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ABSTRACT

Background: In medical research, statistical tests have become more important. Several
parametric procedures are available but each of them requires normality assumption. As
normality violation may affect interpretation and inferences reliability and validity, so
importance of normal distribution is undeniable. Although several normality tests available
for software users but the power of each test in specified situation is not clear.

Methods: The aim of this study is to compare the power of nine normality tests. In this
paper power of Jarque-Bera test, D’Agostino and Pearson test, Chi-square test,
Kolmogrov-Smirnov test, Lilliefors test, Cramer-Von Mises test, Anderson-Darling test,
Shapiro-Wilk test and Shapiro-Francia test compared via Monte Carlo simulation of
sample data generated from alternative distributions that follow symmetric, skewed,
skewed & heavy tailed, highly skewed and highly skewed & heavy tailed distributions.
Results: Simulation study shows that Shapiro-Francia test under symmetric, skewed,
skewed& heavy tailed and highly skewed& heavy tailed distributions perform better than
others. Also, Shapiro-Wilk performs better when underlying distribution is skewed.
Conclusion: Although, Shapiro-Francia and Shapiro-Wilk have greater power than their
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competitors but their powers are still low for small sample size. So their singly use is not
recommended.

Keywords: Normality test; Power; Monte Carlo Simulation; Tukey g-and-h distribution.
1. INTRODUCTION

Normality is one of the serious assumptions of many parametric tests and methods. Methods
such as linear regression, analysis of variance and discriminant analysis are not robust with
respect to abnormality [1-4]. Without normality, interpretations and inferences from tests with
normality assumption become invalid [1,3]. For example when independent samples t-test
used , if normality assumption is violated ,the reliability of the test may be compromised [5].
Generally, for parametric tests estimations based on prediction and modeling the data
without passing normality assumption are not valid [1]. Normality assumption of the linear
regression error distribution in most situations will create favorable conditions for analysis
because the error represents the effect of all eliminated factors from the model. Also
according to sensitivity of t-test for large distance form normality, when the errors are great
especially when distribution is highly skewed, estimated confidence interval would not be
accurate [6]. Parametric tests are valid when the normality assumption is not violated [7]. So,
before applying parametric test, assessment of normality is essential [2]. In the medical
studies, estimations, comparisons and statistical tests are of particular importance because
findings of a research might be caused changing treatment in therapy program or might be
influenced how to care patients. In the other words, researches in this area directly or
indirectly will affect health, treatment and quality of life so, error in humans conclusion could
be endangering more than any other sciences. Also, normality distribution for a variable
could be a great achievement to find reference curves easily for that index. Several
statistical procedures test normality in particular circumstances [4,8]. In most of the available
software, some tests are intended to assess normality, e.g. statistical package for social
sciences (SPSS) utilizes Kolmogrov-Smirnov test, Shapiro-Wilk test and Lilliefors test;
Graphpad Prism software uses D'Agostino and Pearson test, Kolmogrov-Smirnov test and
Shapiro-Wilk test; MINITAB software applies Anderson-Darling test, Ryan-Joiner test and
Kolmogrov-Smirnov test; STATISTICA software utilizes Shapiro-Wilk test, Kolmogrov-
Smirnov test, Lilliefors test and Chi-square test; and R program uses Shapiro-Wilk test,
Shapiro-Francia test and some other tests. These are examples of regular normality tests in
world of software, that show us the dependency of type of normality test which utilizes and
software which uses [7].

Using SPSS and Graphpad Prism among users of medical field is more common, because
of their ease of use. According to the studies in last decade, many of these tests have
relatively good power for normality diagnostics when sample size is larger than 50 but when
sample size is small the power lead to less than 60% that could not be acceptable [1,7].

The latter issue is not clear for users of these tests and users apply them with lack of
knowledge about their power weakness. So, collection of normality tests for different
conditions or a test that can be the best for all situations seems to be essential, although
none of the currently popular software provides.

Different methods are available to check whether the distribution of observations conform to

a normal distribution [9]. In general normality assumption assesses in two ways, graphical
procedure and normality test [3,9].
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Graphical procedures such as histogram and box plot, give information about data
distribution [9]. Although they are useful scheme for normality assumption they could not
ensure that the distribution is normal [7,9].

Decision making based on graphical procedure is subjective and it is probable that this
decision differ from reality. So, in most cases confirmatory methods is required [7]. Normality
tests are often classified into four categories as follows:

1- Moment ratio techniques

2- Goodness of fit tests

3- Tests based on empirical distribution function
4- Tests based on correlation [10].

For the first class, Jarque-Bara test and D'Agostino and Pearson test could be mentioned

[1].

Also Chi-square test would be the most famous normality test of the second category [7].
Most regular tests in third category are Kolmogrov-Smirnov test, Lilliefors test, Cramer-Von
Mises test and Anderson-Darling test [8]. Without any doubt Shapiro-Wilk test and Shapiro-
Francia test are good examples for the last category [11].

