Taylor & Francis
AI'NT&UGENCE Applied Artificial Intelligence

A DTERNATIONAL JOUREA,

An International Journal

ISSN: 0883-9514 (Print) 1087-6545 (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Deep Learning for Tomato Diseases: Classification
and Symptoms Visualization

Mohammed Brahimi, Kamel Boukhalfa & Abdelouahab Moussaoui

To cite this article: Mohammed Brahimi, Kamel Boukhalfa & Abdelouahab Moussaoui (2017)
Deep Learning for Tomato Diseases: Classification and Symptoms Visualization, Applied
Artificial Intelligence, 31:4, 299-315, DOI: 10.1080/08839514.2017.1315516

To link to this article: https://doi.org/10.1080/08839514.2017.1315516

% Published online: 16 May 2017.

N\
[:J/ Submit your article to this journal &

||I| Article views: 8686

A
& View related articles &'

prn

() view Crossmark data &

CrossMark

@ Citing articles: 302 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uaai20


https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2017.1315516
https://doi.org/10.1080/08839514.2017.1315516
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2017.1315516
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2017.1315516
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2017.1315516&domain=pdf&date_stamp=2017-05-16
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2017.1315516&domain=pdf&date_stamp=2017-05-16
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2017.1315516#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2017.1315516#tabModule

APPLIED ARTIFICIAL INTELLIGENCE Tavlor & F .
2017, VOL. 31, NO. 4, 299-315 e aylor rancis

https://doi.org/10.1080/08839514.2017.1315516 Taylor & Francis Group

W) Check for updates ‘

Deep Learning for Tomato Diseases: Classification and
Symptoms Visualization

Mohammed Brahimi @°, Kamel Boukhalfa @2, and Abdelouahab Moussaouic

aDepartment of Computer Science, USTHB University, Algiers, Algeria; "Department of Computer
Science, Mohamed El Bachir El Ibrahimi University, Bordj Bou Arreridj, Algeria; ‘Department of
Computer Science, Setif 1 University, Setif, Algeria

ABSTRACT

Several studies have invested in machine learning classifiers to
protect plants from diseases by processing leaf images. Most of
the proposed classifiers are trained and evaluated with small data-
sets, focusing on the extraction of hand-crafted features from
image to classify the leaves. In this study, we have used a large
dataset compared to the state-of-the art. Here, the dataset contains
14,828 images of tomato leaves infected with nine diseases. To
train our classifier, we have introduced the Convolutional Neural
Network (CNN) as a learning algorithm. One of the biggest advan-
tages of CNN is the automatic extraction of features by processing
directly the raw images. To analyze the proposed deep model, we
have used visualization methods to understand symptoms and to
localize disease regions in leaf. The obtained results are encoura-
ging, reaching 99.18% of accuracy, which ourperforms dramatically
shallow models, and they can be used as a practical tool for farmers
to protect tomato against disease.

