
____________________________________________________________________________________________

*Corresponding author: Email: k.mukta@rocketmail.com;

Physical Review & Research International
3(4): 612-622, 2013

SCIENCEDOMAIN international
www.sciencedomain.org

Dust Ion-acoustic K-dV and Modified K-dV
Solitons in a Dusty Degenerate Dense Plasma

K. N. Mukta1*, M. S. Zobaer2, N. Roy3 and A. A. Mamun1

1Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.
2Department of Physics, Bangladesh University of Textiles, Tejgaon, Dhaka, Bangladesh.

3Department of Physics, Institute of Natural Science, United International University,
Dhaka, Bangladesh.

Authors’ contributions
This work was carried out in collaboration between all authors. Author KNM designed the

study, performed the statistical analysis, wrote the protocol, managed the literature searches
and wrote the first draft of the manuscript. Authors MSZ, NR and AAM managed the

analyses of the study. All authors read and approved the final manuscript.

Received 19th February 2013
Accepted 25th June 2013
Published 28th July 2013

ABSTRACT

A theoretical investigation has been made of the roles of the degeneracy and the dynamics
of electrons and ions on the DIA (dust ion-acoustic) Korteweg-de Vries (K-dV) and modified
Kortewegde Vries (mK-dV) solitons that are found to exit in a dusty degenerate dense
plasma containing non-relativistic degenerate ions and both non-relativistic and ultra
relativistic electrons fluids, and the negatively charged dust grains. This fluid model, which is
valid for both the non-relativistic and ultra-relativistic limits has been employed with the
reductive perturbation method. The K-dV and modified K-dV equations have been derived,
and numerically examined. The basic features of K-dV and modified K-dV solitons have
been analyzed. It has been observed that the dusty degenerate plasma system under
consideration supports the propagation of solitons obtained from the solutions of K-dV and
modified K-dV equations. The relevance of our results obtained from this investigation in
compact astrophysical objects is briefly discussed.
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1. INTRODUCTION

Recently, the physics of dusty plasma is receiving a great deal of attention. Dusty plasmas
are characterized as a low temperature multispecies ionized gas comprising electrons,
protons, and negatively (or positively) charged grains of micrometer or submicrometer size.
The study of the collective effects in dusty plasmas is of significant interest. Charged dust
grains are found to modify or even dominate wave propagation [1-5], wave scattering [6-7]
wave instability [8], ion trapping [9]. However, most of the studies on wave motions [1-4] in
dusty plasma assume constant charge on the dust grains. Now-a-days a number of authors
have become interested to study the properties of matter under extreme conditions [10-12],
which occur due to the combine effect of Pauli’s exclusion principle and Heisenberg’s
uncertainty principle, depends only on the number density of constituent particles, but
independent on its own temperature [13,14]. This degenerate pressure has an important role
to study the electrostatic perturbation in matters which exist in extreme conditions [10-12].
Electron degenerate pressure will halt the gravitational collapse of a star if its mass is below
the Chandrasekhar limit (i.e. 1.44 solar masses) [15]. This is the pressure that prevents a
white dwarf star from collapsing. Astrophysical aspects of high density like in many cosmic
environments, compact astrophysical objects [16-19]. Examples of the latter are white and
brown dwarf stars [20], as well as massive Jupiter which serves as the super-Earth terrestrial
planets around other stars, and the benchmark for giant planets. In case of such a compact
object the degenerate electron number density is so high (in white dwarfs it can be of the
order of 1030cm3, even more [13,14] that the electron Fermi energy is comparable to the
electron mass energy and as a result the electron speed becomes comparable to the speed
of light in vacuum. For such interstellar compact objects the equation of state for degenerate
ions and electrons are mathematically explained by Chandrasekhar [12] for two limits,
named as nonrelativistic and ultra-relativistic limits. Chandrasekhar [21,22] presented a
general expression for the relativistic ion and electron pressures in his classical papers. The
pressure for ion fluid can be given by the following equation= , (1.1)
where = ; = ( ) ℏ ≃ ⋀ ℏ , (1.2)

for the non-relativistic limit (where ⋀ = ℏ = 1.2 ⨉10 , and ℏ is the Planck constant
divided by (2 ). While for the electron fluid,= , (1.3)

for non-relativistic limit = ; = , (1.4)
and = ; = ( ) ℏ ≃ ℏ , (1.5)
in the ultra-relativistic limit [10-12].

