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ABSTRACT
In this work, we propose a new approach for face recognition 
using low-resolution images. By cleverly combining conven
tional interpolation methods with the state-of-the-art classifica
tion approach, i.e. convolutional neural network, we introduce 
a new approach to efficiently leverage low-resolution images in 
classification task, especially in face recognition. Besides, we 
also do experiments on some recent popular methods, our 
approach outperforms some of them. Additionally, we propose 
a specific transfer learning strategy based on the preexisting 
well-known concept dedicated to low-resolution transfer learn
ing. It boosts performance and reduces training time signifi
cantly. We also investigate on scalability by applying Bayesian 
optimization for hyper-parameter search. Therefore, our 
approach is able to be widely applied in many kinds of datasets 
and low-resolution classification tasks due to automatically 
seeking optimal hyper-parameters, which makes our method 
competitive to others.
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Introduction

Image classification problem so far has many applications in the real world. 
Recently, most attentions focus on problems related to face recognition in 
business and security. For example, facial emotional recognition helps to 
investigate user’s behaviors in business (J. Chen et al. 2014), facial iris recogni
tion is broadly applied for mobile security (Minaee and Abdolrashidi 2019). 
Besides, face recognition for surveillance is also significantly attractive, many 
approaches have been proposed which can be divided into learning and 
unlearning-based ones. In particular, popular methods of the later, including 
Local Binary Patterns (LBP) (Ojala, Pietikainen, and Maenpaa 2002) and 
Histograms of Oriented Gradients (HOG) (Dalal and Triggs 2005), use pre- 
defined filters to extract features by intention. These approaches were widely 
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applied many years ago until the learning-based methods appear such as 
Principal Component Analysis (Wold, Esbensen, and Geladi 1987), Support 
Vector Machine (Suykens and Vandewalle 1999), and Convolutional Neural 
Network lately. AlexNet can be seen as the pioneer forming the baseline 
Convolutional Neural Network (CNN) architecture which surprisingly out
performed in image classification task (Krizhevsky, Sutskever, and Hinton 
2012). Afterward, other popular CNN-based architectures such as VGG 
(Simonyan and Zisserman 2014), ResNet (He et al. 2016), DenseNet (Huang 
et al. 2017), etc, increasingly challenge most ever classification tasks.

Generally, in order to perform well in image classification, it requires 
a huge amount of high-resolution data. However, most real-world deep- 
learning-based applications suffer a significant challenge. Since images in 
the wild are often low-resolution, i.e. the resolution of captured image for 
inference is lower than training image, due to either far distance or bad 
quality of device. The problem can be resolved by transforming these 
images resolution to the original one thanks to conventional interpolation 
algorithms. However, this can lead to a bad quality result when inference 
image’s resolution is much lower than the original one (see Figure 1). As 
experiments by Li et al. have shown, small resolution images cause 
a significant downgrade of accuracy in prediction (Li et al. 2018). 
Additionally, they indicate that images, which resolution are lower than 
16� 16 usually being ignored or thrown away. This leads to the waste of 
data and resources in some cases. Especially in crime tracking and recogni
tion when all relevant data are vulnerable and should be utilized 
thoroughly.

Figure 1. Same image in different low resolutions (top), and their corresponding bilinear inter
polated images (bottom). The recovered images of last two extremely low-resolution cases are 
nearly indistinguishable. Many works only handle low resolution up to 16 � 16 while ours can 
handle even lower resolution images.
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To address the problem, we aim to seek an efficient approach that is robust 
to low-resolution image classification. The proposed method should preserve 
the accuracy of it as much as possible. Particularly, given an original CNN- 
based model already trained on original high-resolution images, our method 
automatically produces optimal dimensions and CNN architectures, which are 
able to deal with any resolution. Moreover, we also introduce two optimiza
tions for the problem that (i) accelerate the training time and performance, (ii) 
adapt various types of data by automatically searching for dedicated hyper- 
parameters. In summary, our contribution are as follows:

● We survey through many existing solutions for low-resolution recogni
tion. These approaches vary from some conventional interpolations such 
as nearest neighbor, bi-linear, etc. to learning-based methods, i.e. Super 
Resolution Convolutional Neural Network and many state-of-the-art 
works.

● We propose an approach that significantly surpasses other methods. Our 
algorithm is a combination of deep learning and typical interpolation 
guiding the down-sampling process and modification of corresponding 
architecture.

● We further enhance the scalability to practically apply in various real- 
world problems. Particularly, the training time is reduced thanks to our 
block transfer learning, and flexible to apply in many different kinds of 
problems by leveraging Bayesian optimization (Snoek, Larochelle, and 
Adams 2012).

Our work is organized as follows. In Section 2, we survey some popular state- 
of-the-art approaches which currently handle the problem. In Section 3, our 
proposed method is introduced in detail. We conduct experiments and dis
cussion in Section 4. Section 5 is the conclusion.