Each of these aforementioned tests could be used by some of statistical software. In this
study, we wish to calculate power of the most powerful, regular and recommended univariate
normality tests in previous researches via simulation studies for different distributions
(symmetric, skewed with light tailed, skewed with heavy tailed, highly skewed with light tailed
and highly skewed with heavy tailed).

Let X, X,, ..., X,, be a random sample of independently and identically distributed random
samples from X, continuous univariate distribution then the formal testing whether the
observed sample comes from a normally distribution population as follow:

{HO:X~ N(u,o?)
Hl: nOtHO

€y

A test is said to be powerful when it has a high probability of rejection H, when the sample
come from a non-normal distribution.

This simulation study focuses on the performance of nine selected normality test from
different categories of normality test via Monte Carlo simulation by computing rejection
proportion when underlying distribution is not normal.

2. MATERIALS AND METHODS

A total of 9 different tests of normality with at least one published document which marked
them as one of the three most powerful tests, were given in this study.

2.1 Test for Normality

In this section, for completeness a brief review of selected test statistics is presented.
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2.1.1 Jarque—bera test

The Jarque—Bera test (JB) statistic is based on sample skewness Vb, and kurtosis b, and is
given as,

JB:n(——(‘/?)2 4 b2=3)" _3)2)

24

The JB statistic follows approximately a Chi-square distribution with two degrees of freedom
[12].

2.1.2 D’Agostino and pearsontest

The D’Agostino and Pearson test (DP) statistic is

DP = Z2(Vby) + Z%(b,),
where Z(vb,) and Z(b,), are the normal approximations to sample skewness Vb, and
kurtosis b, respectively. The DP statistic follows approximately a Chi-square distribution with

two degrees of freedom [13].

2.1.3 Chi-square test

Chi-square test (CSQ) compares observed and expected (i.e., the hypothesized distribution)
frequencies for individual categories, where n is the number of cells. The CSQ test statistic
CSQ is given by,

- (0;—Ep?
CSQ =3l =7~

)

If k parameters of the distribution of X need to be estimated, then distribution of CSQ follows
approximately a CSQ distribution with n — k-1 degrees of freedom [14].

2.1.4 Kolmogrov-smirnov test

Kolmogrov-Smirnov test (KS) is based on the maximum vertical difference between the
empirical distribution function (EDF) and the normal cumulative distribution curve (when the
null hypothesis is that the EDF demonstrates normality). Let Xy £ Xp) << Xy be an
ordered random sample and the distribution of X is F(x). The test statistic is defined by,

KS = supx |F (x) = Fa(x)|
where F*(x) is theoretical cumulative distribution function of the normal distribution with
known mean, y and standard deviation, o, and F,(x) is the empirical distribution function
(EDF)of the data [15].

2.1.5 Lilliefors test

Lilliefors test (LF) is a modification of the Kolmogorov-Smirnov test. It is suitable when the
unknown parameters of the null distribution must be estimated from the sample data.
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The LF statistic is defined by

LF = maxx|F*(X) — Sau(X)|
where S,(X) is the sample cumulative distribution function and F*(X) is the cumulative
normal distribution function with u = X, the sample mean and §°, the sample variance

[16,17].

2.1.6 Cramer-von mises test

The Cramer-von Mises test (CVM) statistic is defined by,
CVM =n  {Fa(x) = FCOP[F()]dF(x)
2i-1

Also it can be computed as, CVM = Fln + 30| Folxy) — 7]2 [18].

2.1.7 Anderson-darling test

Anderson-Darling test (AD) is a modification of the Cramer-Von Mises test (CVM). It differs
from the CVM in such a way that it gives more weight to the tails of the distribution. The AD
test statistic is,

AD=§_ [F, (x) — F()12y (F(X))dF(x) ,

By taking i (F(x)) = 1, the AD statistic reduces to the CVM statistic.

0.75 2.25

This study used the following modified AD statistic given by, AD*=(1+T + 7) AD [19].

2.1.8 Shapiro-wilk test
n o)l
The Shapiro-Wilk Test (SW) statistic is defined by SW=% ,
i=1X (@~
Where x;, is the i" order statistic,% is the sample mean,
) ) ¥ _1
a=(ay,ay ...a,) =mV 3 [(mVv)V'im)]2
and n = (m4,,m,)" are the expected values of the order statistics of independent and

identically distributed random variables sampled from the standard normal distribution and V
is the covariance matrix of those order statistics [20,21].

2.1.9 Shapiro—-francia test

The Shapiro—Francia test (SF) statistic is defined by,

SF= (O mix(i))z

n 2T TR
i=1 M XVj=1 (X()=x)

Since SF equals the squared product-moment correlation coefficient between x;, and m;,
small values of SF indicates non-normality [22-24].
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2.2 Simulation

Monte Carlo simulation was used to compare the power of JB, DP, CSQ, KS, LF, CVM, AD,
SW and SF test statistics in testing hypothesis (1), i.e. testing if a random sample of n
independent observations come from a population with a normal distribution. Simulation
were run for normal, non-normal symmetric, skewed, skewed & heavy tailed, highly skewed
and highly skewed & heavy tailed distributions. All distributions except normal distribution
generated using Tukey g-and-h distribution [25-27], i.e. generating Z; from a normal
distribution and setting Xi= (exp (9Zi)-1)*exp (hZi2/2))/g. For g=0 this expression is taken to
be Xi= Z*exp (hZi2/2) and for h=0, Xi= (exp (9Z;)-1)/9.