Recently, a large number of authors [23-25], etc. have used the pressure laws 1.3 to 1.5
investigate the linear and nonlinear properties of electrostatic and electromagnetic waves,
by using the non-relativistic quantum hydrodynamic (QHD) and quantum
magnetohydrodynamic(Q-MHD) [23] models and by assuming either immobile ions or non-
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degenerate uncorrelated mobile ions. It turns out that the presence of the latter and
degenerate ultra relativistic electrons with the pressure law (1.3-1.5) admits one-dimensional
localized ion models (IMs) supported by linear and non linear ion inertial forces and the
pressure of degenerate electron fluids in a dense quantum plasma that is unmagnetized.
Again in this present days, some authors [26,27]; has made a number of theoretical
investigations on the nonlinear propagation of electrostatic waves in degenerate quantum
plasma. Again there are some works on electron-positron degenerate plasma with magnetic
field [28]. These investigations are mainly based on the electron equation of state, which are
only valid for the non-relativistic limit. Some investigations have been also made of the
nonlinear propagation of electrostatic waves in a degenerate dense plasma which are mainly
based on the degenerate electron equation of state valid for ultra-relativistic limit [13,14]. Still
now, there is no theoretical investigation has been made to study the extreme condition of
matter for both non-relativistic and ultra-relativistic limits on the propagation of electrostatic
solitary waves in a dusty degenerate dense plasma system. Therefore, in our paper we
study the properties of the solitons considering a dusty degenerate dense plasma containing
degenerate electron-ion fluid (both non-relativistic and ultra-relativistic limits) with the
negatively charged dust grains to study the basic features of the electrostatic solitary
structures with the solutions of modified K-dV equation. Our considered model is relevant to
compact interstellar objects (i.e. white dwarf, neutron star, black hole, etc.).

2. GOVERNING EQUATIONS

We consider a one-dimensional, unmagnetized dusty degenerate electron-ion plasma
system containing non-relativistic degenerate cold ion and both non-relativistic and ultra-
relativistic degenerate electron fluids with arbitrary charged dust grains. We are interested in
the propagation of electrostatic perturbation in such a dusty degenerate dense plasma.
Thus, at equilibrium condition we have = where ( ) is the ion (electron) number
density at equilibrium. The nonlinear dynamics of the electrostatic waves propagating in
such a degenerate plasma is governed by+ ( ) = 0, (2.1)+ + + = 0, (2.2)− γ = 0, (2.3)= − , (2.4)= − (1 − ), (2.5)

where ( ) is the ion (electron) number density normalized by its equilibrium value( ), is  the ion fluid speed normalized by = ( = ) with ( ) being the
electron (ion) rest mass, c being the speed of light in vacuum, is the electrostatic wave
potential normalized by = with e being the magnitude of the charge of an electron,

the time variable (t) is normalized by = (4 ) , and the space variable ( ) is

normalized by , = ( 4 ) and μ is the ratio of the number density to the ion
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number density (Zdnd0 /ni0). The constant = = = =
.

3. DERIVATION OF K-DV EQUATION

Now we derive a dynamical K-dV equation for the nonlinear propagation of the DIA waves by
using equations (2.1) - (2.5). To do so, we employ a reductive perturbation technique to
examine electrostatic perturbations propagating in the relativistic dusty degenerate dense
plasma due to the effect of dispersion, we first introduce the stretched coordinates [29]= є − , (3.1)= є , (3.2)

where is the wave phase speed with being angular frequency and k being the wave
number of the perturbation mode), and є is a smallness parameter measuring the weakness
of the dispersion (0 < є < 1). We then expand , , , , , in power series of є:= 1 + є ( ) + є ( ) +⋯, (3.3)= 1 + є ( ) + є ( ) +⋯, (3.4)= є ( ) + є ( ) +⋯, (3.5)= є ( ) + є ( ) +⋯, (3.6)= є ( ) + є ( ) +⋯, (3.7)

and develop equations in various powers of є. To the lowest order in є, using equations
(3.1)-(3.7) into equations (2.1) - (2.5) we get as,

