
British Journal of Mathematics & Computer Science

4(23): 3252-3270, 2014

SCIENCEDOMAIN international
www.sciencedomain.org

Procedure for Exact Solutions of Stiff Ordinary
Differential Equations Systems

Brahim Benhammouda1, Hector Vazquez-Leal∗2

L. Benhamouche3, H. Zahed4, Y. Abo Einaga4,
A. Sarmiento-Reyes5, A. Marin-Hernandez6 and J. Huerta-Chua7

1Abu Dhabi Men’s College, Higher Colleges of Technology, P.O. Box 25035, Abu Dhabi,

United Arab Emirates.
2Electronic Instrumentation and Atmospheric Sciences School, Universidad Veracruzana,

Cto. Gonzalo Aguirre Beltrán S/N, C.P. 91000, Xalapa, Veracruz, México.
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Abstract

In this work, we present a technique for the analytical solution of systems of stiff ordinary

differential equations (SODEs) using the power series method (PSM). Three SODEs systems

are solved to show that PSM can find analytical solutions of SODEs systems in convergent series

form. Additionally, we propose a post-treatment of the power series solutions with the Laplace-

Padé (LP) resummation method as a powerful technique to find exact solutions. The proposed

method gives a simple procedure based on a few straightforward steps.

Keywords: Stiff ordinary differential equations, Power series method, Laplace transform, Padé

approximant, Analytical solutions.

2010 Mathematics Subject Classification: 34L30

1 Introduction

Systems of stiff ordinary differential equations (SODEs) arise in modelling different
physical problems with widely differing time scales; therefore, they have been exten-
sively studied for more than two decades [1]. This kind of equations arise in fluid
mechanics, elasticity, electrical networks, chemical reactions, vibrations, weather
prediction, biology, among others [2], [3]. A stiff problem can exhibit several periods
of rapid change; this can be even more complicated because some of the variables
may change rapidly and the others slow. Therefore, explicit numerical methods
like classic explicit Euler or fourth-order Runge-Kutta schemes will require a very
small time step to accurately follow the solution of SODEs, resulting in expensive
computation [4]. Implicit numerical A-stable methods with variable step size [5], [6],
[7], [8], [9], [10] can solve some specific stiff problems efficiently, however, there is not
a standard method to numerically solve SODEs. In addition, during recent years
exponential integrators gained attention for application to solve large stiff problems
[11]. In general, stiffness is an efficiency issue [3]. What is more, due to a sort of
discretization, explicit, implicit, or exponential integrator methods are affected by
round-off errors, which sooner or later can lead to wrong or inaccurate results [12],
[13].

In order to circumvent the aforementioned issues, some semi-analytical approach-
es have been proposed to solve SODEs as: homotopy perturbation method (HPM)
[12], [14], Laplace transform homotopy perturbation [2], Adomian decomposition
method (ADM) [15], variational iteration method (VIM) [13], among others. Unfor-
tunately, such methods are usually complicated to apply or require initial approxima-
tions to succeed. Therefore, in this work, we present the application of a hybrid
technique combining PSM [16], [17], [18], [19], [20], Laplace Transform (LT) and
Padé Approxi-mant (PA) [21] to find analytical solutions for SODEs [22], [23], [24],
[25], [26], [27], [28], [29]. Using the PSM, we first find the solutions to SODEs
in convergent series form. The truncated PSM’s series solution is improved by
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applying LT to it and converting the resulting series into a meromorphic function
by forming its PA. Finally, to obtain the analytical solution, we apply the inverse
LT to the PA. This hybrid method which we call (LPPSM) combines the PSM with
Laplace-Padé resummation. It greatly improves the PSM’s truncated series solutions
in convergence rate. The Laplace-Padé resummation method in fact enlarges the
convergence domain of the truncated power series and usually leads to the exact
solution.

