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ABSTRACT 
 
In this paper, the modified double sub-equation method is proposed to construct 
complexiton solutions of nonlinear partial differential equations (PDEs). By means of this 
method, some new complexiton solutions to nonlinear PDEs are obtained, which are non-
travelling wave and variable-coefficient function solutions. It is shown that the modified 
double sub-equation method is effective and straightforward tool to solve nonlinear PDEs. 
 

 
Keywords: The modified double sub-equation method; nonlinear partial differential 

equations; complexiton solution. 
 
1. INTRODUCTION  
 
In recent years, both mathematicians and physicists have made many attempts to seek as 
many and general as possible soliton solutions of nonlinear partial differential equations 
(PDEs). A number of powerful methods were presented, such as the inverse scattering 
theory [1], Darboux transformation [2], the sech-function method [3,4], the homogeneous 

Research Article 



 
 
 
 

Physical Review & Research International, 3(4): 623-633, 2013 
 
 

624 
 

balance method [5], the hyperbolic tangent function series method [6], Bäcklund 

transformations method [7], the Jacobi elliptic function expansion method [8,9], the 
G

G '

-

expansion method [10] and the multiple exp-function method [11]. One of the most 
effectively straightforward methods to constructing exact solutions of PDEs is the sub-
equation method [12-15]. The complexiton solution, firstly introduced by Ma et al.[16], can be 
constructed by the multiple Riccati equations rational expansion method [17], which make 
use of two Riccati equations with the same variable. 
 
Chen [18] has presented the double sub-equation method using two ordinary differential 
equations with different independent variables. Complexiton solutions combining elementary 
functions and the Jacobi elliptic functions are obtained by the double sub-equation method 
[18]. 
 
In this paper, the modified double sub-equation method is proposed to construct complexiton 
solutions of nonlinear partial differential equations (PDEs). We apply this method to the 
Fisher equation and the Kadomtsev-Petviashvili ( KP ) equation, and get many new types of 
complexiton solutions (the non-travelling wave and variable-coefficient function solutions). It 
makes the modified double sub-equation method more extensively. 
 
2. SUMMARY OF THE MODIFIED DOUBLE SUB-EQUATION METHOD 
 
In the following we would like to establish a modified double sub-equation method with 
symbolic computation. 
 
Step 1: Given a nonlinear partial differential equations with two variables x and t  
 

0),,,,,( =Lxxtxttxt uuuuuP         (1) 

 
Step 2: We assume that the solutions of Eq.(1) are as follows: 
 

)()(

)()(
),(

10

21
0 ηψξφµµ

ηψξφ
+

++= AA
Atxu       (2) 

 
where ),(),,(),,(),,(),,( 221100 txtxtxAAtxAAtxAA ηηξξ ===== are all functions of 

x and t , 0µ and 1µ  are arbitrary nonzero constants. The new functions )(ξφ  and )(ηψ
satisfy 
 

)()( 2
10

' ξφξφ ee +=         (3) 

 

where 
ξ
ξφξφ

d

d )(
)(' = and )()( 11 tcxtk −=ξ ; 

 

)()( 2
10

' ηψηψ hh +=         (4) 
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where 
η
ηψηψ

d

d )(
)(' = and )()( 22 tcxtk −=η . 

 
Step 3: The solutions of the Riccati equation Eq.(3) [17] are as follows: 
 
 
 
(I) when ,110 == ee  

 
),tan()( ξξφ =  

 
(II) when ,110 −== ee  

 
),cot()( ξξφ =  

(III) when ,1,1 10 −== ee  

 
),tanh()( ξξφ =  ),cot()( ξξφ =  

(IV) when ,
2

1
10 ±== ee  

 
),tan()sec()( ξξξφ ±= ),cot()csc()( ξξξφ ±=  

 

(V) when ,
2

1
,

2

1
10 −== ee   

 

)cosh(

1
)tanh()(

ξ
ξξφ i±= , 

)sinh(

1
)coth()(

ξ
ξξφ ±=  

 
(VI) when ,1,0 10 == ee  

 

ce +
−=

ξ
ξφ

1

1
)( . 