Related Work

To solve the image classification task in high dimension image data, many 
approaches are divided into manual-based and automated-based. For the 
manual ones, Local Binary Pattern (LBP) (Ojala, Pietikainen, and Maenpaa 
2002) and Histograms of oriented gradients (HOG) features (Dalal and Triggs 
2005) are considered as popular methods. These methods take advantage of 
pre-defined filters for the feature extraction phase, hence, require specific 
experiences to acquire good performance but are more computationally effi
cient instead. On the other hand, automated feature extraction methods 
represented by CNN-based are recently accounting for significant perfor
mance. The increasing complexity of datasets entails the deeper of CNN 
architecture. For example, the first version of VGG had 16 layers then 
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increased to 19 layers (Simonyan and Zisserman 2014), ResNet (He et al. 
2016), and DenseNet (Huang et al., 2017) with the same idea but were even 
deeper, they appended shortcut layers and a large number of trainable para
meters. However, when dealing with low resolution images, the experiments 
show significant drops in accuracy of those architectures. Surprisingly, shallow 
models like AlexNet are more vulnerable to low image resolution compared 
with deep models like ResNet (Koziarski and Cyganek 2018). Since the con
volved features completely flush out if a model is too deep. We claim that 
a model can keep performing well on low-resolution images by modifying its 
architecture based on the original one following our proposed transformation.

On the behalf of low-resolution image classification problem, especially in 
face recognition, the methods can be divided into two main approaches: 
interpolation-based and optimization-based.

Interpolation-based Methods

The main idea is to focus on how to preserve and restore from low-resolution 
image to the original one. In other words, one aims to restore an image x with 
resolution s back to s0 s< s0ð Þ by an interpolated function I x; θð Þ, θ is set of 
parameters that produces x̂. Hence, the restoration is equivalent to minimize 
the noise between original image x and interpolated image x̂ by a specific 
metric d x; x̂ð Þ, which is ̂θ ¼ arg min

θ
d x; x̂ð Þwhere ̂θ is optimal parameters. The 

θ significantly depends on I . In particular, there are two approaches: conven
tional interpolation and deep learning enhancement.

Conventional Interpolation
I represents as approximation function, which is I x; θð Þ ¼ x � hθ, where hθ 
denotes convolutional function. These approximation functions are obviously 
computational, since they pre-define θ before applying to interpolation. In 
fact, θ is practically chosen from experiments and fixed. Some popular approx
imation functions are nearest neighbor, bi-linear, bi-cubic, etc. As a result, they 
achieve affordable accuracy, but faster in return. Figure 2 shows the results 
from some conventional approximation functions.

Deep Learning Enhancement
In recent years, many kinds of research give efforts to overcome the disadvan
tage of conventional approaches. Unlike conventional interpolation fixing θ, they 
integrate deep learning into account, which makes θ learnable. Dong et al. are 
succeeded in taking advantage of CNN and propose Super Resolution CNN 
(SRCNN) (Dong et al. 2015). Generally, the original SRCNN and its relative aim 
to learn the mapping function from low to high-resolution images. They first 
up-sample dimension of images to the original one using bicubic interpolation, 
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then apply CNN architecture to learn the mapping function. Their experiments 
give a significant improvement evaluated on PSNR/SSIM assessments (Wang 
et al. 2004). However, SRCNN has difficulty dealing with extremely low dimen
sion, since up-sampling to the original one with a large range causes vast amount 
of information leaks. This limitation is observed in Figure 3.Other architectures, 
such as Super-FAN (Bulat and Tzimiropoulos 2018) and FSRNet (Y. Chen et al. 
2018), take advantage of GAN-based (Radford, Metz, and Chintala 2015) to be 
more generative when producing high resolution image. However, they are deep 
and complex. Additionally, GAN-based models are experimentally hard for 
training due to high computation and time-consuming.

Optimization-based Methods

These works focus on directly optimizing θ existing low-resolution images 
without restoring to the original one. So far, neural architecture search (NAS) 
has much impact. Zoph et al. propose a reinforcement strategy to generate 

Figure 2. Some well-known conventional interpolation methods. First image is the original, the 
rest are the interpolated ones.

Figure 3. Some interpolation results by SRCNN.
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suitable architecture depending on data properties (Zoph and Le 2016). 
However, each kind of resolution requires a specific CNN architecture, 
which is impractical for applications in the wild.

Recently, there are many state-of-the-art works paying more attention 
to low resolution face recognition. A significant approach is taken knowl
edge distillation into account. One consists of two-stream networks 
denoted as teacher and student models, where the former one is large 
and deep while the later prefers much simpler and shallower. As a result, 
the student network can inherit the robust knowledge from the teacher 
one but still ensure the performance and simplicity. To enhance distilling 
effectively from robust and discriminative features, Ge et al. consider 
graph labeling problem based on sparse-connected constructed from face 
dataset (Ge et al. 2018). Their further work employs cross-dataset as 
a bridge of distillation, where the teacher model is trained on private 
high-resolution dataset and fine-tuned on the public one to preserve 
compact and discriminative features. The student model jointly learns to 
mimic the adapted high-resolution features and face classification on low- 
resolution dataset (Ge et al. 2020). Although these works perform well by 
inheriting robust knowledge from the teacher model, the student one is 
independently selected without considering the architecture of the former. 
Our method, on the other hand, proposes transformation function to 
construct the models for low-resolution images consistently based on the 
original one. Besides, other work combines the high and low-resolution 
images for training and identify discriminative features yet robust to 
resolution change. For instance, Deep Coupled Resnet consists of 
a trunk model followed by multi-branches learning three specific resolu
tions. The authors constrain the distance between high and low-resolution 
features by Coupled-Mapping loss so that model can learn robust features 
(Lu, Jiang, and Kot 2018). Other work also defines and trains network 
with many different levels of low resolution called PixelHop++ Y. Chen 
et al. 2020). It is leveraged to either construct successive subspace learning 
using different color channels (Rouhsedaghat et al. 2021b) or build 
a specific network on top of it, i.e. FaceHop (Rouhsedaghat et al. 
2021a). We observe that our proposed method can perform well and 
show a considerably results on lower resolutions comparing to those 
experiments.

