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Abstract
Chemical space is routinely explored by machine learning methods to discover interesting
molecules, before time-consuming experimental synthesizing is attempted. However, these
methods often rely on a graph representation, ignoring 3D information necessary for determining
the stability of the molecules. We propose a reinforcement learning (RL) approach for generating
molecules in Cartesian coordinates allowing for quantum chemical prediction of the stability. To
improve sample-efficiency we learn basic chemical rules from imitation learning (IL) on the
GDB-11 database to create an initial model applicable for all stoichiometries. We then deploy
multiple copies of the model conditioned on a specific stoichiometry in a RL setting. The models
correctly identify low energy molecules in the database and produce novel isomers not found in the
training set. Finally, we apply the model to larger molecules to show how RL further refines the IL
model in domains far from the training data.

1. Introduction

Discovering novel molecules or materials with desirable properties is a challenging task because of the
immense size of chemical compound space. Further complicating the process is the costly and
time-consuming process of synthesizing and testing proposed structures. Whereas this procedure historically
was driven by a trial-and-error process, the advance of computational quantum chemical methods allows for
initial screening to select promising molecules for experimental testing. While the computational resource
growth provided a significant speed-up in processing molecules an exhaustive search of molecular
compound space is still infeasible. Instead an automated search for interesting candidates is desired.
Examples of such search methods include evolutionary algorithms [1, 2], basin-hopping [3] and particle
swarm optimization [4].

More recently, machine learning (ML) enhanced versions of aforementioned methods [5–7] and
regression methods facilitating speed-up of virtual screening [8, 9] have gained considerable interest by
making researchers able to quickly identify attractive candidates for experimental testing. An added benefit
of virtual screening is the creation of numerous databases containing structures with computed chemical and
physical properties [10–14] leading to generative models for discovery of novel molecules and materials
[15–26]. Unlike virtual screening where candidates are selected among the structures in the database,
generative models have shown a remarkable ability to leverage the database to produce new structures with
desirable properties. A notable limitation is a large database and no feedback-loop to improve the generated
molecules beyond what is learned from the database. To remedy this, reinforcement learning (RL) methods
have started to become a competitive alternative [27–38] to methods relying on existing databases. RL
involves a model that produces molecules and obtains properties for these molecules, by some external
means other than a database. This provides the basis for the model to learn from the molecules it produces.
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Whereas generative models rely on databases for pretraining, RL is usually done without any prior
knowledge leading to initial inefficiency as basic chemical and physical rules are learned. Instead a reward
must be defined, meaning that it requires a setting where a meaningful reward function is available, such as
an energy or other things to be optimized.

In this work we build upon a previous RL algorithm called Atomistic Structure Learning Algorithm
(ASLA) [33] by incorporating databases into molecular RL to improve sample efficiency while
simultaneously allowing the ML model to learn beyond the knowledge contained in the database. First, a
general purpose model is trained using a database to create a model applicable for all stoichiometries. Then,
a copy of the general purpose model is created for each stoichiometry of interest. These models are then
further refined in a RL setting in a search for low energy isomers for the given stoichiometry. Specifically, we
utilize a very small subset of the GDB-11 [39] database that consists of small organic molecules satisfying
simple chemical stability rules and containing up to 11 atoms of C, N, O and F. We demonstrate that our RL
model is able to both replicate structures in the database and produce novel low energy structures. By
focusing on low energy structures, we believe we avoid the general pitfall of generative models that may
produce a large degree of unsynthesizable molecules, as e.g. shown in the work of Gao and Connor [40].
Unlike previous approaches using SMILES [41] or graphs, we operate directly in Cartesian coordinates thus
allowing for optimization of the potential energy hence easily biasing the search towards thermodynamically
stable structures. To improve sample-efficiency we take a model-based approach where, similar to [36], the
potential energy surface is modeled by a neural network allowing for approximate but cheap optimization.
Finally, we introduce an architecture based on SchNet [42] with a self-attention mechanism [43] allowing the
RL model to account for long-range effects. The paper is constructed as follows: first the RL theory is
outlined, followed by a description of the neural network architecture. Then the database pretraining and RL
phase are described before demonstrating the method on a subset of GDB-11. Finally, we apply the method
to larger molecules outside the training distribution.