It is worth mentioning that no secular terms (noise terms) are generated by the
proposed method as the homotopy perturbation based techniques. This property
of the PSM improves the efficiency of the LPPSM in comparison to the perturbation
based methods. Furthermore, the LPPSM does not require any perturbation parame-
ter as the perturbation based techniques. Finally, the LPPSM can be coded using
computer algebra software like Mathematica or Maple.

The rest of this paper is organized as follows. The next section is devoted to
the basic concept of the PSM. In section 3 we discuss the main idea behind the
Padé approximant. The concept of the Laplace-Padé resummation method is given
in section 4. The application of PSM to SODEs systems is depicted in section 5.
In section 6, we apply LPPSM to find the analytical solutions of three linear and
nonlinear SODEs systems. In section 7, we give a brief discussion. Finally, we draw
a conclusion in the last section.

2 Basic Concept of Power Series Method

Consider the nonlinear differential equation

A(u)− f(t) = 0, t ∈ Ω, (1)

with the boundary conditions

B (u, ∂u/∂η) = 0, t ∈ Γ, (2)

where the operator A is a general differential operator, f(t) is a known analytic
function, B is a boundary operator, and Γ is the boundary of Ω.

According to the PSM [30, 31], the solution of the differential equation (1) is
assumed to have the form

u (t) =

∞∑
n=0

unt
n, (3)

where the unknowns coefficients u0, u1, . . . are to be determined by the PSM.

The procedure for the PSM can be summarized as follows:

1. We substitute (3) into (1), then regroup the terms according to the powers of
t.
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2. We equate all coefficients of powers of t to zero in the resulting polynomial.

3. The boundary conditions (2) are substituted into (3) to generate an algebraic
equation for each boundary condition.

4. Aforementioned steps generate algebraic linear equations for the unknowns of
(3).

5. Finally, we solve the resulting algebraic linear equations to find the coefficients
u0, u1, . . .

3 Padé Approximant

Given an analytical function u(t) with Maclaurin’s expansion

u (t) =
∞∑
n=0

unt
n, 0 ≤ t ≤ T . (4)

The Padé approximant to u (t) of order [L,M ] which we denote by [L/M ]u (t) is
defined by [21]

[L/M ]u (t) =
p0 + p1t+ . . .+ pLt

L

1 + q1t+ . . .+ qM tM
, (5)

where we considered q0 = 1, and the numerator and denominator have no common
factors.

The numerator and the denominator in (5) are constructed so that u (t) and
[L/M ]u (t) and their derivatives agree at t = 0 up to L+M . That is

u(t)− [L/M ]u (t) = O
(
tL+M+1

)
. (6)

From (6), we have

u (t)
M∑
n=0

qnt
n −

L∑
n=0

pnt
n = O

(
tL+M+1

)
. (7)

From (7), we get the following algebraic linear systems
uLq1 + . . .+ uL−M+1qM = −uL+1

uL+1q1 + . . .+ uL−M+2qM = −uL+2
...
uL+M−1q1 + . . .+ uLqM = −uL+M ,

(8)
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and 
p0 = u0
p1 = u1 + u0q1
...
pL = uL + uL−1q1 + . . .+ u0qL.

(9)

From (8), we calculate first all the coefficients qn, 1 ≤ n ≤M . Then, we determine
the coefficients pn, 0 ≤ n ≤ L from (9).

Here, we point out that for a fixed value of L+M + 1, the error (6) is minimum
when the degree of the numerator is equal to that of the denominator of (5) or when
the numerator is one degree higher than the denominator.

4 Laplace-Padé Resummation Method

Several approximate analytical methods lead to solutions in the form of power series
(polynomial). Nevertheless, in some cases, this type of solutions do not have large
domains of convergence. Therefore, to enlarge the domain of convergence of solutions
or find the exact solutions, Laplace-Padé resummation method is often used [22],
[23], [24], [25], [26], [27], [28], [29].