( ) = ( ) ( − ′ ) , ( ) = ( ) ( − ′ ) , ( ) = ( ) ′⁄ , and= ′ (1 − )⁄ + ′ , where ′ = ( − 1)⁄ and ′ = ( − 1)⁄ . The relation= ′ (1 − )⁄ + ′ represents  the dispersion relation for the dust ion acoustic type

electrostatic waves in the degenerate plasma under consideration. We are interested in
studying the nonlinear propagation of these dissipative dust ion acoustic type electrostatic
waves in a three components degenerate plasma. To the next higher order in є, we obtain a
set of equations

( ) − ( ) − ( ) + ( ) ( ) = 0, (3.8)( ) − ( ) − ( ) ( ) − ( ) − ′ ( ) + ( )( ( )) = 0,( ) − ′ [ ( ) − ( )( ( )) ] = 0, (3.9)( ) = − ( ) , (3.10)( ) = ( ) − (1 − ) ( ). (3.11)
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Now, combining equations (3.8-3.11) we deduce a Korteweg-de Vries equation as

( ) + ( ) ( ) + ( ) = 0,                                                         (3.12)

where the value of A and B are given by

= ( ′ ) ′ ( )
′
+ ( )( )

′
, = ( ′ ) . (3.13)

The stationary solitary wave solution of equation (3.12) is

( ) = ℎ , (3.14)

where the special coordinate, = − , the amplitude , = 3 ,⁄ and the width,= (4 ⁄ ) .

4. DERIVATION OF MK-DV EQUATION

To examine electrostatic perturbations propagating in the relativistic degenerate dense
plasma due to the effect of dispersion by analyzing the outgoing solutions of equations (2.1-
2.5), we now introduce the new set of stretched coordinates for the modified K-dV equation
is: = є − , (4.1)= є . (4.2)

To the lowest order in є, using equations (4.1,4.2, and 3.3-3.7), into the equations (2.1-2.5),
we find the same results as we have had for the solitons for K-dV equation.

To the next higher order in є, we obtain a set of equations, which, after using the values of( ), ( ), and ( )can be simplified as

( ) = ( )
′ + ′ + + ( ) ( ( ))

′
,                                                   (4.3)( ) = ( )

′ + [3 + ′ ( − 2)] ( ( ))
′

,                                                         (4.4)( ) = ( )
′ − ( )( ( ))( ′ ) , (4.5)

( ) = ( ( )) (4.6)

where = ( )( )( ′ ) + ′ ( )
′

, (4.7)

To further higher order of є, we obtain a set of equations
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( ) − ( ) + ( ) + ( ) ( ) + ( ) ( ) = 0, (4.8)( ) − ( ) + ( ) ( ) + ( ) +
′ ( ) + ( − 2) ( ) ( ) + ( )( ) ( ( )) = 0,                                              (4.9)( ) − ′ [ ( ) + ( − 2) ( ) ( ) + ( )( ) ( ) ] = 0, (4.10)( ) = − ( ), (4.11)( ) = ( ) − (1 − ) ( ). (4.12)

Now combining equations (4.8) - (4.12) and using the values of ( ), ( ), ( ), ( ), and ( ),
we obtain an equation of the form

( ) + { ( )} ( ) + ( ) = 0, (4.13)

where the value of B is as before and is given by= (4.14)

where is given by

= ′ ′ ( ) ( ′ ( ))
′

+ ′ ( )( )( ′ ) − ( )( )( ′ ) (4.15)

We call equation (4.13) as modified K-dV equation for planner geometry. The stationary
solitary solution of equation (4.13) is given by

( ) = sech , (4.16)

where the special coordinate, = − , the amplitude , = , the width, = ,= and is the plasma species speed at equilibrium.