2. Theory

The objective of RL is to solve a decision problem, i.e. formulate a program that given an input can decide on
the optimal action. Specifically, we refer to this program as an agent which is given a state, s, and must decide
on an action, a. In the general case the decision process involves multiple steps indexed with the subscript t
while T is used for the final step. In order to solve the problem the agent must device a policy, π, which is a
probability distribution over the possible actions in a given state. The optimal policy is the policy which
maximizes the sum of rewards, where r(s) is the reward given in state s. The states, actions and rewards are
user-specified and describes the problem to be solved. Following [33, 34], the state space is defined as all
(possibly partial) molecules along with a bag of atoms [34] not yet attached to the molecule. For the reward
we seek to minimize the potential energy, i.e. we set intermediate rewards to zero and assign a final reward
based on the potential energy of the molecule:

r(st) =

{
max

(
Eref−E(sT)

∆E + 1,0
)
, if t= T

0, else
, (1)

here Eref is the lowest energy observed and∆E= 10 eV is the energy span from Eref where energy differences
are resolved. Note that Eref ⩽ E(sT)meaning that 0⩽ r(st)⩽ 1. We scale the reward to stabilize the training as
energies of produced structures may fluctuate substantially during the RL phase. We find that the steady
lowering of Eref during searches caused by the identification of ever better structures constitutes a
manageable learning setting. Since the reward function depends on the total energy of the molecule, separate
agents must be trained for each stoichiometry of interest. This represents an appealing case for trivial
parallelisation over the agents.

To maximize the expected sum of rewards we define the Q-value,

Qπ(s,a) = Eπ

[
T∑

k=t+1

r(sk)

∣∣∣∣∣st = s,at = a

]
= Eπ[r(sT)|st = s,at = a], (2)

i.e. the expected final reward when taking action a in state s and then following policy π. The goal of the
agent is to infer the optimal Q-value function:

Q∗(s,a) =max
π

Qπ(s,a) ∀s,a, (3)
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Figure 1. Given a state, st and an action at , the target Q-value is calculated by computing the energy of finished structures
involving the state-action pair. In the above case a hydrogen atom is placed, which has led to four different structures. The
Q-value is updated towards the reward for the lowest energy structure built.

thereby enabling the agent to perform the best action in every state. To improve the Q-value function we
parameterize it by a neural network and update it as the agent collects new experience. Specifically, we
evaluate the Q-values on a voxelated grid [35], which allows us to update the Q-value towards the highest
final reward observed by the agent for a specific state-action pair (figure 1), which for a deterministic
problem puts a lower bound on the optimal Q-value [44]. Additionally, this discretization allows for easy
inference of the optimal atom placement by simply finding the voxel which maximizes the Q-value.

3. Architecture

The state representation is utilized for calculating the energy of a structure as well as a state value which is
used for calculating the Q-value, but is independent of the specific action. For improved data efficiency the
state and action representation must satisfy symmetries in the Hamiltonian, i.e. translation, rotation and
mirroring of the molecule as well as permutation of identical atoms. To incorporate these properties in the
state representation we utilize pairwise distances (figure 2(a), D), expanded in a Gaussian basis:

Dijk = e−γ(rij−µk)
2

fc(rij), (4)

where γ= 1 Å−2 and rij is the distance between atom i and j, with a total of n atoms in the structure. We let k
be integer values given by 1⩽ k⩽ 20 which corresponds to 20 values for µk, uniformly between 0 and a
cutoff-radius rc = 5 Å. One can attribute Dijk to encode whether the distance between atom i and atom j is
close to the value given by µk. The cutoff function:

fc(r) =

{
1
2

(
cos(πrrc )+ 1

)
, if r⩽ rc

0, else
, (5)

emphasizes the importance of the local neighborhood by decaying Dijk as a function of rij and ensures a
smooth transition to zero at rc. For the atoms, we utilize randomly initialized trainable atom type
embeddings (figure 2(a), ZH,ZC,ZN). Finally, the bag is represented by the number of remaining atoms
(figure 2(a), B).

