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ABSTRACT 
 

Background: Oxidative stress augmented with progressive age, causes changes in mitochondrial 
DNA, mitochondrial disruption and more oxidative trouble. This process is facilitated in Alzheimer’s 
disease by the pathology of αβ amyloid and activated microglia.  
Objectives: The present study compared the potentials of aqueous extract of Telfairia occidentalis 
(TO) seeds and Talinum triangulare (TT) on the malondialdehyde (MDA) and glutathione (GSH) 
levels following scopolamine hydrobromide (SHB)-induced Alzheimer’s type cognitive dysfunction in 
rats.  
Methods: Forty-two Wistar rats were arrayed into seven arrays (I-VII). Alzheimer’s type cognitive 
dysfunction was induced in arrays II-VII by administering intraperitoneally (IP) 1 mg/kg body weight 
(BW) of SHB for seven days before aqueous extracts of TO (850 mg/kg and 1750 mg/kg), TT (850 
mg/kg and 1750 mg/kg) and donepezil (1 mg/kg) administrations for 14 days. The rats’ blood 
serums were taken and analyzed.  
Result: The MDA estimation in group II (672±39.65), VI (707.67±24.99) and VII (671.64±32.07) 
increased significantly compared with others (P<0.05). Glutathione level was significantly increased 
in arrays I (0.44±0.05), IV (0.41±0.08), V (0.46±0.07) and VII (0.44±0.05) compared to others.  
Conclusion: Aqueous extract of TO seeds reduced MDA levels and both extracts increased 
glutathione levels in Alzheimer’s type cognitive dysfunction rats; though the effect of TT was dose-
dependent. 
 

 
Keywords: Alzheimer’s disease; glutathione; lipid peroxidase; oxidative stress; wistar rats. 
 

1. INTRODUCTION 
 
Lipid peroxidation is an act through which 
oxidants such as free radicals or non-radical 
species fight lipids with carbon-carbon double 
bonds, such as polyunsaturated fatty acids [1]. At 
sub-toxic conditions (low lipid peroxidation), the 
cells actuate their maintenance and survival 
through antioxidant defense mechanisms or 
signaling pathways activation that up-regulate 
antioxidant proteins resulting in an adaptive 
stress response. At medium or elevated lipid α 
peroxidation states (toxic condition), the extent of 
oxidative stress overpowers repair capacity and 
causes cells’ apoptosis or necrosis; both 
processes eventually lead to molecular cell 
destruction which may hasten the development 
of different disease states and accelerate ageing 
[2]. 
 
On the other hand, Glutathione directly removes 
different oxidants such as superoxide anion, 
hydroxyl radical, nitric oxide and carbon radicals. 
Glutathione catalytically neutralizes 
hydroperoxides, peroxynitrites and lipid 
peroxides [3]. In health, accumulation of 
glutathione disulphide due to oxidative stress is 
directly poisonous to cells, causing programmed 
cell death by activation of the stress activated 
protein kinase/mitogen-activated protein kinase 
(SAPK/MAPK) pathway [4]. Glutathione depletion 
triggers apoptosis [3]. The disease associated 
with glutathione depletion includes 

neurodegenerative diseases such as Alzheimer’s 
(AD), Parkinson’s and others [5]. 
 

Oxidative stress augmented with progressive 
age, causes changes in mitochondrial DNA, 
mitochondrial disruption and more oxidative 
trouble. This process is facilitated in AD by the 
act of αβ and actuated microglia [6]. Oxidative 
trouble underlies the gradual neurodegenerative 
characteristics of AD [7]. Reports have it that 
oxidative stress elevates the expression and 
turns on β and γ secretase and inhibits the 
actions of α-secretase [8]. High formation and 
absence of Aβ peptides removal can sediment 
αβ which energizes different cell signaling 
networks, hence, causing degradation of 
synapses, loss of neurons and reduced cognitive 
function [9]. 
 