Hence, for the sake of taking advantage of both interpolation and optimiza
tion-based, we propose an efficient strategy to wisely produce optimal resolu
tions and corresponding CNN architectures. Whether the input image’s 
resolution is high, low, or extremely low, our algorithm can handle direct it 
to the desired model to achieve the best accuracy.
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Method

Hypothesis

Intuitively, we believe that there are optimal resolutions, which come with 
corresponding optimal CNN architectures varying from high to low resolu
tions. These optimal resolutions and architectures should be consistent and 
formulated by our proposed architecture transforming function (ATF) and 
scale transforming function (STF), respectively.

As a result, our purpose is to form optimal ATF and STF formulas. The STF 
takes the input resolution, then generates ones varying in a wide range. 
Besides, the ATF takes the responsibility to generate optimal CNN architec
tures that satisfy the corresponding resolutions generated by STF. It takes the 
number of convolutional blocks of the original model, then calculates the 
optimal one to construct the model architecture for corresponding resolution 
produced by STF. In particular, the model becomes shallower (i.e. the number 
of convolutional blocks are decreased) in down-sampling process. After that, 
the original data are degraded to resulting resolutions and fed to models for 
training. For the inference phase, given an input image, we define a strategy to 
interpolate it to the appropriate resolution of trained CNN models.

Problem Definition

Given a single image x with corresponding resolution s ¼ M � N. M;N are 
the height and width of x, respectively. We denote set of data T s ¼ X s;Ysð Þ

which contains images X s ¼ fx0; x1; . . . xN� 1gs, and corresponding labels 
Ys ¼ fy0; y1; . . . yN� 1gs, N is number of training data.

For an identical CNN architecture, we define it based on block unit where 
a single block is a structure containing some specific layers that repeat sequen
tially to form the feature extraction. Therefore, we denote a CNN architecture 
as F x; s; bð Þ generated by input image x with resolution s and b blocks. We 
define STF and ATF as ϕ s; θsð Þ and ψ b; θbð Þ where θs and θb are the adjusted 
hyper-parameters, respectively.

Given original data T 0 and pre-trained model structured by architecture 
F x; s0; b0ð Þ. Generally, we aim to produce set of data P ¼ pif g; i 2 0;Tð Þ

where T is pre-defined parameters, which is the number of datasets. pi ¼

T si; F x; si; bið Þð Þ is optimal pair of dataset and model generated by ϕ s; θsð Þ and 
ψ b; θbð Þ, respectively. Our purpose is to find the optimal θs and θb that 
minimize the average loss from each F x; si; bið Þ trained on T si as follow: 

θ̂ ¼ arg min
θs;θb

1
T

XT� 1

i¼0
L F x;ϕ si; θsð Þ;ψ bi; θbð Þð Þð Þ (1) 
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where θ̂ ¼ bθs; bθb

n o
and L �ð Þ denote the optimal hyper-parameters and the 

loss function of the model, respectively.

Training

Heuristically, ϕ and ψ are rarely applied for the original T 0 and F x; s0; b0ð Þ. In 
fact, we experiment that the original architecture F x; s0; b0ð Þ still gives the best 
performance, i.e small loss, for some first resolution scales until they reach 
a specific one, say r, that significantly raises the loss. As a result, it is worth 
finding r as the input scale of ATF and STF. We would like to propose the 
algorithm seeking r in Algorithm 1. In particular, our original data are down- 
sampled to specific resolution scales, and up-sampled again to the original s0 
by any conventional interpolation algorithm such as nearest neighbor, bi- 
linear, etc (Down ReupSample function). Then they are evaluated by 
F x; s0; b0ð Þ. The scale which causes the most increasement of loss is marked 
as r. The process of down-sampling and up-sampling leads to information loss 
in the image. Hence, we can observe F x; s0; b0ð Þ can preserve the manners until 
which scale, we then mark r as that one.