The action is represented by distances to atoms already placed (figure 2(a), DQ) as well as a special query
type embedding (figure 2(a), ZQ). When calculating Q-values the query atom is placed at various voxels
allowing for inference of Q-values at possible positions of the next atom to be placed. In this way, all the
encoded distances are easily converted to a 3D structure.

The state representation (figure 2(b), green) is updated using SchNet-blocks. In the following we will use
superscripts to index the blocks, if multiple blocks follow each other. Fully connected layers are given asW i

where the full details for each fully connected layer is given in the appendix. Each block operates on the
distance and atom type embeddings using continuous-filter convolutions with skip connections as
introduced in SchNet:

Z̃l
i = Zl

i +
∑
j ̸=i

Zl
j ◦Wl

d(Dij), (6)

3



Mach. Learn.: Sci. Technol. 3 (2022) 015008 S A Meldgaard et al

Figure 2. (a) The molecule is represented as a distance matrix D (solid lines between atoms) in a Gaussian basis, embeddings for
each atom type (ZH,ZC,ZN) and a bag B. An action constitutes an atom placed in one of the voxels. Each action is represented as a
distance to the atoms in the state DQ (dashed lines, not all distances shown) and a query embedding ZQ. (b) To predict Q(s,a) the
network takes as input the state and action representation. The green part of the network operates on the state and the purple
section includes the action. The action part is repeated for each voxel in the state resulting in N possible actions. (c) The resulting
state after the voxel with the highest Q-value is chosen. If the state is terminal the structure is relaxed using the model potential.

where ◦ is elementwise-multiplication and Zi ∈ Rd are the atom embeddings. In the present work we set the
dimension of the atom representation to d= 64. As we will process the atom representation further within
block l, we use Z̃ to denote the intermediate product. The convolution is followed by an atomwise fully
connected layer with a skip connection:

Zl+1
i = Z̃l

i +Wl
a(Z̃

l
i), (7)

which is passed to the next SchNet block. By chaining several blocks, information from distant atoms are
passed to each atom representation. After L= 5 layers, the atomwise representations, ZL

i , are used for
predicting the energy (E) of the structure as combination of local contributions:

E=
∑
i

WE(Z
L
i ). (8)

Additionally, we compute a state value (SV):

SV=WSV

(
WB(B)⊕

∑
i

ZL
i

)
, (9)

where⊕ is concatenation. The state value is an indication of whether high or low Q-values are expected from
the current state, as will be evident in the next section. Unlike the energy, the state value must consider
remaining atoms in the bag when calculating if the current state can progress into a valid molecule.

Having covered the part of the architecture that deals with the state, we now turn to the action part given
in figure 2(b), purple. The query type representation is updated using only a single SchNet-block in order to
keep the computational cost low which is desirable since many actions must be queried in every episode.
Furthermore, a multi-head self-attention block over all the atom representations follows. In contrast to local

4
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models where information from distant atoms must propagate through several blocks, self-attention allows
for immediate global information flow. In the case of predicting Q-values for unfinished structures this is
especially relevant, as the model must be aware of possible dangling bonds in one end of a molecule while
predicting Q-values in the other end. For h= 8 heads, we calculate a query, key and value as:

qli = Ql(Zi), k
l
i = Kl(Zi), υ

l
i = Vl(Zi), (10)

where the superscript index the head and Ql,Kl,Vl are linear projections to a subspace of size dh = d/h,
where Zi ∈ Rd. From this, a dot-product attention score is calculated:

αl
ij =

exp(qli · klj/
√
dh)∑

j exp(q
l
i · klj/

√
dh)

, (11)

which indicates the importance of latent representation υl
j to describe υ

l
i. From these scores a new latent

representation of ZQ is created as:

Zl
Q =

∑
j

αl
Qjυ

l
j, (12)

which is finally concatenated and processed by a fully connected layer with a skip connection and layer
normalization [45]:

Z̃Q = Layer-norm[ZQ +Wc(Z
1
Q ⊕ ·· ·⊕Zh

Q)]. (13)

The representation of the query atom is then used for calculating the Q-value:

A=WA(Z̃Q) (14)

Q= Softmax(SV+A), (15)

where A ∈ RM+1,M is the number of atom types, and SV ∈ R is added to the firstM entries of A. Entry i in
Q specify the Q-value for atom type i and theM+ 1 ′th entry allows for low Q-values for all atom types. SV
enables the network to lower the Q-value for all possible actions in a given state, instead of independently
learning that all actions leads to high-energy structures. By evaluating the Q-value at multiple voxels, the
agent follows the greedy policy of picking the action with the highest Q-value, leading to the structure in
figure 2(c).

4. Method

The algorithm consists of two phases. In the first phase we use a simple form of imitation learning (IL) called
behavioral cloning, where the agent learns to build the structures in the database as well as predicting their
energies and forces. This agent serves as a starting point for all agents employed in the next phase.

In the second phase, a RL process is started where stoichiometric-specific agents refines the IL model by
constructing new molecules and querying an energy calculator. Based on the received energies and forces, the
model updates the Q-values, energies and forces before constructing a new molecule. As the agents receive
feedback from the energy calculator the molecules continue to improve.

4.1. Imitation learning phase
To create an initial model the GDB-11 database consisting of molecules containing up to 11 heavy atoms
(C, N, O, F) is utilized. Specifically, we use all 1850 structures with 6 heavy atoms for supervised pretraining.
Using RDKIT [46] SMILES are transformed into 3D structures and a single point density functional theory
(DFT) calculation of the energy and forces is performed using GPAW [47, 48] using a localized atomic basis
set [49]. The model is then trained using the following loss function:

l= ρElE + ρFlF + ρQlQ, (16)

where we have:

lE = ||E− Ê||2, (17)

5
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lF =
1

3N

3N∑
i=1

Huber(Fi, F̂i), (18)

lQ =−
M+1∑
i=1

pi log Q̂i, (19)

where the hat denotes values predicted by the network and ρE = 0.1, ρF = 0.9 and ρQ = 1 are empirically
chosen to balance the contributions to the total loss. N is the number of atoms in the structure, withM
different atom types.

The energy (equation (17)) is trained using a mean squared error (MSE) loss while forces (equation (18))
are updated using a Huber loss given by:

Huber(F, F̂) =

{
1
2 (F− F̂)2, if |F− F̂|< 1

|F− F̂| − 1
2 , else

, (20)

i.e. a squared loss for small differences and a linear loss for large errors. The Huber loss was more stable by
suppressing the effect of large force outliers which were occasionally present in the structures built by the
model.

Similarly, a cross entropy loss for the Q-values (equation (19)) was found to be more stable than a MSE
for the pretraining phase where only Q-values of 0 or 1 are required. For the cross entropy loss Q̂i refers to
the Q-value for atom type i and we set pi = 1 for the atom type placed in the database and 0 for the other
types. Additionally, for each action present in the database we generate five perturbed actions by randomly
moving the selected atom and setting pi = 1 for theM+ 1 ′th entry in the Q-value prediction, thereby
enforcing Q-values for all atom types to be zero for the randomly generated actions. As this generates an
imbalance in the training data the valid actions are weighted by a factor of five.

The model is implemented in Pytorch [50] and trained using the Adam [51] optimizer with an initial
learning rate of 5× 10−3 and a batch size of 384. We use 90% of the structures for training the remaining
10% are used as a validation set for decaying the learning rate by a factor of 2 when the validation error
plateaus for 30 epochs. Once the learning rate decayed below 10−6 the validation loss stagnated, and the final
model is chosen for employment in the RL phase.