The Laplace-Padé method can be summarized as follows:

1. First, we apply Laplace transform to power series (3).

2. Next, we substitute s by 1/t in the resulting equation.

3. Then, we convert the transformed series into a meromorphic function by
forming its Padé approximant of order [N/M ]. Here, N and M are chosen
arbitrarily with values smaller than the order of the power series. In this step,
the Padé approximant extends the domain of convergence of the truncated
series solution to obtain a better accuracy.

4. After that, we substitute t by 1/s.

5. Finally, by applying the inverse Laplace s transform, we get the approximate
or exact solution.

We point out here that Laplace-Padé resummation method is useful when the
inverse Laplace s transform to the Padé approximant in step 5 can be found.
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5 Application of PSM to Solve Stiff ODE Systems

Many real application problems in science and engineering often lead to the solution
of stiff ODEs systems of the form

u
′
(t) = f (t, u (t)) , 0 ≤ t ≤ T, (10)

u (0) = η. (11)

We assume that the solution to initial value problem (10)-(11) exists, is unique and
analytic. To simplify the exposition of the PSM, we integrate equation (10) once
with respect to t and use the initial conditions (11) to obtain

u (t) = η +

t∫
0

f (τ, u (τ)) dτ . (12)

We note here that the time integration of equation (10) is not relevant to the solution
procedure. Thus, one can apply the PSM directly to equation (10).

In view of the PSM, the solution u (t) of (10)-( 11) is assumed to have the form

u (t) = u0 + u1t+ u2t
2 + . . . , (13)

where un, n = 0, 1, 2, . . . are unknown coefficients to be determined later by the
PSM.

To find the solution of (10)-(11), we substitute expansion (13) into equation (12)
and equate the coefficients of powers of t to zero in the resulting equation to obtain
recursions for the coefficients un, n = 0, 1, 2, . . . Finally, we use expansion (13) to
derive the exact solution as power series.

The convergence region for the solutions series obtained may be small. Thus, we
propose to apply the Laplace-Padé post-treatment to PSM’s truncated series (which
we call LPPSM) to enlarge the convergence region as depicted in the next section.

6 Cases Study

In this section, we shall demonstrate through three examples that the LPPSM is
effective and accurate in solving stiff systems of ordinary differential equations.

6.1 Stiff nonlinear system of ordinary differential equations

Consider the following stiff nonlinear system of ordinary differential equations of two
variables [8]

u′ = −1002u+ 1000v2, (14)

v′ = u− v − v2, t ≥ 0, (15)
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with the initial conditions

u (0) = 1, v (0) = 1. (16)

The exact analytical solution of initial value problem (14 )-(16) is

u (t) = e−2t, v (t) = e−t. (17)

In order to simplify the exposition of the LPPSM presented in sections 4 and 5 to
solve (14)-(16), we first integrate equations (14)-( 15) once with respect to t and use
the initial conditions (16) to get

u (t)− 1 +

t∫
0

1002u (τ)− 1000v2 (τ) dτ = 0, (18)

v (t)− 1−
t∫

0

u (τ)− v (τ)− v2 (τ) dτ = 0. (19)

In view of the PSM, we assume that the solution components u (t) and v (t) have
the form

u (t) = u0 + u1t+ u2t
2 + . . . , (20)

and

v (t) = v0 + v1t+ v2t
2 + . . . , (21)

respectively, where un and vn, n = 0, 1, 2, . . . are unknown coefficients to be determined
later by the PSM.

Then, we substitute (20) and (21) into (18)-(19) to obtain

∞∑
n=0

unt
n − 1 +

t∫
0

1002

∞∑
n=0

unτ
n − 1000

( ∞∑
n=0

vnτ
n

)2

dτ = 0, (22)

∞∑
n=0

vnt
n − 1−

t∫
0

∞∑
n=0

unτ
n −

∞∑
n=0

vnτ
n −

( ∞∑
n=0

vnτ
n

)2

dτ = 0. (23)

This yields

(u0 − 1) +
∞∑
n=1

(
un + (1002/n)un−1 − (1000/n)

n−1∑
k=0

vkvn−1−k

)
tn = 0, (24)