Alogrithm 1 Finding r
Input: T 0; s0; F0 b0ð Þ;T
Output: ri 0losses Empty; dists Empty{Evaluate on specific scales}
While i<T �

1 doT i  Down ReupSample T 0; 0:5 � ið Þloss L F0 b0ð Þ; T ið Þ

Append loss to lossesi iþ 1
End while
{Get max distance of resulted losses}i 0
While i<T � 2 do
Append abs acc iþ 1ð Þ � acc ið Þð Þ to distsi iþ 1
End whiler arg max distsð Þ

Return r
As being mentioned by our assumption, the resolution down-sampling 

process and modification of model’s architecture is relevant. We experiment 
that the transformation of resolution and corresponding CNN architecture 
strictly follow non-linear function, specifically exponential one. We propose 
the formula of STF and ATF as ϕ and ψ, respectively, 

ϕ s; θsð Þ ¼ α � sβ þ s (2) 

ψ b; θbð Þ ¼ γ � bδ þ b (3) 

where 

β 2 0; 1ð Þ; αlt; s1� β � ssβ; δ 2 0; 1ð Þ; γlt; b1� δ � bbδ 
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θs ¼ α; β; sf g and θb ¼ γ; δ; bf g are hyper-parameters. Those conditions 
ensure the down-sampling process, i.e output resolution is smaller than the input.

The choice of hyper-parameters of ATF and STF is crucial. Optimal hyper- 
parameters should help STF and ATF produce value varying in a wide range. 
For instance, Figure 4 shows the box plot of various parameters of STF. 
Particularly, the first one (params 1) is most optimal choice since its variance 
is greater than the rest and has no outlier.

Afterward, our transformation is conducted by ϕ s; θsð Þ and ψ b; θbð Þ with 
given T r; F x; s0; b0ð Þ where T r is the set of data at scale r. In particular, we 
generate T set of data and corresponding models, then the training process is 
applied. The algorithm is clearly defined in Algorithm 2. It produces sets of 
models with optimal scale P.

Alogrithm 2 Training
Input: ϕ s; θsð Þ;ψ b; θbð Þ; T r; F0 b0ð Þ;T
Output: Pi 0; s GetSize T rð Þ; b b0P  Empty
{Loop through each dataset}
While i<T dos ϕ s; θsð Þ; b ψ b; θbð Þ

{Train}
repeatLoss F s; bð Þð ÞOptimize F s; bð Þð Þ

until converge
Append F s; bð Þ to P
End while
Return P

Figure 4. The box plot represents the choices of STF’s hyper-parameters with 5 sets α; βð Þ ¼

2:59; 0:61ð Þ; 1; 0:3ð Þ; 2; 0:25ð Þ; 4; 0:4ð Þ; 0:5; 0:8ð Þf g denoted as params 1 to params 5, respec
tively. The blue diamonds depict the outliers. Param 1 is the most optimal one since it has the 
largest variance without outlier.
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Inference

Our proposed method in the training phase results in P set of data with 
optimal resolutions and corresponding trained models. In the inference 
phase, we take into account these resulted P dealing with any image resolu
tion. In other words, giving an input image bxs with resolution ̂s. Since ̂s can be 
unequal to any dedicated one in P, bxs should be transformed into a specific 
optimal one in P which achieves the best accuracy. Let us introduce the 
strategy in Algorithm 3. We calculate the optimal model where its resolution 
is closest to one of bxs using GetNearest function. Then a conventional inter
polation function I is applied, which takes consider image as input and 
produces output with the target resolution. Finally, the interpolated image is 
inferred by the corresponding model.

Alogrithm 3 Inference
Input: bxs;P

Output: label l, probability ps; F  GetNearest Pð Þx�s  I bxs; sð Þl;
p Predict F; x�s

� �

Return l; p

Optimization

The proposed method is able to deal with the variance of dimensions. 
However, there are some significant challenges.

Firstly, it mostly depends on ϕ s; θsð Þ and ψ b; θbð Þ; especially are hyper- 
parameters θs and θb where they have to be pre-defined. In fact, these hyper- 
parameters are often variant. For instance, ones are effective in the face 
recognition but behave poorly in the dog vs cat classification with the identical 
values due to the difference in attribute and distribution of data. To strengthen 
automation capability, a search strategy is introduced. In general, grid search 
(LeCun et al. 2012) and random search (Bergstra and Bengio 2012a) are good 
choices in common due to their simplicity. However, they are exhaustive 
search strategies and only work well with a small number of hyper- 
parameters. Instead, we leverage another search algorithm based on Bayes 
theory, i.e Bayesian optimization Snoek, Larochelle, and Adams 2012), which 
is highly effective on large-scale number of hyper-parameters.

Secondly, the typical limitation of deep learning problem is exhausted 
training time. Deep models such as VGG (Simonyan and Zisserman 2014), 
ResNet (He et al. 2016), DenseNet (Huang et al. 2017) acquire a long training 
time since they deeply stack convolutional layer to effectively learn compli
cated features. Fortunately, this problem can be resolved by transfer learning 
(Weiss, Khoshgoftaar, and Wang 2016). For further improvement, we propose 
an effective transfer learning strategy based on underlying one called block 
transfer learning.

