight strain-specific regions 
while the UA159 strain genome contained nine 
strain-specific regions [34]. 
 
Shields et al. utilized transposon sequencing 
technology and discovered that only 11% of the 
S. mutans UA159 genome is essential, with the 
presence of genes encoding products required 
for replication, translation, cell wall biogenesis, 
and the lipid metabolism, as well as genes 
necessary for survival, growth, and persistence 
colonization in both experimental and clinical 
conditions. It was suggested that S. mutans 
strains evolve through a process of chromosomal 
shuffling, which plays an important role in the 
genomic diversity of this species [32]. 
 
Song et al. sequenced the genomes of six S. 
mutans clinicalisolates and compared them to 
the reference strains UA159 andNN2025, 

focusing on characteristics related to 
pathogenicity. Genome alignment study revealed 
existence of chromosomal rearrangements 
amongst the strains. High variations in virulence-
related genes between the strains was apparent. 
In addition to these findings the genomic regions 
required for S. mutans survival in 
differentenvironments were also discovered [31]. 
 

4. HORIZONTAL GENE TRANSFER (HGT) 
 
It is the movement of genetic information within a 
wide range of the bacteria which inhabit the 
human oral cavity [11]. As a result of it strain 
variants can be spawned due to loss, duplication, 
or modification of existing genes [12]. Often 
through this mechanism new phenotypic traits 
are acquired to provide a selective advantage to 
the microorganism. Therefore, due to the 
genomic diversity present among different 
isolates, the genome content of a single strain 
does not necessarily represent the genomic 
potential of certain species [34]. 
 
Hoshino et al. and Argimón et al. determined the 
origin of glycosyltransferases (GTFs) in the 
Streptococcus genus. This enzymecatalyses the 
synthesis of glucans from sucrose and are is 
encoded by gtf genes. The authors proposed that 
the Streptococcus acquired the genes gtf by 
HGT and then were capable of forming 
cariogenic biofilms [39,40]. 
 
Cornejo et al. sequenced 57 S. mutans isolates 
to determine the general structure and the 
potentialadaptive characteristics of both the core 
and dispensable genomes. The genomes of the 
studied strains were highly variable and their 
global genetic compositions were found to differ 
markedly from one isolate to another owing to 
the high HGT rate [15]. 
 
Meng et al. performed a pan-genome analysis of 
183 S. mutans strains and determined that this 
species has an open pan-genome, thereby 
indicating that new genes can be found as more 
genomes are sequenced. An open pan-genome 
has been found to be associated with the 
adaptation of the bacterial species [38]. In 
addition, this is a distinctive characteristic of 
species which colonize diverse habitats and 
coexist with other microorganisms in large 
communities. It is typical of species that have the 
ability to exchange genetic material and have a 
high rate of HGT [41]. Hence, these findings 
suggest that the genome of S. mutans may be 
expanding gradually over time. 
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5. GENE REGULATION 
 
S. mutans have been studied in some detail at 
genetic level, however many of the discovered 
genes have not been studied in the context of 
genetic competence until the past few years [42]. 
This can actually help us in understanding the 
cell-cell communication in S. mutans [43]. The 
various mechanisms of gene regulation in S. 
mutans include competence, signal transduction, 
quorum sensing, and small RNA (sRNA) 
regulation. For survival in a dynamic environment 
such as oral cavity, microorganisms were found 
to use regulatory systems to detect and respond 
rapidly to the stimuli generated [44]. Presentation 
of these regulatory genes involves complex 
coordinated processes that depends on the 
internal and external signals [45]. 
 
Shields et al. detected and characterized 20 
novel genes that have a substantial impact on 
competition regulation and competence-related 
phenotypes. It has been studied that acquisition 
of natural competence is mostly transient and the 
genes encoding are not expressed as well [44]. 
The activation of the transcription of these genes 
take place in reaction to specific signals, and 
only when the environmental conditions are 
conducive. It is found out that in S. mutans, a 
network of genes and at least two peptide 
signaling molecules are accountable for the 
development of its genetic competence and its 
expression varies among the clinical isolates 
[31,40,46]. This was verified by Palmer et al., 
when they revealed that 15 isolates from 
geographically diverse patients with caries 
presented difference in the genetic content and 
phenotypic characteristics associated with 
virulence [47]. 
 