 
Step 4: Substituting Eq.(2) along with Eq.(3) and Eq.(4) into Eq.(1) yields a system of 

equations w.r.t jiψφ ),2,1,0,,2,1,0( LL == ji , setting the coefficients of jiψφ  in the 
obtained system of equations to be zero, we obtain a set of over-determined PDEs (or 
ODEs) with respect to 102211210 ,),(),(),(),(,,, µµtctktctkAAA . 

 
Step 5: Solving the over-determined PDEs (or ODEs) (e.g. Maple), we would gain the 

explicit expressions for 102211210 ,),(),(),(),(,,, µµtctktctkAAA . 

 

)()( 2
10

' ξφξφ ee +=
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Step 6: By using the results obtained in the above steps and the various solutions of 
Eq.(3,4), we can derive many solutions for Eq.(1). 
 
Remark 1: The the method proposed here is to take full advantage of two solvable ordinary 
differential equations with different independent variables. The success and appeal of the 
method is the fact that the new complexiton solutions obtained are the non-travelling wave 
and variable-coefficient function solutions. 
 
Remark 2: In order to simplify the calculation and solve the PDEs derived in Step 4, we 

usually choose special forms of 210 ,, AAA  as we do in Section 3. 

 
3. APPLICATION 
 
3.1 Example 1 
  
The Fisher's equation is the simplest nonlinear reaction diffusion equation, 
 

0)1( =−−− uuuu xxt βα        (5) 

 
whereα and β are greater than zero,α is the diffusion coefficient, β is the reaction 

coefficient. According to the method, we assume that the solutions of Eq.(5) are as follows: 
 

)()(

)()(
),(

10

21
0 ηψξφµµ

ηψξφ
+

++= AA
Atxu        (6) 

 
Where ),(),(),( 221100 tAAtAAtAA === )()( 11 tcxtk −=ξ , )()( 22 tcxtk −=η , 0µ and 1µ  

are arbitrary nonzero constants.  
 
Substituting Eq.(6) along with Eq.(3) and Eq.(4) into Eq.(5) yields a system of equations w.r.t 

jiψφ )3,2,1,0,3,2,1,0( == ji , setting the coefficients of jiψφ  in the obtained system of 
equations to be zero,we obtain a set of over-determined PDEs (or ODEs) with respect to

102211210 ,),(),(),(),(,,, µµtctktctkAAA . Solving the over-determined PDEs (or ODEs) by 

use of Maple, we can obtain the following result. 
 

Case 1:   ,
)(
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21111
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Case 2: ,
)(

),()(),()(,,
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21111

1
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100 hh
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ktktktctc

eh ∆===
∆

== µµµµ  
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Where 11001 hehe=∆ , 22
22

22
00

4
1

2
13 2)(16 ββµβ ββ CCeeeeC tt +++=∆ −− , 

 
22

22
2

00
4

1
2

12 16 ββµβ β CCehhC t ++=∆ − , 2
2

2
2

00
3

1
2

14 16 CCeeeeC tt ++=∆ ββ βµβ  

 

321 ,, CCC  and 0µ are arbitrary constants, )(),( 11 tctk are arbitrary functions of t . 

 
According to case 2, when ,0,1 321 === CCC 1,1,1 1010 −==== hhee , we can get 

combining tan  and cothtanh,  function complexiton solutions: 
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Where )()( 11 tcxtk −=ξ , )()( 22 tcxtk −=η , 01 µµ i±= , 
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When ,0,1 321 === CCC 1,1,
2

1
1010 −==−== hhee , we can get combining 

cotcsctan,sec −−  and cothtanh,  function complexiton solutions: 
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When ,0,1 321 === CCC
2

1
,

2

1
,1 1010 −==−== hhee , we can get combining cot  and 

coshsinh,coth,tanh,  function complexiton solutions: 
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)
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where )()( 11 tcxtk −=ξ , )()( 22 tcxtk −=η , 01 µµ i±= , 

 

 ,
)216(

4
)(

222
0

4

2
0

2

1 ttt eee
tA βββ ββµβ

µβ
+++

−=
−−

 

 

,
)216(

4
)(

222
0

4

2
0

2

2 ttt eee

i
tA βββ ββµβ

µβ
+++

±=
−−

 

 

,
ln

)
4

116
arctan(

ln

)(2
)( 0

2
0

3

1
2 t

tt

t e

t
ee

i
e

ttc
tc β

ββ

β

β
βµ

βµβ
β

++

±±= )(2)( 12 tiktk m= . 