APPLIED ARTIFICIAL INTELLIGENCE e2012982-1011



Bayesian Optimization
Our purpose is to seek optimal hyper-parameters for ϕ �ð Þ and ψ �ð Þ; i.e. θs and 
θb. Let us denote θ ¼ θs; θbf g ¼ α; β; s; γ; δ; bf g as set of hyper-parameters. 
We then apply bayesian optimization to find optimial θ̂ minimizing average 
loss, or maximizing average accuracy of all models produced by ϕ �ð Þ and ψ �ð Þ. 
Formally, the method optimizes on the function level. Instead of directly 
optimizing an expensive objective function, i.e. hyper-parameters tuning for 
deep learning model, we define a surrogate model, which is cheaper than the 
original one that follows the normal distribution (Snoek, Larochelle, and 
Adams 2012). Particularly, the surrogate model defines a prior knowledge 
over objective function and incorporates it with sampled data to infer 
a posterior knowledge, which proposes next potential sampling data point. 
Hence, the global optimum can be quickly identified in minimal steps. We take 
Gaussian Process fGP,N μ θð Þ; σ2 θð Þð Þ as a popular instance of surrogate model 
into account (Rasmussen and Williams 2005). Besides, we need to define 
a sampling strategy function for the surrogate model, called acquisition func
tion. This function is denoted as u xð Þ. Algorithm 4 represents the detail. In 
particular, bayesian optimization is applied to minimize average loss of 
resulted model, we note that Expected Improvement EI θð Þ is chosen to be the 
acquisition function (Snoek, Larochelle, and Adams 2012).

Alogrithm 4 Automated searching for optimal θ by Bayesian Optimization
Input: Observation θ; , max iteration
Output: Optimal θ̂
While i<max iteration doP θð Þ  fGP θð Þθi  arg max

θ
u P θð Þð Þ

Append θi to θacc TrainAndEvaluate θið Þ

Append acc to accs
End whileθ̂ GetOptimal accsð Þ

Return θ̂

Block Transfer Learning
An identical CNN architecture can be decoupled into convolutional-based and 
fully-connected-based layers. Formally 

F x; s; bð Þ ¼ fL� 1 � . . . � f0ð Þ xð Þ (4) 

Where 

L ¼ lconv � bþ lfc 

L is the number of layers, lconv represents the number of layers per block b, 
including convolutional, sub-sampling, activation layers. l denotes number of 
fully connected layers. Operator � depicts the stacking of layers.
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In conventional transfer learning, given F�transfer x; s�; b�ð Þ as the transferred 
model from F x; s; bð Þ; b� < b. The most popular strategy is to transfer weights 
starting from the first blocks as 

F�transfer x; s�; b�ð Þ ¼ fL�� 1 � . . . � f0ð Þ xð Þ (5) 

We note that for the conventional case, the transfer process requires the same 
resolution and dimension, i.e. input shape, of all layers between the source model 
(F x; s; bð Þ) and the target model (F� x; s�; b�ð Þ), which violates our problem. One 
can be resolved by down-sampling source layers to fit input shape of the target 
one, yet obviously, induce leak of information. Instead, we transfer in bottom-up 
to preserve the original resolution and dimension of the features’ source model. 
Unfortunately, the dimension is not compatible. Hence, 1� 1 convolution is 
added to increase it. The block transfer learning formally can be defined as 

F�blocktransferlearning x; s�; b�ð Þ ¼ fL�� 1 � . . . � fb� b� � fconv 1�1ð Þ

� �
xð Þ (6) 

where fconv 1�1ð Þ denotes 1� 1 convolution. For better acknowledgment, it can 
be visualized in Figure 5.

Experiments

In this section, we experiment to compare and evaluate our proposed method. 
The experiment includes many preexisting methods for the low-resolution 
image classification, comparing to our proposed method. At first, we intro
duce two datasets for the experiments. Besides, the pre-processing images, 
setting up STF, ATF, and original architectures are described. Finally, we 
provide the experiment results and some evaluations.

Datasets

We carefully choose two identical datasets for the experiments: ORL (ORL 
FaceDataset, n.d.) and Cybersoft which are small-scale and medium-scale, 
respectively. The ORL is public and has widely used in many face recognition 
problems. The Cybersoft contains images captured in multi-devices with 
various configurations. Besides, those images are illumination diversity. This 
dataset is much more complex than the first one. Both two identical datasets 
capture faces from various perspectives, lightning, and emotions, etc. Table 1 
gives detail information about both datasets.

The datasets are applied some conventional pre-processing methods. In 
particular, all images are rescaled to range 0; 1½ � and use mean subtraction. The 
datasets are randomly split into training set and test set with the ratio 7 : 3, 
respectively.
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Initialization

Architecture and Scale Transforming Functions
Heuristically, by observation and some experiments, we manually define θs 

and θb for both datasets at first, which is θs ¼ α; β; s ¼ 5
2 ;

1
2 ; 0

� �
and 

θb ¼ ; δ; 0b ¼ 1; 1
2 ; 0

� �
. Formally, 

ϕ s; θsð Þ ¼
5
2
� s

1
2 ¼

5
2
ffiffi
s
p

(7) 

ψ b; θbð Þ ¼ b
1
2 ¼

ffiffiffi
b
pl m

(8) 

Figure 5. An example of block transfer learning. The original model has the input shape 
112� 92� 1ð Þ with 3 convolutional blocks. The target model has input shape 56� 46� 1ð Þ

with 2 convolutional blocks. The proposed transfer learning method is applied to preserve the 
knowledge from original model and keep the dedicated input shape of the target model. Then, the 
identical convolutional layer (1� 1 Conv2D) is added to fit the feature depth.