Strain UA159 were found to be naturally 
competent, transformable, and have a system 
committed to competence and quorum sensing, 
which is regulated by special signal peptides. 
Additionally, this systems also coordinates the 
development of antagonistic interactions and the 
synthesis of antimicrobial bacteriocins as a 
means to acquire the transforming DNA by 
competing with others. This is achieved either by 
eliminating closely related streptococcal species 
or through an altruistic suicide mechanism 
among a subpopulation of competent cells within 
the community of S. mutans [47-49]. 
 
S. mutans have also been found to be able to 
trigger a competence cascade. Besides the 
existing association between natural genetic 

competence and stress response 
pathways,multiple environmental factors of the 
oral cavity canprovoke a direct impact on the 
competence cascade of S. mutans [50]. This 
phenomenon was evidenced in the results of the 
experiments carried out by exposing the cells to 
low pH conditions. Similarly, oxygen is also 
considereda key factor which significantly alters 
S. mutans transcriptional regulation. It is found to 
strongly alter the competition by decreasing 
bacteriocins expression [51]. Carbohydrate 
source was as well found to have a considerable 
effect on the progression of the competent state 
of cells [50]. Hence these studies approve that 
the S. mutans has evolved from a network of 
regulators to integrate its cellular response to 
environmental change [52]. 
 

6. PHENOTYPIC DIVERSITY 
 
As a consequence of the differences in genetic 
content and gene regulation, S. mutans strains 
exhibit phenotypic variability [18-20]. Around 52 
different S. mutans genotypes have been 
reported in saliva and oral biofilms, with the 
existence of 1–5 different genotypes of S. 
mutans species in the same individual [53,54]. It 
has been suggested that not all strains have the 
same virulence capability to encourage the 
development of dental caries [20,22]. So, 
practically some of the genes related to virulence 
are not distributed in the same way in the strains 
according to their caries status [23]. 
Acidogenicity, aciduricity, and adhesion 
properties of S. mutans are considered as the 
key virulence factors [3,55,56]. The study of 
these virulence factors and their correlations with 
other species present in the biofilm is crucial in 
understanding the role of colonization of multiple 
genotypes in the same individual [53]. 
 

7. ACIDOGENECITY 
 
The ability to produce organic acids from the 
carbohydrate metabolism under anaerobic 
conditions, with a drop in the pH value below 4.0 
[3,57]. Expression of the genes related to 
carbohydrate absorption and metabolism seem 
to be responsible for the effective adaptation of 
S. mutans in the oral cavity. Carbohydrate 
fermentation is the key strategy for survival of S. 
mutans. They have been found to have all the 
genes necessary for a complete glycolytic 
pathway and they can produce acids even when 
the pH of theoral cavity is relatively low. There is 
sufficient evidence that S. mutans is one of the 
most acidogenic species inhabiting the dental 
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biofilm [58]. They can also lower the dental 
biofilm pH due to the intracellular polysaccharide 
(IPC) metabolism in the absence of fermentable 
carbohydrates from the diet. This was confirmed 
in a study by Harris et al. where they generated 
an IPC-deficient strain (SMS203) from the 
cariogenic strain UA130 and assessed its 
acidogenecity. It was found to be lower than the 
progenitor strain, thereby resulting in reduced 
cariogenic potential [59]. 
 