As the g-and-h distribution provides a convenient method for considering a very wide range
of situation corresponding to both symmetric and asymmetric distributions, it use is highly
recommended. For Tukey g-and-h distribution g corresponds to skewness and h
corresponds to kurtosis and tail heaviness [25]. The case g=0 corresponds to a symmetric
distribution, and as g increases the skewness increases as well. In this study, simulation
were run with g=0, 0.2, 0.5, 1 to span the range of skewness values that seems to occur in
practice. Since skewness corresponds to g=k and g=-k are the same [25], so only positive
values of g considered. The case h=0 corresponds to a distribution with similar kurtosis to
standard normal distribution and as h increases the heaviness of tail increases as well. So
simulations were run with h=0, 0.1, 0.2, 0.5. As the power of tests are depend on sample
size, simulations were run for n= 8, 10, 15, 20, 25, 30, 40, 50, 100, 200. The Monte-Carlo
study was employed, where 10,000 samples were generated for each combination of n=8,
10, 15, 20, 25, 30, 40, 50, 100, 200, g=0, 0.2, 0.5, 1 and h=0, 0.1, 0.2, 0.5.

3. RESULTS AND DISCUSSION

The power of the tests varies with sample size and alternative distributions. The results in
Table1-10 were based on 10,000 samples of sizes 8, 10, 15, 20, 25, 30, 40, 50, 100, 200
respectively, alternative distributions as mentioned before generated by Tukey g-and-h
distribution such as distributions with (g, h)=(0, 0.1), (0, 0.2),(0, 0.5) represent symmetric; (g,
h)= (0.2, 0), (0.2, 0.1) represent skewed; (g, h)= (0.2, 0.2), (0.2, 0.5) represent skewed &
heavy tailed; (g, h)= (0.5, 0), (0.5, 0.1), (1, 0), (1, 0.1) represent highly skewed and (g, h)=
(0.5, 0.2), (0.5, 0.5), (1, 0.2), (1, 0.5) represent highly skewed & heavy tailed distributions.
The sample sizes presented were sample sizes which frequently used in medical
researches. It seems to be important to mention that DP test could not be used when sample
size 20 or less [7].

Under almost all distributions for n=8, the simulation results, Table1, showed that SF test
statistic performed better than any of the test statistics. It followed by SW and AD for
symmetric, skewed and highly skewed distributions. Also SF followed by AD and SW for
skewed & heavy tailed and highly skewed & heavy tailed distributions. However, for sample
size n=8 powers of all tests for almost all distributions are less than 50%.

For sample size n=10 simulation results, Table2, showed similar patterns with slight changes
in performance order between SW and AD. Power of any tests did not merit 60% for sample
size n=10. Simulation results, Table 3, were closely similar for sample size n=15.

Under most of the alternative distributions for medium sample sizes,20 < n < 50, based on

simulation results Tables 4,5,6,7,8 DP stated at the second rank after SF and they followed
by SW and AD. Although as n increased power of test increased as well but for sample sizes
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n=20, 25, 30 power of tests did not further than 80% when underlying distributions were
symmetric or skewed.

According to simulation results, Tables 9 and Table10, for large sample sizes,n > 50, SF
test performed better than others and followed by JB and SW.

Table 1. Simulated power of normality tests for sample size 8 (n=8)

g, h JB csQ KS LF CVM AD Sw SF

0.0,0.0 0.0019 0.0302 0.0001 0.0526 0.0482 0.0524 0.0517 0.0573
0.0, 0.1 0.0092 0.0430 0.0001 0.0787 0.0841 0.0885 0.0893 0.1059
0.0,0.2 0.0290 0.0734 0.0009 0.1242 0.1385 0.1428 0.1410 0.1653
0.0,0.5 0.1327 0.2083 0.0214 0.3015 0.3266 0.3307 0.3220 0.3559
0.2,0.0 0.0067 0.0419 0.0001 0.0674 0.0674 0.0716 0.0751 0.0828
0.2,0.1 0.0168 0.0596 0.0002 0.0964 0.1054 0.1085 0.1108 0.1284
0.2,0.2 0.0400 0.0869 0.0008 0.1452 0.1555 0.1622 0.1634 0.1874
0.2,0.5 0.1398 0.2177 0.0236 0.3135 0.3359 0.3403 0.3328 0.3666
0.5,0.0 0.0358 0.1039 0.0004 0.1493 0.1696 0.1814 0.1880 0.2010
0.5,0.1 0.0598 0.1294 0.0013 0.1814 0.2058 0.2156 0.2228 0.2368
0.5,0.2 0.0842 0.1616 0.0045 0.2213 0.2440 0.2544 0.2578 0.2775
0.5,0.5 0.1757 0.2726 0.0337 0.3655 0.3909 0.3966 0.3887 0.4191
1.0,0.0 0.1504 0.3577 0.0103 0.3672 0.4386 0.4570 0.4786 0.4795
1.0, 0.1 0.1772 0.3595 0.0193 0.3880 0.4477 0.4637 0.4816 0.4830
1.0,0.2 0.2021 0.3677 0.0307 0.4087 0.4601 0.4749 0.4852 0.4943
1.0,0.5 0.2687 0.4156 0.0693 0.4833 0.5215 0.5297 0.5272 0.5491