Table 1. Information about ORL and Cybersoft datasets.
Dataset name No. images No. classes Original dimensions

ORL 400 40 112 × 92
Cybersoft 800 40 80 × 80
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The initial r where one starts to apply ϕ �ð Þ and ψ �ð Þ for ORL and Cybersoft 
datasets are rORL ¼ 0:3, rCybersoft ¼ 0:4, respectively. After that, we apply 
Bayesian Optimization as being proposed to evaluate and compare to the 
handcrafted hyper-parameters choice.

Original CNN Architectures
Since VGG-16 (Simonyan and Zisserman 2014) is popular for outper
forming most classification tasks, we take their architecture into account 
with some modification. The first 9 layers are used instead of the whole 
network, we also customize the classifier by using only one intermediate 
fully connected layer with 512 neurons. Figure 6 illustrates the detail of 
our modified architecture, which is set up as 3 blocks (b ¼ 3) for the 
feature extraction. This architecture is initialized as the original network 
for ORL dataset.

On behalf of the original architecture for the Cybersoft dataset, we take 
into account a new architecture introduced by Tran et al. called 
SkippedVGG (Tran et al. 2019). The one recently outperforms in the cap 
bottle classification task but is light weight compared to some well-known 
CNN models such as VGG, ResNet, DenseNet, etc. Figure 7 illustrates 
detail of the architecture. Unlike DenseNet which defines skip connection 
within each block, SkippedVGG employs it among blocks while preserving 
sequential stacking in each block. It makes the model more scalable and 
efficient. In addition, to accelerate the training process and avoid gradient 
vanishing problem, SkippedVGG takes advantage of batch normalization 
(Ioffe and Szegedy 2015). We set up 5 blocks (b ¼ 5) for the feature 
extraction.

Figure 6. The original CNN architecture for training on ORL dataset, which takes first 9 layers from 
VGG in extraction phase.
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In the training phase, all corresponding models including two identical 
original models and ones produced by ψ b; θbð Þ are minimized their loss 
function formulated by cross-entropy. The optimizer is Adam (Kingma and 
Ba 2014) with initial learning rate η ¼ 0:001. All models are trained in 200 
epochs.

Compared Methods and Metric
To get comprehensive observation, we make comparison with other 9 meth
ods arising from conventional-interpolation-based and deep-learning-based 
methods. Our proposed method includes 3 settings, which is (i) standalone, 
(ii) combined with block transfer learning and all layers are frozen, and (iii) 
combined with block transfer learning but all layers are trainable (fine-tuning). 
All models are evaluated based on classification accuracy metric. As a result, 
methods used in experiments can be summarized as follow.

● OM – This is the common way when dealing with low resolution images, 
we keep the same architecture for all CNN models with the input shape 
that resolutions vary in range scales defined in Algorithm 1. Our purpose 
is to verify whether this brings better accuracy or not, comparing with 
dimensions produced by our STF and ATF, i.e ϕ �ð Þ and ψ �ð Þ.

● NB, BL, BC, BS – These methods are conventional interpolation which 
up-sample low resolution images back to the original one, such as nearest 
neighbor, bilinear, bicubic, bspline, respectively, then evaluate on the 
original model. This is the most popular solution being widely used.

● BL+R, BL+T, BL+RT – To strengthen more quality for bilinear inter
polation methods, we integrate it with two popular edge-preserving algo
rithms Ramponi (Ramponi 1999) and Taguchi (Taguchi and Kimura 
2001). In particular, we combine bilinear interpolation with them sepa
rately as BL+R, BL+T, respectively, and combine those edge-preserving 
algorithms together, which is BL+RT.

Figure 7. The original CNN architecture for training on Cybersoft. We follow the concept of 
SkippedVGG.
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● SRCNN – We induce SRCNN as deep-learning-based method to compare 
with the others. The SRCNN architecture is designed that respect to the 
original one from Dong et al. (Dong et al. 2015). We build models 
corresponding to the dimensions produced by our ϕ �ð Þ. To speed up 
the process, we take pre-trained weights from ImageNet (Deng et al. 
2009).

● PM – We purely apply our proposed method, which means that all these 
models are completely trained from scratch.

● PM+TF – Block transfer learning method as being introduced is inte
grated with our proposed method. Additionally, all layers are frozen 
except ones in the classifier. This method can be known as feature 
extraction in transfer learning.

● PM+TF+ – The idea is the same as above, but our layers are free to learn 
during the training. This method is fine-tuning in transfer learning.