8. ACIDURICITY 
 
It is the ability to survive rapid and extreme 
changes in pH and is considered to be one of the 
most important attributes of cariogenic bacteria. 
S. mutans can grow and carry out glycolysis at 
low pH values, thereby establishing a selective 
advantage over less aciduric species [60,61]. In 
order to do this, S. mutans are able to modify its 
physiology and survive in these environments 
due to its adaptive acid tolerance response 
(ATR) mechanism. This is possible due to at 
higher levels of expression of theproton 
translocator F0F1-ATPase pumps [60,62]. This 
pump works by preserving a more alkaline 
cytoplasmic pH compared to the extracellular 
environment by transporting protons out of the 
cell and also confers protection to acid-sensitive 
glycolytic enzymes [60,63,64]. Acidogenicity and 
aciduricity can be considered as the main factors 
contributing to S. mutans cariogenicity, as 
variations in these characteristics could help 
explain the differences in virulence among 
clinical isolates [20,55,56]. 
 

9. ADHESION 
 
Colonization and survival of S. mutans is 
facilitated by its adherence to the tooth surface 
[60]. This adhesion, can be mediated by two 
mechanisms: sucrose-independent and sucrose-
dependent mechanisms [55,65]. The first 
mechanism is not relevant for S. mutans 
virulence [56,60]. However, the sucrose-
dependent mechanism is considered to be 
responsible for colonization of oral cavity.[55]The 
enzyme glycosyltransferase(GTFs), hydrolyses 
sucrose into glucans and fructans, The 
extracellular polysaccharide, glucan, not only 
promotes adhesion of bacteria to tooth surfaces 
but also promote aggregation and coaggregation 
of microorganisms favouring biofilm formation 
[55,56,65]. It has been found that S. mutans 
possesses three GTFs encoded by the gtfB, 
gtfC, and gtfD genes [55,66]. The genes 
encoding gtfB and gtfC are close to eachother, 

have 95% sequence homology, and are subject 
to the same regulatory processes. These genes 
are found to be expressed in response to excess 
glucose or sucrose [56]. The study by Yamashita 
et al. demonstrated that the loss of any of these 
genes resulted in reduction in the virulence of S. 
mutans [67]. 
 

10. CARIES AND GENOTYPIC DIVERSITY 
STUDIES 

 
Pieralisi FJS et al. and Zhou Q et al. investigated 
the genotypic diversity of S. mutans in children 
with and without early childhood caries (ECC) 
and found a strong genetic diversity among S. 
mutans strains. They also stated that caries 
active children carried more genotypes than 
caries free children [68,69]. 
 
Valdez RMA et al. studied the genotypic diversity 
and phenotypic traits of S. mutans isolates and 
concluded that there were no differences in 
genotypic diversity among CF, ECC, and severe 
ECC children. However, the phenotypic traits 
such as, acidogenicity and acidurity were found 
to be high in children with S-ECC [70]. 
 
Napimoga et al evaluated the relationship 
between clonal diversity and some virulence 
traits of S. mutans isolated from caries-free and 
caries-active subjects. It was found that there 
was larger number of genotypes of S. mutans 
with increased ability to synthesize water 
insoluble glucans in caries-active individuals [53]. 
 
Ravikumar et al. in 2021 reviewed seven studies 
related to S. mutans genotypic diversity and 
stated that the number of genotypes of S. 
mutans varied between caries active and caries-
free children. They also insisted on the need for 
further studies to draw a definitive conclusion 
[10]. 
 

11. CONCLUSION 
 
This review highlights the complexity and 
dynamic changes in the genetic and physical 
components of S. mutan. It is obvious that S. 
mutans has evolved numerous strategies to 
become well established in the oral biofilms, 
toantagonize the growth of commensals, to 
produce organic acids from dietary 
carbohydrates, and topropagate and metabolize 
under acidic conditions thereby favouring the 
initiation and progression of dental caries. The 
overall findings indicate that the acquisition of 
virulence genes is only a first step on the path 
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towards the S. mutans pathogenic lifestyle, it 
additionally requires mild genetic changes 
mediated by regulatory genes to adapt the 
expression of phenotypes with pathogenic 
potential according to the environmental 
pressures. The association between number, 
genotypic diversity, and caries status of an 
individual is still controversial. Future studies 
should explore the possibility of simultaneous 
action of different genotypes, with different 
phenotypic potentials, resulting in different 
virulence characteristics, which ultimately alters 
the risk of developing caries. 
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