Introduction

Tomato occupies a prominent place in the Algerian agricultural economy
(Nechadi et al. 2002). In fact, tomato is planted on an area of 22,597 ha with
a yearly production of 975,075 t (FAOSTAT 2016). As regards the produc-
tion quantity, tomato is ranked seventh among Algerian crops after potatoes,
wheat, watermelons, barley, and onions. Also, Algeria is ranked 19th among
tomato-producing countries (FAOSTAT 2016). Despite this importance of
tomato in Algerian agriculture, its production is limited to 433,424 quintals/
ha (FAOSTAT 2016). This is very low compared to that of neighboring
countries of Algeria like Morocco which has a yeild of 922.745 quintals/ha
(FAOSTAT 2016). Diseases are often considered as one of the major limiting
factors in the cultivation of tomato. Tomato crops are highly affected by
diseases, which causes dramatic losses in agriculture economy (Hanssen and
Lapidot 2012). For instance, early blight represents one of the most common
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diseases in the world and can cause a significant decrease in yields and many
lesions in fruits (Blancard 2012). Likewise, late blight causes serious damages
to crops, and it can be very destructive in areas with humid climate (Blancard
2012). Protecting tomato from diseases is crucial for improving the quantity
and the quality of the crops. Thus, providing an early detection and identi-
fication of diseases is very helpful in choosing the correct treatment and
stopping the disease from spreading (Al Hiary et al. 2011). To achieve this,
the expert must have an academic training and extensive knowledge of
various disciplines together, as well as experience in diseases symptoms
(Blancard 2012), as well as a large number and diversity of the causes of
diseases (Blancard 2012). Thus, a good practitioner needs to be informed
about all symptoms and signs caused by the disease. Furthermore, farmers
must monitor plants continuously, which is a tedious task. Hence, large
efforts have been made to come up with a strategy that automates the
classification of disease, using leaf images. The main objective of these
approaches is to detect the disease in early stage in order to provide the
appropriate treatment in time (Akhtar et al. 2013; Al Hiary et al. 2011;
Mokhtar et al. 2015; Sannakki et al. 2013). Furthermore, these approaches
are based on machine learning and computer vision to build a classifier of
diseases using only images of leaves. In such classifiers, features are manually
designed by experts to extract a relevant information from images (Hand-
crafted features). Hence, the learning system is not fully automated because
of the dependency on hand-crafted features (Breitenreiter et al. 2015). After
the extraction of features, the classifier is trained using labeled images.
Unfortunately, collecting these labeled data is very expensive, because the
labeling is done manually by experts. Therefore, most of the previous reports
include the use of small labeled datasets (10-800 images) to train and
evaluate the accuracy of the proposed studies (Akhtar et al. 2013; Al Hiary
et al. 2011; Dandawate and Kokare 2015; Mokhtar et al. 2015).

Deep learning is a new trend in machine learning and it achieves the state-
of-the-art results in many research fields, such as computer vision, drug
design and bioinformatics (Al Hiary et al. 2011). The advantage of deep
learning is the ability to exploit directly raw data without using the hand-
crafted features (Al Hiary et al. 2011; Mokhtar et al. 2015). Recently, the use
of deep learning provided a good results in both academic and industrial
fields, thanks to two main reasons (Al Hiary et al. 2011). Firstly, large
amounts of data are generated everyday. Hence, these data can be used in
order to train a deep model. Secondly, the power of computing provided by
Graphics Processing Unit (GPU) and High-Performance Computing (HPC)
makes possible the training of deep models and leveraging the parallelism of
computing.
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The aim of the present study is to introduce deep learning as an approach
for classifying plant diseases, focusing on images of leaves. This study pre-
sents two main contributions in plant disease classification:

(1) Improvement in classification pipeline using deep models: deep mod-
els have shown good results in classification and outperform the used
models in machine learning. Besides, deep models have the ability to
use raw data directly without feature engineering. Moreover, deep
models offer the possibility of transfer learning from another task by
using already trained models on larger datasets.

(2) Detection of disease symptoms in the infected leaf: the localization of
infected region in an infected leaf helps the users of the model by
giving them information about the disease. Also, this biological infor-
mation is extracted without the intervention of agriculture experts.

Related works

To analyze the works of the state-of-the-art, we need to give the general
architecture of disease classification systems that are based on image proces-
sing. These systems contain three phases: image pre-processing, feature
extraction, and classification (Akhtar et al. 2013).

Pre-processing

The image of a leaf is prepared using some operations. For instance, color
space conversion from RGB (Red-Green-Blue) to another space is used for
reducing the dependence on device(Al Hiary et al. 2011; Mokhtar et al. 2015;
Prasad, Peddoju, and Ghosh 2016; Sannakki et al. 2013; Semary et al. 2015).
Also, many works try to remove the background, focusing the analysis on the
leaf (Dandawate and Kokare 2015; Le et al. 2015; Mokhtar et al. 2015;
Sannakki et al. 2013; Semary et al. 2015). Unfortunately, removing back-
ground is difficult, and sometimes needs the intervention of the user, which
decreases the automation of the system (Le et al. 2015).

Feature extraction

Features proposed by experts (hand-crafted features) are extracted from the
image for constructing feature vectors. For example, color moments are used
to extract color statistics (Semary et al. 2015), in which Gabor Transform
(GT) and Wavelet Transform (WT) are combined (GWT) for the extraction
of multiscale features (Prasad, Peddoju, and Ghosh 2016). Gray Level Co-
occurrence Matrix (GLCM) is used in many previous works (Mokhtar et al.
2015; Prasad, Peddoju, and Ghosh 2016; Semary et al. 2015; Xie and He 2016;
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Xie et al. 2015) to extract texture features. GLCM is a 256*256 matrix where
each position in the matrix counts the co-occurrences of line color and
column color in the analyzed image (Dandawate and Kokare 2015), Scale
Invariant Feature Transform (SIFT) is used to analyze the shape features of
leaves.