Experimental Results

Conventional, Proposed Methods and Block Transfer Learning
Generally, we conducted two separate experiments, ORL (Orl face dataset, n. 
d.) and Cybersoft datasets using the initialization as being mentioned. Tables 2 
and Table 3 shows the result on ORL. In particular, we compare 3 proposed 
methods (PM, PM+TF, PM+TF+) with OM, conventional-interpolation-based 
(NB, BL, BC, BS), those with edge-preserving algorithms (BL+R, BL+T, BL 
+RT) (Table 2) and deep-learning-based (SRCNN) (Table 3). Meanwhile, the 
Cybersoft experiment is given in Tables 4 and Table 5, the compared methods 
are the same as those in ORL excepts BS, BL+R, BL+T, BL+RT and SRCNN. 
We note that low-resolution inputs that are not satisfy to go through the 

Table 2. Experiment results on conventional interpolations (ORL Dataset).
Method 56 � 46 44 � 36 33 � 27 22 � 18 11 � 9 10 � 8 8 � 7 6 � 7 Avg.acc

OM 0:9833 0:9833 0:9750 0:9583 0:8417 0:8167 � � 0:6948
BL 0:9750 0:9750 0:9667 0:9667 0:8833 0:8333 0:7667 0:6333 0:875
BC 0:9750 0:9667 0:9583 0.9583 0:8833 0:8250 0:7417 0:6750 0:8729
BS 0:9750 0:9750 0:9750 0:9750 0:7417 0:7000 0:5300 0:3833 0:9750
BL+R 0:9750 0:9750 0:9667 0:9417 0:8333 0:7800 0:7167 0:5667 0:5667
BL+T 0:9750 0:9750 0:9750 0:9500 0:8750 0:7917 0:7167 0:6000 0:8573
BL+RT 0:9750 0:9833 0:9667 0:9667 0:8750 0:8333 0:7750 0:6667 0:8802

Table 3. Experiment results on deep-learning-based interpolations (ORL Dataset).
Method 56×46 44 � 36 33 � 27 26 � 24 13 � 12 9 � 9 7� 7 6 � 7 Avg.acc

SRCNN 0:9750 0:9750 0:9750 0:9830 0:9670 0:9500 0:9417 0:9250 0:9615
PM* 0:9833 0:9833 0:9750 0:9917 0:9833 0:9583 0:9250 0:9083 0:9635
PM+TF* 0:9833 0:9833 0:9750 0:9833 0:9917 0:9583 0:9667 0:9583 0:9750
PM+TF+* 0:9833 0:9833 0:9750 0:9833 0:9750 0:9750 0:9667 0:9667 0:9760

*Our methods.
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original architecture are denotes as � . Since they are completely flushed out 
before reaching the output. To illustrate the comparison, we visualized the 
accuracy results in Figure 8 for ORL and Cybersoft experiments, respectively. 
The PM+TF shows the bad performance on Cybersoft. This is obvious, since 
the Cybersoft is much more complex and diverse than the ORL. Only extract
ing the features from the pre-trained extractor without fine-tuning makes 
those models almost unlearnable. This problem is overcome by PM+TF+, 
the method gives the highest accuracy comparing with the others.

Since OM method acquires training which is similar to our method, we plot 
the training process of OM and our standalone proposed method (PM). Our 
purpose is to test the hypothesis that whether our proposed transformation 
functions perform better than conventional resolution scales or not. As shown in 
Figure 9, the two first figures show the accuracy and loss in training and 
validation of OM, the rest figures are the same for PM. It is clear that the OM 
models significantly drop the accuracy in dimension from scale 0.1. Moreover, 
they explicitly start over-fitting from the scale 0.2. Our method, on the other 
hand, tends to outperform where both training and validation accuracy and 
loss are positively better than OM. Those results complete our hypothesis that 
the proposed method is more robust.

Table 4. Experiment results on conventional interpolations (Cybersoft Dataset).
Method 40 � 40 32 � 32 24 � 24 16 � 16 8 � 8 7 � 7 6 � 6 Avg.acc
OM 0:9833 0:9792 � � _ � � 0:2804
NB 0:8958 0:7542 0:4708 0:1917 0:0833 0:0667 0:0542 0:3595
BL 0:6125 0:3833 0:2042 0:0917 0:0500 0:0417 0:0417 0:2036
BC 0:7833 0:6208 0:2833 0:1208 0:0500 0:0500 0:0500 0:2798

Table 5. Experiment results on deep-learning-based interpolations (Cybersoft Dataset).
Method 40 � 40 32 � 32 27 � 27 14 � 14 9 � 9 7 � 7 6 � 6 Avg.acc

PM* 0:9833 0:9792 0:9708 0:6875 0:5542 0:8000 0:6917 0:8095
PM+TF* 0:9833 0:9792 0:0417 0:0333 0:0500 0:0333 0:0333 0:0383
PM+TF+* 0:9833 0:9792 0:9708 0:9625 0:9583 0:9417 0:9458 0:9558

*Our methods.

Figure 8. Accuracy of the methods experiment on ORL (left) and Cybersoft (right) dataset.
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It is worth exploring how CNN models pay attention when dealing with 
unseen images in various resolutions. By taking advantage of Global Average 
Pooling (GAP) which is formally introduced in (Lin, Chen, and Yan 2013), we 
implement Class Activation Map (CAM) to visualize the attention of dedicated 
models (Zhou et al. 2016). Figure 10 visualizes the CAMs (i.e. heat maps) 
between the OM and PM, PM+TF+ on the Cybersoft dataset. According to the 
results, those CAMs generated by our methods tend to have better robust 
attention. In other words, these heat maps higher demarcation contrast of cold 
and hot areas than those of OM, which seem to be confused where to pay 
attention in low-resolution image. Additionally, when comparing models 
between PM and PM+TF+, there are significant changes in some cold areas, 
but still, keep robust to the others. This can be explained as PM+TF+ models 
are succeeded in transferring knowledge from the original trained model.