 
When ,0,1 321 === CCC 1,1 1010 −==== hhee , we can get combining tan  and cot  

function complexiton solutions: 
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Similarly, we can write down the other complexiton solutions of equation eq.(5) which are 
omitted for convenience. 
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3.2 Example 2 
 
In this section, we consider the Kadomtsev-Petviashvili( KP ) equation 
 

,0)( 2 =++++ yyxxxxxxxtx vvvvvv εγα       (7) 

 
where γα , and ε  are arbitrary nonzero constants. According to the method, we assume 

that the solutions of Eq.(5) are as follows: 

)()(

)()(
),,(

10

21
0 ηψξφµµ

ηψξφ
+

++= BB
Btyxv       (8) 

 
where ),(),(),( 221100 tBBtBBtBB === ytwtcxtk )()()( 111 +−=ξ ,  

 

ytwtcxtk )()()( 222 +−=η , 0µ and 1µ  are arbitrary nonzero constants.  

 
Substituting Eq.(8) along with Eq.(3) and Eq.(4) into Eq.(7) and using Maple yields a system 

of equations w.r.t jiψφ )5,0( ≤≤ ji , setting the coefficients of jiψφ  in the obtained 
system of equations to be zero, we obtain a set of over-determined PDEs (or ODEs) with 
respect to .,),(),(),(),(),(),(,,, 10222111210 µµtwtctktwtctkBBB Solving the over-

determined PDEs by use of Maple, we can obtain the following result. 
 
Case 1 ),()(),()(),()(),()(),()(, 112211110000 tktktctctctctBtBtBtB ====== µµ  
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Where 0µ  is arbitrary nonzero constant, ),()(),()(),()( 111100 tctctBtBtBtB ===  

 
)(),()(),()( 111122 twwtktktctc ===  are arbitrary functions of t . 

 
Case 2 ),()(),()(),()(),()(),()(, 112211110000 tktktctctctctBtBtBtB ====== µµ  
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01

11100
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hh
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tw −= , 

 
Where 0µ  is arbitrary nonzero constant, ),()(),()(),()( 111100 tctctBtBtBtB ===  

 
)(),()(),()( 111122 twwtktktctc ===  are arbitrary functions of t . 

 
When 1,1,1 1010 −==== hhee , we can get combining tan  and cothtanh,  function 

complexiton solutions: 
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Where ytwtcxtk )()()( 111 +−=ξ , ytiwtcxtik )()()( 121 mm −=η . 
 

When 1,1,
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1010 −==== hhee , we can get combining the new complexiton solutions: 
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When 
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Where ytwtcxtk )()()( 111 +−=ξ , ytiwtcxtik )(2)()(2 121 mm −=η . 
 
Similarly, we can write down the other complexiton solutions of eq.(7) which are omitted for 
convenience. 
 
4. CONCLUSION AND DISCUSSION 
 
we present the modified double sub-equation method and use it to solve the fisher and 
Kadomtsev-Petviashvili( KP )equations. We obtain not only complexiton solutions but also 
non-travelling wave and variable-coefficient function solutions. Complexiton solutions 
obtained in this paper cannot be found in other references. It is clear that this method is 
different from other methods, very straightforward and effective to get non-travelling wave 
and variable-coefficient function solutions. The method can also be applied to other 
nonlinear differential equations in mathematical physics. We are investigating new ansatz 
and new auxiliary ordinary differential equations to construct more types of exact solutions. 
 
ACKNOWLEDGMENTS 
 
This research was supported by the Natural Science Foundation of Shandong Province of 
China under Grant (ZR2010AM014) and the Scientific Research Fund from Shandong 
Provincial Education Department (J07WH04). 
 