4.2. Reinforcement learning phase
In the RL phase we deploy the single IL model for all 135 stoichiometries present in the training set. A cubic
cell of dimension [20 Å, 20 Å, 20 Å] and a Q-value grid resolution of 0.2 Å is chosen, with the initial atom
restricted to the center of the cell. We use a modified ε-greedy strategy, to trade-off exploration and
exploitation. To satisfy two random moves per episode in expectation, we choose a greedy action with
probability 1-2/T and a random action with probability 2/T, where T is the number of atoms in the structure.
We choose 5% of random actions uniformly random, while the other 95% are uniformly sampled from the
top 5% of actions. Furthermore, all hydrogen atoms are masked until all other atom types are placed which
reduces the action space without excluding any molecules. Due to the IL model an action among the highest
Q-values is frequently taken which ensures exploration while simultaneously suppressing the large fraction of
actions resulting in completely invalid molecules.

To limit the action space, we only allow actions which fulfill:

c1[rcov(a)+ rcov(i)]< rai < c2[rcov(a)+ rcov(i)], (21)

for at least one atom i already present in the structure. Here c1 = 0.75, c2 = 1.25 and rcov(i) is the covalent
radius of atom i. rcov(a) is the covalent radius of the atom placed in action a and rai is the distance between
the new atom and a present atom i. That is, the new atom must be placed within 0.75–1.25 times the sum of
the covalent radii of itself and an already present atom. This restricts the model to building non-fragmented
structures for a better comparison with the database.

The agent trained as detailed in the previous section is perfectly capable of building a variety of different
molecules given a predetermined stoichiometry. Owing to the stochastic nature of the modified ε-greedy
policy employed sequential builds using the same agent results in different structures being built.

We exploit that to construct a first ensemble of structures by tasking the agent with building molecules
200 times. It does so according to the pretrained Q-values and every completed structure is subject to a

6
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Figure 3. Subset of discovered constitutional isomers (left) and stereoisomers (right) for C4H4O2. Further shown is the number of
all unique constitutional isomers in the database (orange arrow) as well as the molecules produced by ASLA divided into
molecules present in the database (purple bar) and novel molecules (green bar).

relaxation in the model energy, equation (8), followed by snapping the molecule back on the grid. If the
relaxation results in a fragmentation of the molecule into several pieces, the original structure is used instead.
The initial exploration phase promotes exploration of a large part of configuration space to avoid premature
convergence to a local minimum. Since the model is pretrained the generated molecules will generally be of
high quality.

Once the first 200 builds are completed, the search enters the RL mode. Here the algorithm alternates
between generating a structure and updating the model using five mini-batches until a total of 600 additional
molecules have been generated, which fine-tunes the agent for each specific stoichiometry. For the Q-values
the loss function is changed to MSE, since the target is now given by equation (2), i.e. it is no longer 0 or 1,
but depends on the potential energy of the molecule. By further improving the Q-values and
force-predictions the search is directed towards low-energy regions of configuration space.

4.3. GDB-11 benchmark
We start by testing the performance of the current framework when it comes to identifying molecules with
stoichiometries already present in the database used for the training. The search is conducted as a set of 64
independent restarts following the outlined protocol: using the data-based-trained agent for 200 builds and
applying RL for 600 subsequent builds. To facilitate the quantification of the amount of new structures
found, we resort to the use of SMILES, as an analytic tool. We stress that SMILES are not used in any way by
the agents as this would limit the scope of these. Once the search is finished all structures are post processed
by taking five gradient steps using the finalmodel energy landscape. This is a computationally cheap step that
removes uncertainties from the original relaxation of the molecules in the less reliable model energy
landscape that had been learned up to the point of the RL generating the particular molecule as well as
unfortunate grid snapping. These post processed structures are then converted to SMILES and all unique
constitutional isomers are found. To this end, we show in figure 3 some of the molecules being built when
searching for C4H4O2. As illustrated, we find both new constitutional isomers and often several
stereoisomers for these. Looking across these 64 restarts, all of the structures of this composition present in
the database (orange arrow) are found again (purple bar). However, also a considerable number of molecules
not present in the database are found (green bar).