(v0 − 1) +
∞∑
n=1

(
vn − (1/n)un−1 + (1/n)vn−1 + (1/n)

n−1∑
k=0

vkvn−1−k

)
tn = 0. (25)
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Equating all coefficients of powers of t to zero in (24) and (25), we have

u0 = 1, v0 = 1,

and the following recursions for the unknown coefficients un and vn

un = − 1

n

(
1002un−1 − 1000

n−1∑
k=0

vkvn−1−k

)
, (26)

vn =
1

n

(
un−1 − vn−1 −

n−1∑
k=0

vkvn−1−k

)
, n = 1, 2, 3, . . . (27)

From these recursions, we compute some coefficients

u1 = −2, v1 = −1,

u2 = 2, v2 =
1

2
,

u3 = −4

3
, v3 = −1

6
, (28)

u4 =
2

3
, v4 =

1

24
,

u5 = − 4

15
, v5 = − 1

120
,

. . .

Then using equations (20)-(21) and the coefficients above, we obtain

u (t) = 1− 2t+ 2t2 − 4t3

3
+

2t4

3
− 4t5

15
, (29)

v (t) = 1− t+
t2

2
− t3

6
+
t4

24
− t5

120
. (30)

To increase the accuracy of this approximate solution, we apply Laplace-Pad é post-
treatment to it. First, t-Laplace transform is applied to (29) and (30). Second, s
is substituted by 1/t then t-Padé approximant is applied to the transformed series.
Finally, t is substituted by 1/s and the inverse Laplace s-transform is applied to the
resulting expressions to find the approximate solution or exact solution.

Applying Laplace transform to (29) and (30) yields

L [u (t)] =
1

s
− 2

s2
+

4

s3
− 8

s4
+

16

s5
− 32

s6
, (31)

and

L [v (t)] =
1

s
− 1

s2
+

1

s3
− 1

s4
+

1

s5
− 1

s6
. (32)
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For the sake of simplicity we let s = 1/t, then

L [u (t)] = t− 2t2 + 4t3 − 8t4 + 16t5 − 32t6, (33)

and

L [v (t)] = t− t2 + t3 − t4 + t5 − t6. (34)

All of the [L/M ] t-Padé approximants of (33 ) and (34) with L ≥ 1 and M ≥ 1 and
L+M ≤ 6 yield

[L/M ]u =
t

1 + 2t
, (35)

and

[L/M ]v =
t

1 + t
. (36)

Now since t = 1/s, we obtain [L/M ]u and [L/M ]v in terms of s as follows

[L/M ]u =
1

2 + s
, (37)

and

[L/M ]v =
1

1 + s
. (38)

Finally, applying the inverse LT to the Padé approximants (37) and (38), we obtain
the approximate solution which is in this case the exact solution (17). Note that if
we take more terms in series (29) and (30), we get the same exact solution.

6.2 Strongly stiff linear system of ordinary differential equations

Consider the following stiff linear system of ordinary differential equations of two
variables [8]

u′ = −500000.5u+ 499999.5v, (39)

v′ = 499999.5u− 500000.5v, t ≥ 0, (40)

with the initial conditions

u (0) = 0, v (0) = 2. (41)

System (39)-(40) is strongly stiff with a stiffness ratio of 106. The exact analytical
solution of initial value problem (39)-(41) is

u (t) = e−t − e−106t, v (t) = e−t + e−10
6t. (42)
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In order to simplify the exposition of the LPPSM presented in sections 4 and 5 to
solve (39)-(41), we first integrate equations (39)-( 40) once with respect to t and use
the initial conditions (41) to get

u (t) +

t∫
0

500000.5u (τ)− 499999.5v (τ) dτ = 0, (43)

v (t)− 2−
t∫

0

499999.5u (τ)− 500000.5v (τ) dτ = 0. (44)

In view of the PSM, we assume that the solution components u (t) and v (t) have
the form

u (t) = u0 + u1t+ u2t
2 + . . . , (45)

and
v (t) = v0 + v1t+ v2t

2 + . . . , (46)

respectively, where un and vn, n = 0, 1, 2, . . . are unknown coefficients to be determined
later by the PSM.