Bayesian Optimization
Generally, in many kinds of image classification problems, the parameters in 
ATF and STF functions are variant. It depends on the attribute, distribution, 
etc. of dataset. Therefore, parameter optimization is taken into account. We 
would like to integrate Bayesian-based to our proposed method, which is 

Figure 9. Training accuracy (solid line) and validation accuracy (dash line) of OM and PM 
experiments in ORL dataset.

Figure 10. Class activation map of PM vs. OM methods (top) and PM+TF+ vs. OM methods 
(bottom), the dimensions are 24 � 24, 16 � 16, 8 � 8 and 6 � 6, respectively.
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represented by Gaussian Process (Rasmussen and Williams 2005). In this way, 
it is able to automatically tune the parameters by itself based on the specific 
kind of dataset. Additionally, we compare with two popular search strategies: 
random search (Bergstra and Bengio 2012b) and random forest (Liaw and 
Wiener et al. 2002).

We experiment 3 search strategies on ORL and Cybersoft datasets. Table 6 
shows the configuration for both. To simplify the search progress, we pre
defined some parameters such as learning rate, number of epochs, and number 
of down-sampled datasets produced by ATF and STF. We also keep the original 
resolution, model’s architecture and r as well. The searching is limited by 30 
iterations for each strategy.

Tables 7 and Table 8 shows the results of ORL and Cybersoft datasets, 
respectively. The searching provides the optimal θ that achieves the best 
average accuracy of down-sampled datasets for each strategy (see Avg.acc 
column) including the original datasets (ones before r) (see Avg.acc+ column). 
As a result, Bayesian-based (Gaussian Process) is more effective than the 
others. Impressively, it beats the result of our manual parameter settings for 
ORL (0.9760) and Cybersoft (0.9558).

The convergence progress of three search strategies on ORL and Cybersoft 
are shown in Figure 11. It minimizes the negative accuracy objective function. 
As a result, the Gaussian Process practically outperforms the random search 
and random forest. Since it learns from previous sampling experiences, the 
convergence is also faster the others.

Table 6. The configuration of parameter optimization for ORL and Cybersoft dataset.

Dataset Backbone
Original 
#blocks

Original 
resolution r

Learning 
rate #Epochs

# Down-sampled 
dataset

# 
Iterations

ORL VGG 3 112� 92 0.3 0.001 50 5 30
Cybersoft SkippedVGG 3 80� 80 0.4 0.001 80 5 30

Table 7. Parameters optimization by 3 strategies on ORL Dataset.
Dataset Tuning parameters Avg.acc Avg.acc+*

α β s γ δ b
Random Search 2:4518 0:7445 � 0:6443 0:7292 0:4161 � 0:3941 0:9861 0:9819
Random Forest 2:8791 0:6358 0:9751 0:79145 0:01767 0:5754 0:9883 0:9824
Gaussian Process 2:5920 0:6063 � 0:3363 0:8643 0:5468 � 0:9028 0:9917 0:9833

*Including original datasets.

Table 8. Parameters optimization by 3 strategies on Cybersoft Dataset, including Bayesian-based.
Dataset Tuning parameters Avg.acc Avg.acc+*

α β s γ δ b
Random Search 1:6585 0:5095 0:6440 0:5286 0:9474 0:7576 0:9708 0:9778
Random Forest 1:9511 0:3082 � 0:9974 0:3710 0:8366 � 0:3952 0:8542 0:9389
Gaussian Process 2:9516 0:5417 0:5908 0:8573 0:7309 1:0000 0:9792 0:9805

*Including original datasets.
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Conclusion

In this paper, we proposed a new approach to effectively resolve the low- 
resolution face recognition problem. The experiments show that the method 
significantly outperforms some other popular ones. Those methods may per
form well on high or affordable low resolution. However, they have difficulty 
handling extremely low dimension and significantly drop in accuracy. Even 
being enhanced by deep learning method such as SRCNN, those models only 
show a trivial improvement.

On the other hand, our approach take advantage of both conventional and 
deep-learning-based methods, and propose transformation functions. These 
functions learned to produce the optimal resolutions and corresponding CNN 
model’s architectures varying in a wide range of scales. As a result, our method 
can deal with any extremely low resolution, yet keep the high accuracy in 
classification. Moreover, we also enhance the performance and reduce the 
training time with our block transfer learning strategy. It guides the models to 
utilize most useful features from the original one without non-trivial tuning, 
and learning faster than usual. Besides, our method is scalable with any kind of 
dataset by automated Bayesian optimization that is successfully integrated.

In the future, we will focus on developing automated deep learning model 
generator and block transfer learning. Our purpose is to completely release the 
one-stop solution for low-resolution image classification. We hope our pro
posed method is feasible to apply to many kinds of real-world problems.
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