In vitro experiments revealed αβ elevated H2O2 
and lipid peroxidase statuses. Age-associated αβ 
sedimentation elevates hydrogen peroxide, nitric 
oxide formation and oxidative mutation of 
proteins and lipids deducing that αβ causes 
oxidative stress [10,11]. In hippocampal neuron 
cultures, the cause of oxidants by Aβ needs the 
stimulation of N-methyl diaspartate (NMDA) 
receptor and quick elevated neuronal Ca2+ status 
[12]. The externally generated antioxidants are 
mainly from food and herbs [13]. These 
antioxidants abet to counteract the surplus 
enlarged radicals, guard the cell against 
envenom effects and contribute to ailment 
aversion [14] However, comparing the effects of 
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aqueous extracts of Telfairia occidentalis (TO) 
seeds and Talinium triangulare (TT) leaves on 
the lipids and glutathione levels using 
Alzheimer’s type cognitive dysfunction rats may 
provide in-depth knowledge to their physiology, 
thus, the necessity for this research.  
 

2. MATERIALS AND METHODS 
 

Experimental animals: With ethical approval 
number: FAREC-FBMS 042ANA3719, forty-two 
adult Wistar rats with both sexes and weight 
ranging from 180-200g were bought from the 
animal farm and kept in the Departmental animal 
room for two weeks. Before the experiment, the 
experimental animals were kept for 
acclimatization under standard conditions of 
temperature (27oC – 30oC), given rat chow and 
water ad libitum. After two weeks of adjustment, 
the rats were arbitrarily arrayed into seven 
arrays; each having six rats designated I-VII. 
 

Plant extract preparation: Fresh TO seeds and 
TT leaves were bought from the market in Cross 
River State, Nigeria. These seeds and leaves 
were registered with voucher numbers: 
HERB/BOT/UCC/322 and HERB/BOT/UCC/120 
in Botany Department, University of Calabar, 
Calabar. The TO seeds were exposed from the 
husks, washed alongside with the TT leaves, 
reduced into tiny parts and dehydrated (air dried) 
in the laboratory. The dehydrated specimens 
were pulverized into powdered form (1600g) with 
a blender (model number Bravo3JARS Mixer 
grinder) and then soaked in 1000 mL of distilled 
water for 24 hours. The admixture was purified 
with Whatman No.1 filter paper and chess cloth. 
The products were collected and made potent to 
a gooey remnant at 40-50° and kept in a cool dry 
place for later use. 
 

Alzheimer’s type cognitive dysfunction 
induction: 1.0 mg/kg bw of SHB (bought from 
Bristol Scientific Company, Bristol Road, Apapa, 
Lagos- Nigeria) was intraperitoneally (IP) injected 
to adult Wistar rats in arrays II-VII for seven days 
to establish Alzheimer’s type cognitive 
dysfunction. 
 

LD50 determination: Using Lorke’s method [15], 
LD50 of aqueous extracts of TO seeds and TT 
leaves were both established to be >7000 mg/kg 
and doses were determined using 12.5% and 
25% of the established LD50. 
 

Plants extract and donepezil administration: 
Array I served as the negative control and 
received animal feed and water ad libitum; array 

II served as the positive control and received 1.0 
mg/kg body weight of SHB only; array III 
received 1.0 mg/kg body weight of SHB and 1.0 
mg/kg body weight of Donepezil (bought from 
Bez Pharmacy, Etta Agbo Calabar-Nigeria); 
array IV received 1.0 mg/kg body weight of SHB 
and 875 mg/kg body weight of aqueous TO 
seeds; array V received 1.0 mg/kg body weight 
of SHB and 1750 mg/kg body weight of aqueous 
TO seeds; array VI  received 1.0 mg/kg body 
weight of SHB and 875 mg/kg body weight of 
aqueous TT leaves while array VII received 1.0 
mg/kg body weight of SHB and 1750 mg/kg body 
weight of aqueous TT leaves. These extracts and 
drugs were administered for fourteen days. 
 