COMPETING INTERESTS 
 
Authors have declared that no competing interests exist. 
 
REFERENCES 
 
1. Gardner CS, Greene JM, Kruskal MD, Miura RM. Method for solving the KdV 

equation. Physics Review Letter. 1967;19:1095-1097. 
2. Matveev VB, Salle MA. Darbooux Transformation and Soliton. Spinger, Berlin; 1991. 
3. Wen-Xiu Ma. Travelling wave solutions to a seventh order generalized KdV equation. 

Physics Letter A. 1993;180:221-224. 
4. Wen-Xiu Ma, Zhou DT. Solitary wave solutions to a generalized KdV equation. Acta 

Physica Sinica. 1993;42:1731-1734. 
 



 
 
 
 

Physical Review & Research International, 3(4): 623-633, 2013 
 
 

633 
 

5. Ming Liang Wang, Zhou YB, Zhi Bin Li. Applications of a homogeneous balance 
method to exact solutions of nonlinear equations in mathematical physics. Physics 
Letters A. 1996;216: 67-75. 

6. Wen-Xiu Ma B. Fuchssteiner. Explicit and exact solutions to a Kolmogorov-Petrovskii-
Piskunov equation. Int. J. Non-Linear Mech.  1996;31:329-338. 

7. Zhu ZN, Lax pair. Bäcklund transformation, solitary wave solution and finite 
conservation laws of the general KP equation and MKP equation with variable 
coefficients. Physics Letters A. 1993;180: 409-412. 

8. Fu ZT, Liu SK, Liu SD, Zhao Q. New Jacobi elliptic function expansion and new 
periodic solutions of nonlinear wave equations. Physics Letters A. 2001;290:72-76. 

9. Huai-Tang Chen, Hong Qing Zhang. Improved Jacobin elliptic function method and its 
applications. Chaos, Solitons and Fractals. 2003;(15):585-591. 

10. Mingliang Wang, Xiangzheng Li, Jinliang Zhang. The 
G

G '

-expansion method and 

travelling wave solutions of nonlinear evolution equations in mathematical physics. 
Physics Letters A. 2008;372:417-423. 

11. Wen-Xiu Ma, Tingwen Huang, Yi Zhang. A multiple exp-function method for nonlinear 
differential equations and its application. Physics. Scripta. 2010;82:065003 

12. Huai Tang Chen, Hong Qing Zhang. New multiple soliton-like solutions to the 
generalized (2 + 1)-dimensional KP equation. Applied Mathematics and Computation. 
2004;157:765-773. 

13. Huai Tang Chen, Hong Qing Zhang. New double periodic and multiple soliton solutions 
of the generalized (2 + 1)-dimensional Boussinesq equation. Chaos, Solitons and 
Fractals.  2004;20:765-769. 

14. En Gui Fan. Extanded tanh-function method and its applications to nonlinear 
equations. Physics Letters A.  2000;277:212-218. 

15. Sheng Zhang. A generalized auxiliary equation method and its application to (2+1)-
dimensional Korteweg-de Vries equations. Computers and Mathematics with 
Applications. 2007;54:1028-1038. 

16. Wen-Xiu Ma. Complexiton solutions to the Korteweg-de Vries equation. Physics 
Letters A. 2002;301:35-44. 

17. Yong Chen, Wang Q. Multiple Riccati equations rational expansion method and 
complexiton solutions of the whitham-Broer-Kaup equation. Physics Letters A. 
2005;347:215-227. 

18. Huai-Tang Chen, Shu-Huan Yang, Wen-Xiu Ma. Double sub-equation method for 
complexiton solutions of nonlinear partial differential equations. Applied Mathematics 
and Computation. 2013;219(9):4775-4781. 

_________________________________________________________________________ 
© 2013 Yang and Chen; This is an Open Access article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
 
  
  Peer-review history: 

The peer review history for this paper can be accessed here: 
http://www.sciencedomain.org/review-history.php?iid=224&id=4&aid=1769 