Classification

The last phase determines which disease is present in the leaf using a classification
model. This model should be trained using learning algorithms and examples with
a known disease (labeled examples). The support vector machine (SVM) (Mokhtar
et al. 2015; Semary et al. 2015; Dandawate and Kokare 2015; Raza et al. 2015;
Schikora 2014), k-nearest neighbors (KNN) (Prasad, Peddoju, and Ghosh 2016;
Xie and He 2016), and artificial neural network (ANN) (Al Hiary et al. 2011;
Sannakki et al. 2013; Xie et al. 2015; Schikora 2014) represent the most commonly
used learning algorithms in the literature. The SVM algorithm maximizes the
margin between classes in linearly separable cases. Nevertheless, in the case where
examples are not linearly separable, the kernel trick is used to transform examples
to another space where they will be linearly separable. The KNN algorithm
classifies an image by voting between the K closest examples in the features
sapce. The ANN is a model organized in layers, in which each layer is connected
to the next one starting from the input to output. ANN represents the old version
of deep learning algorithms used in this paper.

Table 1 shows the results of some recent studies in plant disease classifica-
tion. These studies have two principal issues. The first one is the small
number of examples in datasets (between 71 and 800). The second one is
the accuracy results (Table 1), located between 89.93% and 93.79% in most
cases, which is relatively low and needs to be improved. Although the
accuracy of Mokhtar in (Mokhtar et al. 2015) is 99.83%, the used datasets
contain only two classes (healthy and infected). In other words, the proposed
system (Mokhtar et al. 2015) can detect the presence of disease in leaf, with

Table 1. Studies in plant disease classification.

Study Features Classifier Dataset Accuracy
(Prasad, Peddoju, and Ghosh 2016)  GWT KNN 297 images 93.00
GLCM 5 diseases
(Mokhtar et al. 2015) GLCM SVM 800 images 99.80
2 diseases
(Semary et al. 2015) Color moments SYM 177 images 92.00
GLCM
Wavelets decomposition 12 diseases
(Dandawate and Kokare 2015) SIFT SVM 120 images 93.79
2 diseases
(Raza et al. 2015) Local statistics SVM 71 plants 89.93

Global statistics
Depth information 2 diseases
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no information about the type of this disease. In summary, the previous
works are based on several pre-processing operations and hand-crafted
features. The choice of pre-processing operations and features is difficult
and time-consuming, which makes the classification system not fully auto-
mated. In the present paper, we propose the use of deep learning and
specifically Convolutional Neural Network (CNN) as an alternative approach
for building a model of disease classification. Thus, features are constructed
in a fully automated way and learned from the data in the training phase.
Moreover, we do not need a pre-processing phase to prepare the image and
we use the raw image directly. To confirm the superiority of deep models
against state-of-the-art methods, we have used a large dataset containing
14,828 images and nine diseases of tomato.

In the rest of the paper, we present our methodology, followed by details
and requirements of our approach. Finally, we give experimental results,
showing the performance evaluation of our proposed approach that is
based on deep models.

Methodology

The proposed approach, illustrated in Figure 1 contains the four components
given below:

(1) Pre-taining phase: in this phase we train deep architectures on a large
dataset like ImageNet using powerful machines. The objective of this
phase is the initialization of network weights for the next phase.

Bacterial Spot
Early blight

Late blight
Leaf Mold

Septoria spot
Spider mites
Target Spot
Mosaic virus
Yellow Leaf Curl Virus)

Training

(2) Training (Fine-tuning)

)
Ll -
< Bacterial Spot
g O 0 O Early blight -
Late
(]
Leaf Mold \
2 08080 e “
-~ Spider mites ¢
% | Target Spot
& 00 0 B R/ | B
i Yellow Leaf Curl | I
= ' < Virus ’ | 255t =
- L

(3) Diseases classification (4) Symptoms detection
and visualization

Figure 1. Overview of the proposed deep learning methodology.
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(2) Training (fine-tuning): we fine-tune the resulted network from the
first phase. Also, we replace the output layer of the pre-tained net-
works (ImageNet contains 1000 classes) by a new output layer having
nine classes (nine diseases of tomato).