Determination of MDA and glutathione: 24 
hours after the last extracts and drug 
administration, the experimental animals were 
sacrificed and the blood serums were taken 
through cardiac puncture for analysis. Serum 
levels of Lipid peroxidation and glutathione 
peroxidase were used as markers for oxidative 
stress. Lipid peroxidation was estimated by 
measuring 0.25ml of serum and 1.25ml of 10% 
trichloroacetic acid and added to a clean 
centrifuge tube and allowed for 10 minutes. 
1.25mls of 0.05 M H2SO4 and 1.5ml of 0.67 TBA 
(thiobarbituric acid) were placed in a boiling 
water tap and 2ml of butanol was added. 
Thiobarbituric acid reactive material was 
extracted, and absorbance was read at 532nm 
wavelength.  
 

Glutathione was estimated using 40µL of the 
reaction mix and summated with the specimen, 
positive control and reagent control wells, 
properly combined and was incubated at room 
temperature for 15 minutes to deplete all 
glutathione disulphite (GSSG) in the samples. 
10µL of cumene hydroxide solution was added to 
start the glutathione peroxidase reaction and 
mixed well. The output (A1) was measured on a 
microplate reader at OD340nm at T1 and 
incubated at 25oC for 5 minutes (protected from 
light). The output (A2) was then measured on a 
microplate reader at OD340nm at T2. 
 

Statistical analysis: Data were analyzed using 
a statistical package for social science version 
21.0 The student t-test was used with data 
represented as mean ± standard error of the 
mean (SEM) and statistically significant at p < 
0.05. 
 

3. RESULTS 
 
SHB administered to array II elevated MDA level 
(672 ± 39.65) when analogized to the negative 



 
 
 
 

Paulinus et al.; Asian J. Res. Rep. Neurol., vol. 7, no. 1, pp. 98-106, 2024; Article no.AJORRIN.121691 
 
 

 
101 

 

control array I (336 ± 39.21) and Donepezil 
treated array III (446 ± 78.33). TO (875mg/kg 
and 1750 mg/kg) administration to arrays IV and 
V meaningfully decreased MDA level (487 ± 
78.33; 477 ± 29.50) when compared to SHB 
array II and TT (875mg/kg and 1750 mg/kg BW) 
treated arrays VI and VII (707.67 ±24.99; 671.64 
±32.07) at P<0.05 (Fig. 1). Rats in TT arrays VI 
and VII revealed minimal elevation compared to 
the SHB array II. Array V given an elevated dose 
of TO shows a meaningful reduction (P<0.05) in 
MDA levels as analogized to negative control 
array I (Fig. 1).  
 

Increased glutathione is a label of cellular 
antioxidant and gives defense against oxidative 

trouble. SHB treated array II rats (0.15±0.56), TT 
treated array VII (0.22±0.29) and Donepezil 
treated array III (0.20±0.00) revealed a 
meaningful declined glutathione status when 
analogized to control array I (0.49±0.21), TO 
treated arrays IV and V (0.41±0.08 and 
0.46±0.07) and low dose TT treated array VI 
(0.44±0.05). The rats in array V treated with 
1750mg/kg of TO revealed a slight reduction 
(P<0.05) of GSH levels analogized to the array I 
and significantly increased compared to 
Donepezil treated array III (0.46±0.18) and SHB 
treated array II. Rats in array VII treated with high 
dose TT (1750 mg/kg) showed a meaningful 
decrease (0.22±0.29) at P>0.05 (Fig. 2). 