Then, we substitute (45) and (46) into (43)-(44) to have

∞∑
n=0

unt
n +

t∫
0

∞∑
n=0

(
500000.5un − 499999.5vn

)
τndτ = 0, (47)

∞∑
n=0

vnt
n − 2−

t∫
0

∞∑
n=0

(
499999.5un − 500000.5vn

)
τndτ = 0. (48)

This yields

u0 +

∞∑
n=1

(
un + (500000.5/n)un−1 − (499999.5/n) vn−1

)
tn = 0, (49)

(v0 − 2) +

∞∑
n=1

(
vn − (499999.5/n)un−1 + (500000.5/n)vn−1

)
tn = 0. (50)

Equating all coefficients of powers of t to zero in (49) and ( 50), we have

u0 = 0, v0 = 2,

and the following recursion for the unknown coefficients un and vn

un = − 1

n

(
500000.5un−1 − 499999.5vn−1

)
, (51)

vn =
1

n

(
499999.5un−1 − 500000.5vn−1

)
, n = 1, 2, 3, . . . (52)
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From these recursions, we compute some coefficients

u1 = −1 + 106, v1 = −1− 106,

u2 = −1012 − 1

2
, v2 =

1012 + 1

2
,

u3 =
1018 − 1

6
, v3 = −1018 + 1

6
, (53)

u4 = −1024 − 1

24
, v4 =

1024 + 1

24
,

u5 =
1030 − 1

120
, v5 = −1030 + 1

120
,

. . .

Then using (45)-(46) and the coefficients above, we obtain

u (t) =
(
−1 + 106

)
t− 1012 − 1

2
t2 +

1018 − 1

6
t3 − 1024 − 1

24
t4 +

1030 − 1

120
t5, (54)

v (t) = 2−
(
1 + 106

)
t+

1012 + 1

2
t2 − 1018 + 1

6
t3 +

1024 + 1

24
t4 − 1030 + 1

120
t5. (55)

To increase the accuracy of this approximate solution, we apply Laplace-Pad é post-
treatment to it. First, t-Laplace transform is applied to (54) and (55). Second, s
is substituted by 1/t then t-Padé approximant is applied to the transformed series.
Finally, t is substituted by 1/s and the inverse Laplace s-transform is applied to the
resulting expressions to find the approximate solution or exact solution.

Applying Laplace transform to (54) and (55) yields

L [u (t)] = 999999s−2 − 999999999999s−3 + 999999999999999999s−4, (56)

and

L [v (t)] = 2s−1−1000001s−2+1000000000001s−3−1000000000000000001s−4. (57)

For the sake of simplicity we let s = 1/t, then

L [u (t)] = 999999t2 − 999999999999t3 + 999999999999999999t4, (58)

and

L [v (t)] = 2t− 1000001t2 + 1000000000001t3 − 1000000000000000001t4. (59)

All of the [L/M ] t-Padé approximants of (58) and (59) with L ≥ 1 and M ≥ 1 and
L+M ≤ 4 yield

[L/M ]u =
999999t2

1000000t2 + 1000001t+ 1
, (60)
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and

[L/M ]v =
1000001t2 + 2t

1000000t2 + 1000001t+ 1
. (61)

Now since t = 1/s, we obtain [L/M ]u and [L/M ]v in terms of s as follows

[L/M ]u =
999999

1000000 + 1000001s+ s2
, (62)

and

[L/M ]v =
1000001 + 2s

1000000 + 1000001s+ s2
. (63)

Finally, applying the inverse LT to the Padé approximants (62) and (63), we obtain
the approximate solution which is in this case the exact solution (42).