Table 2. Simulated power of normality tests for sample size 10 (n=10)

g, h JB csaQ KS LF CVM AD sw SF

0.0,0.0 0.0098  0.0651 0.0000 0.0555 0.0507  0.0522 0.0512  0.0554
0.0, 0.1 0.0389  0.0926  0.0002 0.0908 0.0952 0.1011 0.1015  0.1187
0.0,0.2 0.0883 0.1390 0.0023 0.1529 0.1645 0.1718 0.1715  0.1971
0.0,0.5 0.2501 0.3290 0.0513 0.3707 0.4020  0.4058 0.3939  0.4397
0.2,0.0 0.0222  0.0857 0.0000 0.0738 0.0792  0.0823 0.0864  0.0919
0.2,0.1 0.0541 0.1144  0.0007 0.1107 0.1248 0.1312 0.1334  0.1541
0.2,0.2 0.1039  0.1617 0.0040 0.1762 0.1936  0.2018 0.1997  0.2293
0.2,0.5 0.2634 0.3450 0.0532 0.3786 0.4143 0.4218 0.4125  0.4509
0.5,0.0 0.0924 0.1979 0.0015 0.1855 0.2177  0.2350 0.2478  0.2578
0.5,0.1 0.1356  0.2229  0.0062 0.2245 0.2582  0.2729 0.2868  0.3009
0.5,0.2 0.1802 0.2603  0.0159  0.2731 0.3102  0.3236 0.3287  0.3515
0.5,0.5 0.3080 0.4049 0.0709 0.4403 0.4791 0.4835 0.4739  0.5121
1.0,0.0 0.2909 0.5422 0.0256  0.4533 0.5537  0.5804 0.6051 0.5994
1.0, 0.1 0.3227  0.5201 0.0419 0.4768 0.5611 0.5786 0.5963  0.5985
1.0,0.2 0.3501 0.5172  0.0641 0.5018 0.5708  0.5843 0.5939  0.6036
1.0,0.5 0.4237 05700 0.1366 0.5840 0.6322  0.6405 0.6328  0.6548
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Table 3. Simulated power of normality tests for sample size 15 (n=15)

JB csQ KS LF CVM AD SwW SF

0.0201 0.0552 0.0001 0.0525 0.0531 0.0535 0.0529 0.0554
0.0914 0.0801 0.0009 0.1024 0.1174 0.1254 0.1306 0.1583
0.1892 0.1400 0.0086 0.1949 0.2283 0.2389 0.2431 0.2846
0.4612 0.4104 0.1274 0.5034 0.5629 0.5709 0.5528 0.6045
0.0536 0.0730 0.0003 0.0880 0.0960 0.1010 0.1099 0.1163
0.1281 0.1058 0.0024 0.1404 0.1663 0.1744 0.1853 0.2099
0.2199 0.1716 0.0166 0.2278 0.2655 0.2804 0.2855 0.3207
0.4722 0.4286 0.1390 0.5165 0.5711 0.5800 0.5669 0.6150
0.2154 0.2200 0.0058 0.2617 0.3262 0.3568 0.3913 0.3876
0.2892 0.2598 0.0225 0.3138 0.3817 0.4048 0.4282 0.4393
0.3501 0.3132 0.0492 0.3804 0.4466 0.4623 0.4720 0.4926
0.5370 0.5066 0.1818 0.5948 0.6494 0.6561 0.6403 0.6782
0.5363 0.6874 0.0971 0.6548 0.7606 0.7906 0.8273 0.8083
0.5773 0.6595 0.1460 0.6730 0.7586 0.7804 0.8048 0.7972
0.6119 0.6469 0.1921 0.6903 0.7608 0.7757 0.7893 0.7928
0.6822 0.6908 0.3248 0.7565 0.8049 0.8091 0.8023 0.8232

Table 4. Simulated power of normality tests for sample size 20 (n=20)