 
Table 1. Showing Malondialdehyde (MDA) and Glutathione (GPX) concentrations in diverse 

experimental arrays 
 

Arrays MDA (Mean ± SEM) GSH (Mean ± SEM) 

I 336±39.21 0.49±0.21 
II 672±39.65 0.15±0.56 
III 446±78.33 0.20±0.00 
IV 487±78.33 0.41±0.08 
V 477±29.50 0.46±0.07 
VI 707.61±24.99 0.44±0.18 
VII 671.64±32.07 0.22±0.29 

Data are represented as mean±SEM, n=6. 
* = Meaningfully dissimilar control at P < 0.05 

a = Meaningfully dissimilar scopolamine hydrobromide at P < 0.05. 

 

 
 

Fig. 1. Malondialdehyde concentrations in diverse experimental arrays 
Data are represented as mean ± SEM, n=6. 

* = Meaningfully dissimilar control at P < 0.05 
a = Meaningfully dissimilar scopolamine hydrobromide at P < 0.05 
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Fig. 2. Glutathione (GPX) activity in the dissimilar experimental arrays 
Data are represented as mean ± SEM, n=6 

* = Meaningfully dissimilar control at P < 0.05 
a = Meaningfully dissimilar scopolamine hydrobromide at P < 0.05 

 

 
 

Fig. 3. Biosynthesis of glutathione 
 

4. DISCUSSION 
 
The generation of free radicals associated with 
enlarged oxidative stress is attributed to the 

pathogenesis of Alzheimer’s disease resulting in 
ageing and cell apoptosis [16]. Studies 
suggested the involvement of oxidants in the 
neurological and neurodegradative ailments, thus 
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directing the way of free radicals in progression 
of Alzheimer’s ailment. The use of herbal and 
natural extracts for neurological, psychiatric and 
neurotoxicological ailments has been elevated 
greatly because of their no or reduced side 
effects [17]. Citrus esculentus extract reversed 
radiation-induced damage on the ultrastructure of 
albino Wistar rats’ testes [18], Averrhoa 
carambola aqueous fruit extract ameliorates 
diazepam-caused poison of the hippocampus in 
rats [19], Musa paradisiaca stem juice limit the 
extent of status epilepticus, increased neuronal 
protein synthesis, reduced cytoarchitectural 
damage and astriogliosis as well as enhancing 
long term recognition memory in rats [20,21] 
while Ziziphus jujuba fruit protects oxidative brain 
damage in rats [22]. Also, while Agbor and 
Anyanwu reported that β-D-Glucagon 
polysaccharide supplementation ameliorates 
hypoglycaemic-induced nephrotoxicity in diabetic 
Wistar rats [23], Cennet et al linked bulbs of 
Muscari muscarimi extract having more marked 
anticancer activities against H1299 cell line than 
other cell lines [24] and Nema et al demonstrated 
that erythropoietin is cytoprotective and blocked 
neurodegeneration by inhibiting caspase activity 
and apoptosis [25]; Talinum triangulare leaves 
possess antioxidant activities which was linked to 
amelioration of the atrophied hippocampal 
microstructures as well as aiding learning and 
recall in Alzheimer’s type cognitive dysfunction 
rats [26]. 
 
In this study, there was a meaningful elevation of 
serum MDA levels in arrays II (treated with a 
SHB alone), VI and VII (treated with TT) 
analogous to the negative control in array I with a 
reduction in MDA level in arrays III, IV and V 
(Fig. 1). This result is in line with research that 
documented that TO seeds reduce lipid 
peroxidation at lower doses [27]. The SHB has 
been found to increase oxidative stress and 
improve the antioxidative defense system 
[28,29]. This is similar to reports that SHB 
significantly increased MDA levels in rats 
compared to the control [30]. Lipid peroxidation is 
a major pointer of neuron degradation of the 
brain. Unlike other body envelops, neuronal 
envelops encompass a very elevated percentage 
of long chain polyunsaturated fatty acids and 
oxidants are continually formed during 
metabolism [31]. Lipids and proteins, the 
important anatomical and physiological 
constituents of the cell membranes are the mark 
of oxidative alteration by free radicals in neurons 
degrading ailments [32]. A broad fact 
documented on lipid peroxidation and protein 

oxidation resulting to loss of envelop structure, a 
good agent to increase aging and age-related 
neurodegenerated diseases. Oxidative trouble 
has been enlaced in the pathogenesis of                
AD in humans [33]. This still lends credence to 
the fact that neurodegenerative changes in 
histological, histochemical, immunohistochemical 
and neurobehavioral observations of the 
hippocampus could be attributed to activities of 
free radicals generated by SHB; hence, aqueous 
extract of TO seeds and TT leaves were able to 
ameliorate the effects [34-38]. 
 