To investigate whether the produced molecules are of low energy we illustrate the evolution of the 64
agents from episode 400 to 800 in figure 4. The histograms indicate the energy distribution of the structures
built in the given episode across the 64 agents. As the search progresses the distribution shifts towards lower
energies as the model begins converging, which is further evident by the mean of the distribution (red line)
shifting down. Similarly, when we only consider the mean of the lowest energy structure in each run (i.e. not
necessarily built in episode 400 or 800), which is depicted using dark red we see a similar shift. In blue, the
average energy of the structures in the database, snapped to the grid ASLA operates on, is given. Initially the
database is better than the average built of the agent due to imperfect fitting to the database but is overtaken
by the agent at episode 800. If one looks only at the best structure in the database (dark blue) the average
lowest energy approaches this limit and is marginally beaten by one of the isomers (dark red, dashed). Fully
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Figure 4. DFT energy distribution of the molecules. (a) Molecules in the database. Blue line is the average energy and dark blue
line is the lowest energy isomer. (b) Orange: structures built in episode 400. The red line indicates the mean energy of the
structure and the dark red shows the mean of the lowest energy structure in each run found before episode 400. Finally, the dark
red dashed line shows the lowest energy isomer among the 64 parallel runs, found before episode 400. (c) Same as (b), but now at
800 episodes. As the search progresses a shift towards lower energies is observed.

Figure 5. All Q-values above 0.7 are shown with darker blue corresponding to higher Q-values. For each state we only show the
Q-values corresponding to the atom placed in the given step.

relaxing all unique isomers in DFT indeed reveals that the lowest energy isomer produced by ASLA coincides
with the minimum structure in the database.

To observe the decision process for the RL algorithm we plot the Q-values for one of the runs in figure 5.
First of all, the model has clearly learned a great deal about chemical bonding and thus generally suppresses
invalid actions, predicting only high Q-values for sensible bonding sites. The agent is fully aware of possible
symmetries during the build. Starting with a single atom in s1, the Q-values have spherical symmetry. For the
linear dimer in s2 the symmetry of the Q-values reduces to a ring, and for the Y-shaped C3O backbone in s5,
two symmetric ‘caps’ of high Q values develop. As evident in states s4–s8 where multiple sites have high
Q-values, the model decides between different possible isomers when building the molecule. Bond lengths
chosen early on e.g. the C–C bond lengths when placing the C atoms from s2 to s5 have an impact on later
Q-values. The Q-values encircled by a black ellipse in s8 are thus smaller than the Q-value that are chosen
upon building s9. In both cases, aldehyde (HOC-) groups are formed, but at C atoms involved in double or
single C–C bonds, respectively, the latter being the energetically preferred. Placing H atoms at both sites
would have been possible causing tautomerization involving the methyl group, but again given the initial
choices for C–C bond lengths, this is no longer preferable as reflected by the Q-values in s9. Owing to the
modified ε-greedy policy, such alternative molecular builds are occasionally made despite the C–C bond
lengths, and the subsequent relaxation in the on-the-fly learned model will provide properly adjusted
molecules for the RL training.

In figure 6 the total number of structures found after 800 episodes for the 15 stoichiometries with most
isomers in the database are shown. For a figure involving all 135 stoichiometries, see figure A1 in the
appendix. Similarly to earlier, purple bars indicate the structures present in both the search and the database,
whereas green indicate novel structures. A majority of the structures in the database (orange line) are found
within the 800 episodes using 64 searches. In total 1769 of the 1850 molecules in the database are found, i.e.
slightly more than the 1665 structures used for the training set. Accounting for both novel molecules and
structures rediscovered from the database, 20 074 unique constitutional isomers are generated resulting in a
10-fold increase of the database. Especially for stoichiometries where multiple bond combinations are
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Figure 6.Molecules discovered. Orange line: number of constitutional isomers in the database. Purple bars: molecules found that
are also present in the database. Green bars: novel molecules found.

Figure 7. Blue: average energy of structures in the database. Dark blue: average energy of lowest energy molecules in the database.
Red: average energy of structures built by ASLA. Dark red: average energy of lowest energy molecules found by ASLA. Dashed
dark red: lowest energy isomer among the 64 runs.

possible, i.e. for stoichiometries containing a lot of carbon, oxygen and nitrogen several new constitutional
isomers are discovered, whereas for hydrocarbons and CxHyFz where a lot of single bonds are present the
database covers a large fraction of the isomers.