Afterword, the developed deep model is deployed to users’ machines
(Computers, mobiles). The deployed models can be used in two modes:

(3) Disease classification: in this mode, the user takes a picture of a leaf and use
the produced deep model to determine the disease that affects the tomato
plant.

(4) Symptom detection and visualization: after the disease classification,
the user can visualize the regions of leaf image characterizing the
disease (Symptoms of disease). This symptom visualization method
helps the inexperienced user by giving them more information about
the disease mechanism. Also, symptom visualization gives the user a
tool to estimate the spread of disease in the other tomato plants.

To assess the effectiveness of these contributions, we compare the results of
deep models with results of shallow models based on hand-crafted features. In this
comparison, we have used two famous deep models in literature (AlexNet (Alex,
Sutskever, and Hinton 2012) and GoogleNet (Szegedy et al. 2015)). Our choice of
using existing deep architectures is motivated by their spectacular results in
computer vision challenge ImageNet. Furthermore, these models allow us to
fine-tune and transfer learning from a task where we have a large labeled dataset
to plant diseases classification task. We compare our results with the ones defined
by experts. To summarize, the present study includes the following three main
points:

(1) Deep models without feature extraction vs. shallow models with hand-
crafted features: We compare between the performance of deep models and
shallow models. This comparison is performed for validating the choice of
deep models as an alternative to shallow models. Also, this comparison
evaluates the impact of automated feature extraction embedded in the deep
approach.

(2) Deep models with pre-training vs. deep models without pre-training: We
evaluate the performance of pre-trained models to compare them with
those trained from scratch starting from a random values of network
weights. This comparison aims to exhibit the influence of transfer learning
from another task to disease classifications.

(3) Symptom visualization: we use visualization methods after training stage to
extract biological knowledge from models trained in a fully automatic way.
This automatic knowledge extraction method can help users in
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understanding the plant disease and their symptoms. In other words,
machine learning models of the hand-crafted features incorporate expert
knowledge to facilitate classification. However, deep models can give bio-
logical knowledge extracted directly from raw data without expert help.

Experiments
Pre-trained models

For building a classifier for plant diseases without hand-crafted features, we
use deep learning approach, especially CNNs. CNNs are directly trained
using raw images. As a result, the proposed system learns to extract features
from data without the intervention of human in feature engineering. In other
words, the training of the classifier includes automatic feature constructions.

We have used two CNN models (AlexNet (Alex, Sutskever, and Hinton 2012)
and GoogleNet (Szegedy et al. 2015)). These models were used previously with
success in computer vision challenges like ImageNet. Our objective is to take
advantage of these architectures to improve results in the diagnosis and detection
of plant diseases. Figure 2 shows the architecture of AlexNet and the different
stacked layers from the input image to the output probabilities of each disease.
Input images of the network are resized to 256*256 pixels. Output results represent
the probabilities of each disease. In our case, we have nine diseases (Figure 1). To
implement a CNN, we have used a dedicated hardware and software to accelerate
the training.

Workstation specifications and deep learning framework

We have used workstation having the specifications that are summarized in
Table 2. Parallelizing deep learning is the key to accelerating the training.
Therefore, GPU is crucial for minimizing the learning time to few hours. Also, if
the memory of the GPU is small, we cannot use a large number of examples in
each epoch of learning.

As a deep learning framework, we have used DIGITS proposed by NVidia.
DIGITS is a friendly environment that can help researchers to test deep networks

Bacterial Spot

Early blight
Late blight
Leaf Mold

Septoria spot

Spider mites
Target Spot
Mosaic virus
Yellow Leaf Curl Virus

256 pixels

256 pixels

Conv : Convolution Layer
RelU : Rectified Linear Unit
FC :Fully connected layer

Figure 2. AlexNet for tomato disease classification.
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Table 2. Workstation specifications.