JB DP csQ KS LF CVM AD SW SF

0.0213  0.0543 0.0493 0.0002 0.0480 0.0498  0.0491 0.0487 0.0516
0.1324  0.1926 0.0786 0.0016 0.1069 0.1296  0.1408 0.1551 0.1846
0.2715 0.3467 0.1557 0.0160 0.2272 0.2698 0.2897  0.3021 0.3505
0.6056 0.6777 0.4926 0.2004 0.6037 0.6692 0.6778 0.6664 0.7124
0.0822 0.1376 0.0744 0.0007 0.0984 0.1082 0.1200 0.1390 0.1397
0.1875 0.2601  0.1090 0.0048 0.1659 0.1955 0.2122 0.2318 0.2548
0.3126  0.3932 0.1861 0.0263 0.2751 0.3304 0.3518  0.3598 0.4041
0.6212 0.6912 0.5140 0.2184 0.6219 0.6852 0.6938 0.6838 0.7308
0.3280 0.4316 0.2684 0.0115 0.3369 04309 04685 0.5198 0.5074
0.4142  0.5097 0.3081 0.0445 0.4007 0.4870 0.5110 0.5416 0.5492
0.4921 0.5747 0.3710 0.0914 0.4739 0.5525 0.5713 0.5839 0.6077
0.6881 0.7485 0.6041 0.2936 0.7024  0.7557 0.7587  0.7495 0.7852
0.7142 0.7974 0.8226 0.1936 0.7879 0.8790 0.9049 0.9316 0.9158
0.7541 0.8225 0.7802 0.2614  0.8011 0.8760 0.8926  0.9115 0.9020
0.7784 0.8361 0.7567 0.3276 0.8112 0.8733 0.8857 0.8952 0.8928
0.8316  0.8706  0.8025 0.4951 0.8644 0.8997 0.9043 0.8990 0.9101

Table 5. Simulated power of normality tests for sample size 25 (n=25)

JB DP csQ KS LF CVvM AD SwW SF

0.0259  0.0558 0.0584  0.0001 0.0479 0.0484 0.0469 0.0479 0.0494
0.1690 0.2187  0.0934 0.0018 0.1143 0.1404 0.1564 0.1811 0.2144
0.3427 0.4016  0.1958 0.0239 0.2601 0.3159  0.3368 0.3602 0.4118
0.7154  0.7544 05980 0.2778 0.6874 0.7539 0.7627 0.7541 0.7965
0.1068 0.1593 0.0888 0.0012 0.1083 0.1287 0.1433 0.1683 0.1658
0.2429 0.3036  0.1405 0.0079 0.1885 0.2305 0.2527  0.2801 0.3093
0.3943 0.4559 0.2405 0.0403 0.3216 0.3882 0.4100 0.4248 0.4720
0.7291 0.7694 0.6180 0.2979  0.7057 0.7712 0.7807 0.7707 0.8120
0.4264 0.5189 0.3555 0.0239 0.4141 0.5209 0.5654 0.6300 0.6092
0.5269  0.6007 0.3875  0.0691 0.4874 05766 0.6023 0.6382 0.6410
0.6033 0.6610 0.4588 0.1366 0.5634 0.6391 0.6573  0.6725 0.6935
0.7920 0.8263 0.7079  0.3941 0.7869 0.8392 0.8457 0.8349 0.8637
0.8375 0.8842 0.9076 0.3040 0.8751 0.9436  0.9603 0.9759 0.9671
0.8643 0.9026 0.8647 0.3865 0.8834 0.9381 0.9497  0.9604 0.9548
0.8801 0.9104 0.8490 0.4622 0.8895 0.9328 0.9413 0.9467 0.9477
0.9131 0.9316  0.8875  0.6351 0.9231 0.9505 0.9506  0.9459 0.9547
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g, h JB DP csaQ KS LF CVM AD SW SF
0.0,0.0 0.0305  0.0557 0.0532 0.0001 0.0485 0.0498 0.0483 0.0483 0.0499
0.0, 0.1 0.2074  0.2495 0.0875 0.0027 0.1235 0.1585 0.1768 0.2066 0.2473
0.0,0.2 0.4192 0.4584 0.2044 0.0316 0.2943 0.3660 0.3902 0.4197 0.4772
0.0, 0.5 0.7967  0.8162 0.6553 0.3539 0.7594 0.8216 0.8304 0.8207 0.8574
0.2,0.0 0.1340  0.1871 0.0856  0.0011 0.1203 0.1472 0.1635 0.1966 0.1938
0.2,0.1 0.2984  0.3496 0.1414  0.0104 0.2115 0.2659 0.2879 0.3219 0.3549
0.2,0.2 0.4684  0.5128 0.2579 0.0539 0.3686 0.4447 0.4688 0.4873 0.5380
0.2,0.5 0.8065  0.8271 0.6725 0.3772 0.7762 0.8360 0.8450 0.8337 0.8693
0.5,0.0 0.5144  0.5924 0.3914  0.0362 0.4814 0.6020 0.6473 0.7179 0.6918
0.5, 0.1 0.6131 0.6739 0.4234  0.1002 0.5587 0.6491 0.6769 0.7131  0.7172
0.5,0.2 0.6878  0.7336 0.5041 0.1861 0.6338 0.7138 0.7290 0.7449 0.7670
0.5,0.5 0.8603 0.8764 0.7653  0.4835 0.8496 0.8935 0.8977 0.8886 0.9125
1.0, 0.0 0.9121 0.9349 0.9478 0.4270 0.9275 0.9728 0.9823 0.9921 0.9881
1.0, 0.1 0.9269  0.9477 0.9082 0.5129 0.9313 0.9669 0.9737 0.9821 0.9794
1.0,0.2 0.9364  0.9523 0.8945 0.5817 0.9354 0.9636 0.9690 0.9721 0.9730
1.0,0.5 0.9517  0.9615 0.9265 0.7410 0.9570 0.9748 0.9759 0.9721  0.9779