If the RL is neglected and the IL model is used for sampling in all 800 episodes, 1649 of the structures in
the database and 15 709 novel molecules are generated for a total of 17 358 unique constitutional isomers.
The IL model thus covers a large fraction of the produced structures and turning on RL provides 15.6% more
molecules.

To illustrate the difference between the IL model and the RL version, we plot the average atomization
energy per atom of the structures generated by ASLA throughout the 800 episodes (figure 7) and compare it
to the energies of the structures in the database when placed on the same 0.2 Å resolution grid. For each
ASLA curve the average is over the 64 independents run as earlier and now also the 135 stoichiometries. As
previously observed, the model trained on the database starts out by producing higher energy structures (red
curve) than the average structure in the database (blue curve), due to the imperfect fitting of the database.
Similarly, the average of the best structures (dark red) is worse than the lowest energy isomer in the database
(dark blue). At around 500 episodes both the average and best structures produced by ASLA marginally
outperforms the database. At 800 episodes the best structure is outperformed by 0.04 eV/atom on average. If
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Figure 8. Searching for C9H8O4 isomers. (a) Constitutional isomers found across all 64 restarts. As the search progresses, the RL
version (red) quickly produces more structures than the IL version. (b) Energy-density of the approximately 5000 and 15 000
unique structures generated by IL and RL, respectively. In addition to producing more constitutional isomers, the RL version
(red) generates a larger fraction of low energy molecules.

one only looks at the best structure in each of the 64 runs (dark red, dashed) the database is outperformed by
0.09 eV/atom.

In order to check if this energy difference amounts to new low energy structures the specific stereoisomers
in the database and the structures generated by ASLA are compared. In that case 1742 of the molecules in the
database are found. When counting constitutional isomers as in figure 6, 1769 of the structures in the
database were found, which means that in 27 cases the stereoisomer in the database is not found, but the
constitutional isomer is. In total, 29 016 stereoisomers not present in the database are found. Each
stereoisomer in both the database and generated by ASLA is then fully relaxed using DFT, which shows that
for each stoichiometry the lowest energy stereoisomer in the database is found by ASLA for all but one
stoichiometry and in 72 of 135 stoichiometries a lower energy stereoisomer is found. It is necessary that both
the IL and the RL phases are present, as the IL agent alone will miss some low energy structures whereas as a
pure RL procedure will be significantly delayed before discovering the most favourable configurations, see
figures A4 and A5 in the appendix.

4.4. Exploration beyond the database
Having shown that the ASLA framework is capable of reproducing and expanding molecular structures of
compositions already present in the database, we now move to explore its performance when applied outside
the realms of the database.

As an example, we investigate C9H8O4, a molecule with twice as many heavy elements as in the training
set. As before, 64 independent runs are started.

In figure 8(a) the number of unique constitutional isomers generated as a function of episode number for
the IL model (blue) and the model with RL (red) is seen. Unlike for the smaller molecules in IV. C where the
IL model was sufficient to cover a large fraction of configuration space there is now a significant difference
between the RL and IL agent. The RL model clearly outperforms the IL model in terms of number of
molecules generated as the search progresses, showing that the on-the-fly training is able to correct
inefficiencies in the initial version. However, the ultimate goal is to generate low energy molecules. Hence, in
figure 8(b) the atomization-energy-density of the generated molecules for both the IL model and the RL
version is seen. As before all stereoisomers are fully relaxed using DFT. The molecules generated by the
RL-enhanced model are significantly more stable than the IL model, with an average energy difference of
0.105 eV/atom or 2.22 eV per structure. Thus, the RL version does not only cover more of configuration
space, it is also able to focus on the low energy regions. In figure 9 we investigate a 2D visualization of the
generated molecules for both the IL model (squares colored grey to blue) and RL version (circles colored grey
to red). The structures are represented using smooth overlap of atomic positions [52] (SOAP) in a 2D space
using t-SNE and colored by their energy using two different color schemes to help guide the eye. The 30
lowest energy structures found for both models are framed in black and can be seen figures A2 and A3 in the
appendix. The RL version discovers certain low energy regions such as compact aromatic molecules as shown
in the inset. The IL version, however, is not able to extrapolate into this region based on what it has learned
from the database. Interesting molecules among the low energy isomers include the lowest energy isomer
found by the search (red star) as well as the second lowest isomer (see appendix) that both resemble uvitic
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Figure 9. Searching for C9H8O4 isomers. 2D visualization of IL agent (squares) and RL version (circles). All structures are colored
by their energy on a scale from grey to blue (IL) or red (RL). The 30 lowest energy structures for both versions of the algorithms
are framed in black.