Machine type Desktop workstations

RAM 128 GB

CPU Intel Xeon Processor

2 CPU 2.00 GHz, 24 cores

GPU Quadro K 5000 4GB and 1536 cores

for computer vision problems. In DIGITS, many deep learning frameworks are
presented to design and train networks. In our study, we use the framework Caffe
proposed by Breckly. Caffe offers more options than other frameworks according
to a comparative study (Bahrampour et al. 2015). The default learning hyperpara-
meters of DIGITS are used in all our experiments on CNN models.

Dataset

We have used a dataset recently published in (Goodfellow, Bengio, and Courville
2016). This dataset is an open access repository of images published online at
website www.PlantVillage.org and contains more than 50,000 images of leaves.
From this dataset, we extract only images of tomato leaves. Table 3 and Figure 3
give a summary of our dataset. The total number of images in our dataset is 14,828
splitted into nine diseases.

Results

To measure the performance of models, we use cross-validation with five
folds. We use four folds for training, and the remaining fold is used for the
test. Furthermore, models like SVM and Random Forest need tuning of
hyperparameters. For this reason, we have used grid search in hyperpara-
meter spaces to find the combination of parameters that maximize the
performance in validation fold (One fold selected from the training folds).
Table 4 gives formulas of all metrics used in our experimental tests where:

o Y, (17',) represents the index of real (predicted) class of an image.

e N: number of images.

Table 3. Dataset summary.

Classes (diseases) # images
Tomato yellow leaf curl virus 4032
Tomato mosaic virus 325
Target spot 1356
Spider mites 1628
Septoria spot 1723
Leaf mold 904
Lateblight 1781
Earlyblight 952
Bacterial spot 2127

Total 14,828
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Bacterial Spot Early Blight Late Blight Leaf Mold Septoria Spot

Spider mite Target Spot Tomato mosaic  Tomato Yellow Leaf
virus Curl Virus

Figure 3. Extracted images from dataset.

e C: number of classes (diseases).
e condition: indicator funciton is one if the condition is satisfied, otherwise
it is zero.

Shallow models and hand-crafted features vs. deep models

To show the effectiveness of deep learning approach, we compare the results
of CNN with the state-of-the-art approach shown in Figure 4. The different

Table 4. Measures of classification performance.

Measure Formula
Accurac N
y Zx:l l?i:Yi
N
] N
Precision; PO AR
B /S
S
j=1 Yj=i
Macro precision 3¢ Precision,
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=<
N
Recalli Zj:l 1’;}=yj*l')7):i
N 1 i
Z}:l Y=t
Macro recall © | Recall
.
F. 2. Precision;-Recall;
! Precision;+Recall
Macro F °F
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Classification
Features Extraction

] algorithme
Pre-processing g
Gabor Wavelet Transform (GWT)
Remove Background SVM
. Color moment
Color Space conversion Or
. Wavelet Moments
Image Resizing Random Forrest

Gray-Level Co-occurrence Matrix (GLCM)

Figure 4. State-of-the-art approach in plant disease classification using leaf image.

approaches used in the other works are based on hand-crafted features and
precisely texture and color features (Al Hiary et al. 2011; Mokhtar et al. 2015;
Prasad, Peddoju, and Ghosh 2016; Sannakki et al. 2013; Semary et al. 2015).
To compare the deep model with these existing studies, we have developed a
classification model according to the indicated approach in Figure 4. Herein,
the model uses three phases (1) Pre-processing, (2) Feature Extraction, and
(3) Classification. In the pre-processing step, the background is replaced with
black color to prevent the background influence on the disease detection.
Also, we transform RGB color space to a device-independent color space in
order to avoid the influence of camera type on images (Al Hiary et al. 2011;
Mokhtar et al. 2015; Prasad, Peddoju, and Ghosh 2016; Sannakki et al. 2013;
Semary et al. 2015). Finally, we normalize the size of all images to 256*256. In
Feature Extraction, hand-crafted features used in previous works are com-
bined to improve results. These features are extracted from color and texture
(Gabor Wavelet Transform GWT (Prasad, Peddoju, and Ghosh 2016), Color
Moment (Semary et al. 2015), Wavelet Moment (Semary et al. 2015), GLCM
(Mokhtar et al. 2015; Semary et al. 2015)). As classification algorithm, two
shallow models are used: SVM (Dandawate and Kokare 2015; Mokhtar et al.
2015; Raza et al. 2015; Semary et al. 2015) and Random Forrest. We have
ignored classifiers having accuracy less than 90% like decision tree and KNN.