Table 7. Simulated power of normality tests for sample size 40 (n=40)

g h JB DP csa KS LF CVM  AD sw SF

0.0,0.0 0.0330 0.0568  0.0569 0.0001 0.0516 0.0486 0.0485 0.0460 0.0489
0.0, 0.1 0.2667 0.2908 0.1054 0.0030 0.1390 0.1833 0.2053 0.2444 0.2972
0.0,0.2 0.5271 0.5474  0.2572 0.0505 0.3600 0.4440 0.4741 0.5090 0.5742
0.0,0.5 0.8934 0.8952 0.7744 0.4889 0.8607 0.9076 0.9136 0.9062 0.9307
0.2,0.0 0.1854  0.2339 0.1044 0.0018  0.1444 0.1777 0.2005 0.2504 0.2476
0.2,0.1 0.3936 0.4269 0.1761 0.0174 0.2590 0.3275 0.3567 0.4053 0.4422
0.2,0.2 0.5904 0.6112  0.3318 0.0832 0.4487 0.5414 0.5666 0.5902 0.6390
0.2,05 0.9043 0.9073  0.7931 0.5167 0.8751 0.9173 0.9227 0.9168 0.9367
0.5,0.0 0.6739  0.7191 0.5098 0.0677 0.5922 0.7255 0.7778 0.8425 0.8205
0.5,0.1 0.7515 0.7857  0.5343 0.1640 0.6692 0.7616  0.7891 0.8213 0.8255
0.5,0.2 0.8107 0.8354 0.6211 0.2876  0.7469 0.8157 0.8339 0.8425 0.8580
0.5,0.5 0.9386 0.9410 0.8706 0.6439 0.9237 0.9523 0.9555 0.9523 0.9654
1.0,0.0 0.9800 0.9842  0.9883 0.6384 0.9806 0.9960 0.9984 0.9994 0.9991
1.0, 0.1 0.9843 0.9867 0.9709 0.7062 0.9796 0.9935 0.9959 0.9977 0.9972
1.0,0.2 0.9839 0.9864  0.9597 0.7632 0.9813 0.9924 0.9937 0.9948 0.9948
1.0,05 0.9892 0.9903 0.9746 0.8749 0.9894 0.9948 0.9948 0.9941 0.9954

Table 8. Simulated power of normality tests for sample size 50 (n=50)

g, h JB DP csQ KS LF CVM AD SwW SF

0.0,0.0 0.0344 0.0545 0.0524 0.0001 0.0482  0.0501 0.0493 0.0491 0.0488
0.0, 0.1 0.3186 0.3306 0.0977 0.0044 0.1588 0.2097 0.2365 0.2834 0.3395
0.0,0.2 0.6123 0.6132 0.2807 0.0661 0.4281 0.5198 0.5492 0.5835 0.6447
0.0,0.5 0.9448 0.9420 0.8382 0.6019 0.9168 0.9519 0.9544 0.9511 0.9646
0.2,0.0 0.2314 0.2757 0.0994 0.0025 0.1702 0.2059 0.2337 0.2974  0.2940
0.2,0.1 0.4733  0.4951 0.1778 0.0244 0.3007 0.3802 0.4154 0.4687  0.5069
0.2,0.2 0.6785 0.6866 0.3586 0.1154 0.5238 0.6184 0.6466 0.6710 0.7156
0.2,05 0.9512 0.9448 0.8541 0.6308  0.9281 0.9569 0.9613 0.9563  0.9687
0.5,0.0 0.7922 0.8183  0.5831 0.1099 0.6996 0.8207 0.8649 0.9199 0.9023
0.5,0.1 0.8467 0.8667 0.6018 0.2373 0.7601 0.8461 0.8684 0.8939 0.8936
0.5,0.2 0.8870 0.8973 0.6899 0.3867 0.8256 0.8894 0.9010 0.9067 0.9191
0.5,0.5 0.9727 09714 0.9200 0.7555 0.9663 0.9831 0.9835 0.9793  0.9856
1.0,0.0 0.9962 0.9972  0.9971 0.7965 0.9950 0.9995 0.9999 1.0000  1.0000
1.0, 0.1 0.9965 0.9970 0.9882 0.8376 0.9949 0.9988 0.9997 0.9999  0.9996
1.0,0.2 0.9954 0.9964 0.9822 0.8789 0.9943 0.9984 0.9991 0.9989  0.9994
1.0,05 0.9967 0.9969 0.9905 0.9461 0.9968 0.9992  0.9997 0.9986  0.9991
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Table 9. Simulated power of normality tests for sample size 100 (n=100)