Glutathione plays an important part in many 
metabolic and biochemical reactions such as 
DNA mixture and repair, protein mixture, 
prostaglandin mixture, amino acid movement and 
enzyme actuation [39]. According to Penninckx 
[40], glutathione also called y-L-glutamyl-L-
cysteinylglycerine is a redox-action tripeptide 
thiol found in the cells of a living organism. This 
bio-molecule serves as a detoxicant and acts as 
an antioxidant. During acute oxidative stress, the 
cells may not have the ability to reduce 
glutathione disulphite (GSSG) to GSH which may 
lead to accumulation of GSSG in the cell. This 
may be averted either by ingestion of diet 
containing antioxidants (such as TO seeds and 
TT leaves) or removing the accumulated GSSG 
from the cytosol. Hence, all system in the body 
can be influenced by the state of the glutathione 
system including the nervous system. In this 
study, a low level of glutathione was observed in 
arrays II, III and VII analogous to the negative 
control array I (Fig. 2). This correlates with the 
result from the MDA assay which showed 
increased levels of free radicals. This still 
showed a trend that scopolamine generates free 
radicals and increases oxidative stress (Fig. 1). A 
research work revealed that scopolamine caused 
behavioral and biochemical alterations in rats 
[41]. Their result showed that scopolamine-
induced memory impairment increases MDA and 
decreases glutathione levels in hippocampal 
homogenate. Animals treated with TO seed and 
TT leaves showed increased levels of glutathione 
peroxidase compared to the SHB treated array II 
though the effect of TT was dose dependent (Fig. 
2). The changes could be linked to the 
antioxidant capabilities of TO seeds and TT 
leaves. Consumption of antioxidants via diet and 
supplements is expected to turn off reactive 
oxygen species from the living system and give 
health benefits. The antioxidant potentials of TO 
seeds observed in biochemical analysis correlate 
with the Morris water maze test where extract of 
TO seeds aid learning and recall [36].   
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Glutathione is important antioxidant according to 
Lu [42] where free radicals (such as hydrogen 
peroxide) generated as a result of aerobic 
metabolism are metabolized by GSH peroxidase 
in the cytoplasm and mitochondria and by 
catalase in the peroxisome of a cell. The formed 
GSSG is reduced back to GSH by GSSG 
reductase at the expense of NADPH (Fig. 3). The 
organic peroxidase (ROOH) can be reduced by 
GSH peroxidase or GSH S-tranferase. Under 
acute oxidative stress as seen in array II only 
(Fig. 2) may result to the inability of the cell to 
reduce GSSG to GSH, hence causing GSSG 
accumulation in the cell. To avoid a shift in the 
redox equilibrium, GSSG can be actively 
transported out of the cell or react with a protein 
sulfhydryl (PSH) to form a mixed disulfide 
(PSSG) (Fig. 3) [42].  In all the analysis, there is 
still a trend of protection observed that could be 
due to the plants’ antioxidant potentials that may 
activate the biosynthesis of the glutathione 
leading to either the transport of GSSG out of the 
cell or forming PSSG by reacting with PSH. 
 

5. CONCLUSION  
 

In conclusion, aqueous extracts of TO seeds 
reduced MDA, TT leaves increased MDA and 
increase glutathione levels which may provide an 
enabling environment for cell survival and 
behavior using SHB-induced Alzheimer’s type 
cognitive dysfunction rats.  
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