Table 5 and Figure 4 show that deep models (CNNs) outperform shallow
models combined with hand-crafted features (SVM, Random Forrest).
Indeed, the best accuracy in shallow models is 95.476 against 99.185 in
deep learning. Also, Macro F value (98,518) is very high in deep models
compared to Macro F value in shallow models (94.185). These results show
the power of deep models in constructing good features without human
expert intervention. In other words, the features constructed automatically
have a better performance than hand-crafted features.

AlexNet vs. GoogleNet

The results of Table 5 show that GoogleNet network overcomes the results of
AlexNet in plant disease classification. Although the size of GoogleNet is small
(36.6 MB) compared to AlexNet (201 MB), the results of GoogleNet are more
accurate than AlexNet results. The accuracy of pre-trained GoogleNet is 99.185
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Without pre-training

With pre-training

Accuracy 97.354 4+ 0.290 98.660 4 0.123
AlexNet Macro precision 96.566 £ 0.388 98.005 £ 0.282
Macro recall 96.266 + 0.414 97.850 4 0.383
Macro F 96.368 £+ 0.262 97.911 £0.120
Deep models Accuracy 97.711 + 0.149 99.185+0.169
GoogleNet Macro precision 96.989 £ 0.506 98.52910.194
Macro recall 96.783 + 0.350 98.532+0.490
Macro F 96.582 £+ 0.161 98.518+0.191
Accuracy 94.538 4+ 0.301
SUM Macro precision 93.317 £ 0.752
Macro recall 92.917 £ 0.461
Macro F 93.067 £ 0.303
Shallow models
Accuracy 95.467 £ 0.004
Random forrest Macro precision 94.628 £ 0.004
Macro recall 93.808 £ 0.006
Macro F 94.185 £ 0.005
100 Deep Models
99 - :., ..................
98 | e ,'E
97
96 Shallow Models
o5 ! r A
94 Witho Wit
03 Pre-trai Pre trai
92
91
90
89 — = 1L v
AlexNet GoogleNet  AlexNet + Pre  GoogleNet + SVM Random
training Pre training Forrest
B Accuracy M Macro Precision Macro Recall Macro F1

Figure 5. comparison between deep models and shallow models.

and macro F1 is 98.518 while AlexNet has an accuracy equal to 98.660 and
macro F = 97.911. This superiority of GoogleNet is due to the new architecture
that is used in this network to increase nonlinearity without an explosion of the
number of weights (Szegedy et al. 2015). GoogleNet uses inception module that
is inspired from the architecture Network in Network proposed in (Lin, Chen,
and Yan 2014). Inception module uses convolutions with filters one by one
(1*1), leading to decreases in the depth of input volume. Moreover, the number
of weights decreases, without losing much information. In other words, con-
volution using filters of size 1*1 plays the role of filtering information along the
layers and this reduces the size of the network.
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Deep models with pre-training vs. deep models without pre-training

Also from our experiments (Table 5), we observe that fine-tuning of pertained
models improves the results of CNN. Indeed, fine-tuning pre-tained models
improves the accuracy of GoogleNet from 97.711 to 99.185 and accuracy of
AlexNet from 97.354 to 98.660. The effectiveness of fine-tuning is explained by
the ability of the network to reuse and transfer learned features from one
problem to another. The network learns features in one domain or a large
dataset and, afterward, reuses these features in another task with a small
modification, especially in the last layers. Also, fine-tuning is very suitable in
cases when the number of training examples is small, and we cannot train deep
models require a high number of labeled examples in training phase. In this
case, we can use a model trained on a large dataset in the scale of ImageNet and
train it in a dataset that contains a small number of examples. Finally, fine-
tuning helps to train deep models in machines that do not have big memory in
GPU. For example, our machine used in the experiments has only four GB of
GPU memory and using pre-trained models in ImageNet we have reached the
accuracy of 99.185 with small batches in training.

Top k accuracy

Top K accuracy evaluates the power of classifier in ordering predictions. Top
K accuracy divides the number of images having the correct class in top k list
of predicted classes by the number of all images. When good classifier cannot
find the right class of image, it is useful to put the right class in a good
position in the predictions list (sorted according to probabilities). Results
presented in Figure 6 show that Top 5 Accuracy is close to 100. In other
words, the user of the classifier can exclude four diseases from nine and focus
only on five diseases with an empirical confidence equal to one. Also, the risk
is not very important when the user attention is focused on the two first
predictions because Top 2 accuracy is 99.864 in AlexNet and 99.918 in
GoogleNet.