g, h JB DP csaQ KS LF CVM AD SW SF

0.0,0.0 0.0407 0.0531 0.0500 0.0002 0.0493 0.0503 0.0485 0.0495 0.0523
0.0, 0.1 0.5307 0.5024 0.1303 0.0079 0.2431 0.3265 0.3690 0.4562 0.5279
0.0,0.2 0.8583 0.8310 0.4406 0.1544 0.6749 0.7790 0.8046 0.8317 0.8699
0.0,0.5 0.9976 0.9966 0.9812 0.9082 0.9963 0.9988 0.9989 0.9984 0.9990
0.2,0.0 0.4659 0.4926 0.1558 0.0070 0.3073 0.3818 0.4336 0.5468 0.5315
0.2,0.1 0.7426 0.7397 0.2863 0.0726 0.5221 0.6179 0.6586 0.7183 0.7537
0.2,0.2 0.9124 0.9007 0.5848 0.2905 0.7830 0.8635 0.8835 0.9025 0.9253
0.2,0.5 0.9984 0.9978 0.9853 0.9260 0.9981 0.9997 0.9996 0.9993 0.9994
0.5,0.0 0.9893 0.9895 0.8877 0.3978 0.9467 0.9850 0.9932 0.9981 0.9966
0.5, 0.1 0.9883 0.9895 0.8696 0.5999 0.9634 0.9853 0.9895 0.9917 0.9923
0.5,0.2 0.9926 0.9928 0.9179 0.7624 0.9812 0.9920 0.9932 0.9939 0.9958
0.5,0.5 0.9998 0.9996 0.9970 0.9750 0.9997 1.0000 1.0000 1.0000 1.0000
1.0,0.0 1.0000 1.0000 1.0000 0.9954 1.0000 1.0000 1.0000 1.0000 1.0000
1.0, 0.1 1.0000 1.0000 1.0000 0.9962 1.0000 1.0000 1.0000 1.0000 1.0000
1.0,0.2 1.0000 1.0000 1.0000 0.9980 1.0000 1.0000 1.0000 1.0000 1.0000
1.0,0.5 1.0000 1.0000 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000

Table 10. Simulated power of normality tests for sample size 200 (n=200)

g, h JB DP csQ KS LF CVM AD SW SF

0.0,0.0 0.0411 0.0501 0.0518 0.0001 0.0477 0.0486 0.0487 0.0491 0.0485
0.0,0.1 0.7673 0.7231 0.1904 0.0192 0.4072 0.5393 0.5966 0.6953 0.7561
0.0,0.2 0.9839 0.9737 0.7145 0.4124 0.9091 0.9611 0.9713 0.9779 0.9859
0.0,0.5 1.0000 1.0000 0.9998 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000
0.2,0.0 0.7958 0.8050 0.2875 0.0385 0.5454 0.6717 0.7380 0.8465 0.8314
0.2,0.1 0.9392 0.9344 0.4900 0.2290 0.7944 0.8764 0.9004 0.9313 0.9426
02,02 0.9939 09916 0.8505 0.6488 0.9676 0.9881 0.9913 0.9930 0.9957
0.2,0.5 1.0000 1.0000 0.9999 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000
0.50.0 1.0000 1.0000 0.9977 0.8827 0.9996 1.0000 1.0000 1.0000 1.0000
0.5,0.1 1.0000 1.0000 0.9952 0.9529 0.9996 0.9999 1.0000 1.0000 1.0000
0.5,0.2 1.0000 1.0000 0.9985 0.9873 0.9999 1.0000 1.0000 1.0000 1.0000
0.5,0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0,00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0,01  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0,0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0,0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Among considered tests in this study, SF, SW, AD, DP and JB had greater powers in
different situations. So plots of these five tests are given in Fig.1 for non-normal symmetric
distributions. Similarly; Figs. 2, 3, 4 and 5 showed rejection proportion plots of
aforementioned five tests for skewed, skewed & heavy tailed, highly skewed and highly
skewed & heavy tailed distributions respectively.
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Fig. 1. Power comparison for preferable normality tests when underlying population is

symmetric (g=0, h=.2)
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Fig. 2. Power comparison for preferable normality tests when underlying population is

skewed (g=.2, h=.1)
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Fig. 3. Power comparison for preferable normality tests when underlying population is
skewed & heavy tailed (g=.2, h=.2)
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Fig. 4. Power comparison for preferable normality tests when underlying population is
highly skewed (g=.5, h=0)
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4. CONCLUSION

Although nowadays statistical tests play an important role in medical research, many
publications have been reported to contain serious statistical errors [28]. In this regard,
violation of distributional assumption such as normality test has been identified as one of the
most common problem. So make a decision about normality considered an important
problem. According to number of normality available tests, we have compared them under
various distributions with different sample sizes.