acid. The search discovers umbellic acid (red square) and caffeic acid (just outside top 30). Additionally, the
RL model discovers a stable isomer with a 7-membered ring (appendix), a substructure not present in the
original database as only molecules with up to 6 heavy atoms were used. Despite this, the RL model learns to
construct such molecules which would have been hard to discover by a pure supervised generative approach.

For the IL model we observe fewer of the common aromatic molecules as it has no driving force towards
low energy regions of configuration space, as exemplified by the lowest energy isomer found (blue star) being
2 eV higher in energy than the corresponding lowest energy structure in the RL version. The missing focus
on low energy parts of configuration space results in the 30 lowest energy structures being scattered across
the 2D space, mostly composed of elongated structures (such as the blue square) where subparts, unlike large
aromatic rings, are more dominant in the GDB-11 database. Utilizing the feedback from the RL is thus
crucial to correct flaws in the IL model as well as expanding beyond knowledge in the database.

5. Conclusion

We have presented a framework for autonomous construction of molecules. The method relies on a
preexisting database which via supervised learning provides a base level for a model used for constructing
new molecules. Further training of the model is done in a RL setting where feedback is provided via single
point energy calculations by a high-level quantum mechanical total energy method. The resulting model is
able to reproduce structures in the database as well as producing novel structures. The introduced model is
able to operate directly in 3D space allowing for biasing the search towards stable molecules. When applying
the IL model in domains far from the training set, the RL procedure corrects initial shortcomings in the
model. Further work in this direction could investigate building molecules in specific environments, such as
organic light-emitting diode or organic solar panels where properties such as HOMO-LUMO gap could be
included in the reward function together with the stability.
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Table A1. Dimension of data as it passes through the fully connected layers. The activation function is the shifted softplus indicated by
ssp.

Bag representation WB (5, 16, spp, 32)
Atomwise layers Wa (64, 64, ssp)
Distances representation Wd (20, 64, ssp)
State value WSA (96, 32, ssp, 1)
Advantage WA (96, 32, ssp, 6)
Energy WE (64, 32, ssp, 16, ssp, 8, ssp, 1)
Concatenation layer W c (64, 64)

Appendix

Network details

In table A1 a detailed overview of the blocks in the network is given. The activation function is a shifted
softplus [42] (ssp) given by

ssp(x) = ln(0.5ex + 0.5) (22)
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Figure A1. Overview of all constitutional isomers built. Orange line indicates number of isomers in the database. Purple are
isomers built by ASLA which are also part of the database. Green structures are new isomers.
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Figure A2. 30 lowest energy structures for the RL run.
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Figure A3. 30 lowest energy structures for the IL run. Energies are relative to the lowest energy isomer found in the RL version.
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Figure A4. Histogram of the lowest energy structures for C4N2H6 found for each of 64 independent runs after 3200 episodes
using only the imitation learning agent, using reinforcement agents without any imitation learning, and using reinforcement
learning agents that start from the imitation learning agent as described in main text. The depicted molecules are exemplify
structures at different places in the histogram.
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Figure A5. Histogram of the lowest energy structures for C7H7NO found for each of 64 independent runs after 3200 episodes
using only the imitation learning agent, using reinforcement agents without any imitation learning, and using reinforcement
learning agents that start from the imitation learning agent as described in main text. The depicted molecules exemplify the
structures at different places in the histogram.
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