Symptoms and disease region detections using CNN

The drawback of using old neural networks is the difficulty of interpreting
how it works. In deep learning, many studies proposed the visualization of
learned features, in order to explain how classifier gives the final results and
how features are constructed (Griin et al. 2016; Yosinski et al. 2015; Zeiler
and Fergus 2014). In our work, the visualization of features helps users to
understand the plant diseases and its symptoms. We have used the occlu-
sion method as previously described in (Zeiler and Fergus 2014) to under-
stand how network classifies the disease. We hide some part of the image
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100

99
98,5
98
97,5

TOP 1 TOP 2 TOP 3 TOP 4 TOP 5

AlexNet GoogleNet

Figure 6. Top accuracies of deep models (k = 1, 2, 3, 4, 5).

and we calculate predictions of this image. If the hidden part is important,
then this occlusion will decrease the probability of the correct class.
However, if the occlusion does not decrease the probability of correct
class, then this part does not participate in the classifier decision. Herein,
we slide black rectangle over an image, and afterward, we run CNN to
calculate the probability of correct classes of current image PC;;. The indexs
(i,j) indicates the occlusion rectangle position in the image. Then, we
visualize the negative log likelihood ( —log(P;j)) of these probabilities
using heat map. We can control the resolution of this heat map by chan-
ging the number of rectangles. For example, in Figure 7 there are three
used resolutions 3*3, 5*5 and 10*10. The intuition behind this technique is
as follows: if the probability PC;; corresponding to occlusion rectangle (i, j)
is low, then this region is important. If this region is important it will be
yellow in heat map because the value of —log(P;;) will be high. On the
other hand, if PC;; is high then the occluded region does not affect the
correctness of network output. In this case, this region is not important and
the heat map becomes blue because the value of — log(P;;) is small. This
visualization can be used by agriculture expert to identify new symptoms
from analyzing heat maps. Observing the obtained heat map, the user can
understand model behavior, and he can also gain some insight into disease
and infected regions. For instance, in Figure 7(a), the gray concentric ring
is used by the classifier as a symptom of Early Blight disease. To be sure, we
have compared this observation with the expert-defined symptoms (Koike,
Gladders, and Paulus 2007). Indeed, as reported by Koike et al. (Koike,
Gladders, and Paulus 2007), gray concentric rings are described as a
distinguishing characteristic of Early Blight. Also, changing resolutions in
Figure 7(a) helps us to locate the region of disease accurately and focus on
a small region. In Figure 7(b), a yellow region on the top of the leaf is
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Figure 7. Symptom visualization of CNN. (a) Early blight. (b) Leaf mold. (c) Background influenc.

activated in the heat map. To be sure that this region represents the
symptom of leaf mold, we have consulted the website of Maine Organic
Farmers and Gardeners Association and the conference of fall 2012. In this
specialized association conference, they describe the symptoms of leaf mold
as follows: “It shows up as yellowing on top of the leaf and, on the
underside of the leaf, as a little speck of gray fuzz under each spot.”
Therefore, the automated detection of leaf mold symptom is identical to
an expert description. Finally, all heat maps seen in Figure 7(c), show that
the background of leaf does not affect the results (blue color). The inde-
pendence of results on the background is an excellent property of CNN.
Indeed, the model focuses on leaf and ignores its background without
complicated algorithm in pre-processing for removing this background.

Conclusion and further research

In this study, we have proposed deep learning approach to build a classifier
for disease classification. Our results show that deep models and particularly
CNNs outperform the previous works in tomato diseases classification. In
addition, our experiments demonstrate the benefit of using pre-trained
model, especially if the number of examples used in training is not very
large, unlike that used in disease classification context. In this study, we have
also proposed the use of occlusion techniques to localize the disease regions,
helping humans to understand the disease.
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In the future, our objective is to reduce the computation and the size of
deep models for small machines like mobiles. Besides, visualization of fea-
tures is a hot topic in deep learning, and it could be used to understand plant
diseases.
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