The results of the simulation studies showed that the Shapiro-Francia test performed better
than most of its competitors whether the underlying distribution was normal, non-normal
symmetric, skewed, skewed & heavy tailed or highly skewed & heavy tailed but not for highly
skewed when n >15. The simulation results also revealed that under highly skewed
distribution, Shapiro-Wilk is the most powerful, although similar power could be considered
for Shapiro-Wilk and Jarque-Bera for large sample sizes i.e. n = 100,200. Therefore,
Shapiro-Francia’s application where underlying distribution is not highly skewed
recommended, since it is more powerful than any of alternatives compared here for almost
all sample sizes. Also, where underlying distribution is highly skewed and there is small
sample size. Shapiro- Wilk application’s recommended where Shapiro-Francia is not the
best.
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Since these two tests with greater powers are not available in regular software that are used
by researchers in medical field so using Kolmogrov-Smirnov test which is available in SPSS,
MEDCALC and other friendly users software is not strange.

According to small power of all normality tests showed by simulation study in this research,
the next challenge in this direction would be the preparation of a normality test for small
sample sizes with greater powers that could be done with regular softwares.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1.

10.

1.

12.

13.

14.
15.

16.

17.

Razali NM, Wah YB. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors
and anderson-darling tests. Journal of Statistical Modeling and Analytics.
2011;2(1):21-33.

Laha A. A Note on Tests of Normality. Case and Teaching Notes, Forthcoming; 2006.
Park HM. Univariate analysis and normality test using SAS, STATA, and SPSS. The
University Information Technology Services (UITS) Center for Statistical and
Mathematical Computing, Indiana University; 2008.

Coin D. A goodness-of-fit test for normality based on polynomial regression.
Computational statistics & data analysis. 2008;52(4):2185-2198.

Sheskin DJ. Parametric and nonparametric statistical procedures. 2th ed. Boca Raton:
CRC; 2000.

Neter J, Wasserman W, Kutner MH. Applied linear statistical models. Vol. 4; 1996.
Irwin Chicago.

Yap BW, Sim CH. Comparisons of various types of normality tests. Journal of
Statistical Computation and Simulation. 2011;81(12):2141-2155.

Seier E. Comparison of tests for univariate normality. Interstat. 2002;1:1-17.

Oztuna D, Elhan AH, Tiiccar E. Investigation of four Different normality tests in terms
of type 1 error rate and power under different distributions. Turk J Med Sci.
2006;36(3):171-176.

Henderson AR. Testing experimental data for univariate normality. Clinica Chimica
Acta. 2006;366(1):112-129.

Jarque CM, Bera AK. A test for normality of observations and regression residuals.
International Statistical Review/Revue Internationale de Statistique. 1987;163-172.
D'Agostino RB, Belanger A,. D'Agostino RB Jr. A suggestion forusing powerful and
informative tests of normality. The American Statistician. 1990;44(4):316-321.

Pearson ES, Bowman KO. Tests for departure from normality: Comparison of powers.
Biometrika. 1977;64(2):231-246.

de Finetti B. Sulfapprossimazionc empirica di una legge di probabilita; 1933.

Lilliefors HW. On the Kolmogorov-Smirnov test for normality with mean and variance
unknown. Journal of the American Statistical Association. 1967;62(318):399-402.
Lilliefors HW. On the Kolmogorov-Smirnov test for the exponential distribution with
mean unknown. Journal of the American Statistical Association. 1969;64(325):387-
389.

Cramér H. On the composition of elementary errors: First paper: Mathematical
deductions. Scandinavian Actuarial Journal. 1928;1:13-74.

2659



18.
19.
20.
21.
22.
23.
24.
25.

26.

27.

British Journal of Applied Science & Technology, 4(18): 2646-2660, 2014

Anderson TW, Darling DA. A test of goodness of fit. Journal of the American Statistical
Association. 1954;49(268):765-769.

Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples).
Biometrika. 1965;52(3/4):591-611.

Shapiro SS, Wilk MB, Chen HJ. A comparative study of various tests for normality.
Journal of the American Statistical Association. 1968;63(324):1343-1372.

Shapiro SS, Francia RS. An approximate analysis of variance test for normality.
Journal of the American Statistical Association. 1972;67(337):215-216.

Royston P. A toolkit for testing for non-normality in complete and censored samples.
The statistician. 1993;37-43.

Royston P. A pocket-calculator algorithm for the shapiro-francia test for non-normality:
An application to medicine. Statistics in medicine. 1993;12(2):181-184.

Jorge M, Boris I. Some propertiesof the Tukey g and h family of distributions.
Communications in Statistics-Theory and Methods. 1984;13(3):353-369.

Field C, Genton MG. The multivariate g-and-h distribution. Technometrics. 2006;48(1).
Headrick TC, Kowalchuk RK, Sheng Y. Parametric Probability Densities and
Distribution Functions for Tukey g-and-h Transformations and their Use for Fitting
Data; 2008.

Rochon J. Gondan M, Kieser M. To test or not to test: Preliminary assessment of
normality when comparing two independent samples. BMC medical research
methodology. 2012;12(1):81.

© 2014 Tabesh et al.; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http.//www.sciencedomain.org/review-history.php?iid=510&id=5&aid=4523

2660