6.3 Stiff linear system of ordinary differential equations

Consider the following stiff linear system of ordinary differential equations of three
variables [32]

u′ + 0.1u+ 49.9v = 0,

v′ + 50v = 0, (64)

w′ − 70v + 120w = 0, t ≥ 0,

with the initial conditions

u (0) = 2, v (0) = 1, w (0) = 2. (65)

System (64) is stiff with a stiffness ratio of 1200. The exact analytical solution of
initial value problem (64)-(65) is

u (t) = e−0.1t + e−50t, v (t) = e−50t, w (t) = e−50t + e−120t. (66)

In order to simplify the exposition of the LPPSM presented in sections 4 and 5 to
solve (64)-(65), we first integrate equations (64) once with respect to t and use the
initial conditions (65) to get

u (t)− 2 +

t∫
0

0.1u (τ) + 49.9v (τ) dτ = 0,

v (t)− 1 + 50

t∫
0

v (τ) dτ = 0, (67)

w (t)− 2−
t∫

0

70v (τ)− 120w (τ) dτ = 0.
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In view of the PSM, we assume that the solution components u (t) and v (t) have
the form

u (t) = u0 + u1t+ u2t
2 + . . . ,

v (t) = v0 + v1t+ v2t
2 + . . . , (68)

w (t) = w0 + w1t+ w2t
2 + . . . ,

where un,vn and wn, n = 0, 1, 2, . . . are unknown coefficients to be determined later
by the PSM.

Then, we substitute (68) into (67 ) to obtain

∞∑
n=0

unt
n − 2 +

t∫
0

∞∑
n=0

(0.1un + 49.9vn)τndτ = 0,

∞∑
n=0

vnt
n − 1 + 50

t∫
0

∞∑
n=0

vnτ
ndτ = 0, (69)

∞∑
n=0

wnt
n − 2−

t∫
0

∞∑
n=0

(70vn − 120wn)τndτ = 0.

This yields

(u0 − 2) +

∞∑
n=1

(un + (1/n)(0.1un−1 + 49.9vn−1))t
n = 0,

(v0 − 1) +
∞∑
n=1

(vn + (50/n) vn−1) t
n = 0, (70)

(w0 − 2) +

∞∑
n=1

(wn + (1/n) (−70vn−1 + 120wn−1))t
n = 0.

Equating all coefficients of powers of t to zero in system (70), we have

u0 = 2, v0 = 1, w0 = 2,

and the following recursions for the unknown coefficients un, vn and wn

un = − (1/n) (0.1un−1 + 49.9vn−1),

vn = − (50/n) vn−1, (71)

wn = (1/n) (70vn−1 − 120wn−1), n = 1, 2, 3, . . .
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From these recursions, we compute some coefficients

u1 = −50.1, v1 = −50, w1 = −170,

u2 = 1250.005, v2 = 1250, w2 = 8450,

u3 = −20833.3335, v3 = −62500

3
, w3 = −926500

3
, (72)

u4 = 2.60416666671× 105, v4 =
781250

3
, w4 =

26701250

3
,

. . .

Then using equations (68) and the coefficients above, we obtain

u (t) = 2− 50.1t+ 1250.005t2 − 20833.3335t3 + 2.60416666671× 105t4,

v (t) = 1− 50t+ 1250t2 − 62500

3
t3 +

781250

3
t4, (73)

w (t) = 2− 170t+ 8450t2 − 926500

3
t3 +

26701250

3
t4.

To increase the accuracy of this approximate solution, we apply Laplace-Pad é post-
treatment to it. First, t-Laplace transform is applied to (73). Second, s is substituted
by 1/t then t-Padé approximant is applied to the transformed series. Finally, t is
substituted by 1/s and the inverse Laplace s-transform is applied to the resulting
expressions to find the approximate solution or exact solution.