Fig. 1. Showing the effect of µ on soliton (potential structure) obtained from
eq.(3.14) for both electron-ion being non-relativistic degenerate when is 0.1
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Fig. 2. Showing the effect of µ on soliton (potential structure) obtained
from eq.(3.14) for ion being non-relativistic degenerate and electron being ultra-

relativistic degenerate when is 0.1

5. NUMERICAL ANALYSIS

By the careful observation on the Fig. 1-4 it has become clear that the term μ have an great
effect on the potential, ( ) of the K-dV and modified K-dV solitons. Because the potential,( ) increases more rapidly for ion being non-relativistic degenerate and electron being ultra-
relativistic degenerate

Fig. 3. Showing the effect of µ on soliton (potential structure) obtained from
eq.(4.16) for both electron-ion being non-relativistic degenerate when is 0.1
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Fig. 4. Showing the effect of µ on soliton (potential structure) obtained
from eq.(4.16) for ion being non-relativistic degenerate and electron being ultra-

relativistic degenerate when is 0.1

than for both electron-ion being non-relativistic degenerate. Again in the same case (either
ion being non-relativistic degenerate and electron being ultra-relativistic degenerate or
electron-ion both being non-relativistic degenerate) the width, of the solitons obtained from
the solutions of K-dV and modified K-dV equations (3.14) and (4.16) decreases sharply in all
conditions whatever μ increases with the term . The most interesting point to note that the
polarity of potential structure are different i.e. opposite for solitary waves and solitons. It is
become more clear from observing the figures. The potential of solitary waves increases with
the value of μ with position (figures 1 and 2). But the potential of solitons decreases with
the value of μ with position (figures 3 and 4). It is the most important significance of this
theoretical investigation.

6. DISCUSSION

To summarize, we have carried out solitons by deriving the K-dV and modified K-dV
equations for a planar geometry in an unmagnetized plasma system containing degenerate
electrons (non-relativistic or ultra relativistic limits) and degenerate ions being non-relativistic
limit and the arbitrary charged dust grains. We have shown the existence of compressive
(hump shape) DIA modified K-dV solitons. It can be noted here that rarefactive (dip shape)
also may be occurs. We have identified the basic features of potential DIA solitons, which
are found to exist beyond the K-dV limit. Generally the DIA modified K-dV solitons are
completely different from the K-dV solitary waves. The plasma system under consideration
supports finite potential modified K-dV solitons, whose basic features depend much on the
degenerate pressure of ion and electron and the presence of arbitrary charged dust grains. It
may be stressed here that the results of this investigation should be useful for understanding
the nonlinear features of electrostatic disturbances in laboratory plasma conditions. Our
investigation would also be useful to study the effects of degenerate pressure in interstellar
and space plasmas [30], particularly in stellar polytropes [31], hadronic matter and quark-
gluon plasma [32], protoneutron stars [33], darkmatter halos [34] etc. Further it can be said
that the analysis of shock structures, vortices, double-layers etc. in a nonplanar geometry
where the degenerate pressure can play the significant role, are also the problems of great
importance but beyond the scope of the present work. To conclude, we propose to perform a
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laboratory experiment which can study such special new features of the DIA solitons
propagating in dusty plasma in presence of degenerate electrons and ions.

7. CONCLUSIONS

a) In the section (1), a brief discussion has been made about the validity of our this
theoretical investigation.
b) In the section (2), we have represented the governing equation of our considered
model which we have assumed theoretically.
d) In the section (3), we have derived the K-dV equation with the help of strong
mathematical tools; reductive perturbation method.
e) In the section (4), we have derived the modified K-dV (mK-dV) equation with the help
of strong mathematical tools; reductive perturbation method.
f) In the section (5), we have made a general analysis that what the results we have
found from this investigation.
g) In the section (6), we have made some strong points in our favor to prove that our
assumption for this model and this corresponding theoretical investigation are totally
valid on the basic of the results.
.
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