Applying Laplace transform to (73) yields

L [u (t)] = 2s−1 − 50.1s−2 + 2500.01s−3 − 1.25000001× 105s−4 + 6.25× 106s−5,

L [v (t)] = s−1 − 50s−2 + 2500s−3 − 125000s−4 + 6250000s−5, (74)

L [w (t)] = 2s−1 − 170s−2 + 16900s−3 − 1853000s−4 + 213610000s−5.

For the sake of simplicity we let s = 1/t, then

L [u (t)] = 2t− 50.1t2 + 2500.01t3 − 1.25000001× 105t4 + 6.25× 106t5,

L [v (t)] = t− 50t2 + 2500t3 − 125000t4 + 6250000t5, (75)

L [w (t)] = 2t− 170t2 + 16900t3 − 1853000t4 + 213610000t5.

All of the [L/M ] t-Padé approximants of (75) with L ≥ 1 and M ≥ 1 and L+M ≤ 5
yield

[L/M ]u =
2t+ 50.1t2

1 + 50.1t+ 5t2
,

[L/M ]v =
t

1 + 50t
, (76)

[L/M ]w =
2t+ 170t2

1 + 170t+ 6000t2
.
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Now since t = 1/s, we obtain [L/M ]u, [L/M ]v and [L/M ]w in terms of s as follows

[L/M ]u =
2s+ 50.1

s2 + 50.1s+ 5
,

[L/M ]v =
1

50 + s
, (77)

[L/M ]w =
2s+ 170

s2 + 170s+ 6000
.

Finally, applying the inverse LT to the Padé approximants (77), we obtain the
approximate solution which is in this case the exact solution (66).

7 Discussion

This paper presents a hybrid method (LPPSM) combining the power series method
(PSM) with its Laplace-Padé (LP) resummation as a useful analytical technique to
solve stiff systems of ordinary differential equations (SODEs). We solved three linear
and nonlinear SODEs systems by this technique and obtained the exact solutions.
For each of the problems solved here, the PSM transformed the SODEs system
into an easily solvable linear algebraic system for the coefficients of the power
series solution. To improve the accuracy of the PSM solution, LP resummation
is applied to the PSM’s truncated series leading to the exact solution. Additionally,
the solution procedure does not involve the computation of noise terms. This
advantage reduces the computation effort considerably and improves the efficiency
of the technique. It is important to note that the high stiffness of these problems
was effectively handled by the LPPSM due to the power of PSM and resummation
capability of Laplace-Padé. The main advantage of the results of the present work
over the pure numerical approaches [5] , [6], [7], [8], [9], [10] is that LPPSM was
able to obtain the exact solution without any possibility of round-off errors and its
derivative consequences.

Both PSM and LPPSM do not require any initial approximation as the homotopy
perturbation method (HPM). Furthermore, the PSM gives the coefficients using an
easy straightforward procedure that can be implemented using software packages
like Maple or Mathematica. Finally, if the exact solution of an SODEs system is
not expressible in terms of known functions then the LP resummation method will
enlarge the domain of convergence of the PSM’s truncated series.

8 Conclusion

This work presents a technique called LPPSM that combines the PSM and a resum-
mation method based on the Laplace transforms and the Padé approximant. First,
the solutions of SODEs systems are obtained in convergent series forms using the
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PSM. Then, to enlarge the domain of convergence of the truncated power series
solution, a post-treatment using Laplace transform and the Padé approximant is
applied. This technique improves PSM’s truncated series solutions in convergence
rate, and often leads to the exact solution. The PSM is a powerful tool for solving
this kind of problems, since it does not require a perturbation parameter or an initial
approximation to work and does not generate secular terms (noise terms) as other
semi-analytical methods like HPM, HAM or VIM.

By solving three SODEs problems, we presented the LPPSM as a useful tool
with high potential to solve linear and nonlinear SODEs systems. Furthermore,
we obtained successfully the exact solutions of these three problems showing the
efficiency of LPPSM. In addition, the proposed technique is based on a straightforward
procedure which is in particular suitable for engineers.
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