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Abstract 
 

We show that the equations 2w – 3n ± 1 = 0, where w and n are positive integers, have no other solutions 
than (w,n) = (1,0), (1,1), (2,1) and (3,2)1. 

 

Keywords: Number theory; Catalan conjecture, harmonical numbers; syracuse-collatz conjecture; 
unsolved arithmetic problems; Jeffrey C. Lagarias. 

 

1 Introduction 
 
The Belgian mathematician Eugène C. Catalan conjectured in 1844 that 32 – 23 = 1 was the only non-trivial 
solution to the Diophantine equation xm – yn = ±1 (m, n > 1) [1,2]. The proof of this conjecture, due to Preda 
Mihăilescu, was published in 2004 [3]. 
 
Long before Catalan’s conjecture, in 1343, Levi ben Gershon was interested in studying the pairs of 
harmonical numbers (in form 2w3n) differing by ±1 [4]. He solved the equations 2w – 3n = ±1 and gave the 
four solutions in (w,n): (1,0), (1,1), (2,1) and (3,2) [5]. 
_____________________________________ 
1This result and most of the relationships given in this paper have been suggested by computer calculations used as an 
investigation tool. 
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We have studied the equations 2w – 3n ± 1 = 0 which appear in a treatment2 of the so-called Syracuse 
problem3,4, more specifically regarding the possibility of cycles with w > n > 0 [6-14]. Solving these 
equations in a more general way, i.e. even for 0 ≤ w ≤ n, our aim is to give an original alternative to Levi’s 
proof. 
 
To tackle this problem, we shall focus on the divisibility by 2 of 3n ± 1. 
 

2 Discussion 
 
2.1 Case w ≤ n 
 
Two solutions to equation 
 

2w – 3n ± 1 = 0                                                                                                       (1) 
 
appear up to w = 1: 
 

(w,n) = (1,0): 21 – 30 – 1 = 2 – 1 – 1 = 0                                                                                    (2) 
 

(w,n) = (1,1): 21 – 31 + 1 = 2 – 3 + 1 = 0                                                                                           (3) 
 
Beyond, for 2 ≤ w ≤ n, both 3n – 1 and 3n + 1 outrun 2w, precluding any solution in this range. 
 
2.2 Case 3 ≥ w > n 
 
Direct inspection reveals two solutions for w ≤ 3, namely 
 

(w,n) = (2,1): 22 – 31 – 1 = 4 – 3 – 1 = 0                                                                                           (4) 
 
(w,n) = (3,2): 23 – 32 + 1 = 8 – 9 + 1 = 0                                                                                           (5) 

_____________________________________ 
2 Unpublished work by the authors of the present article. 
 
3 The so-called Syracuse conjecture has been introduced by Lothar Collatz (1910-1990) in 1937 in Germany and has 
since then been examined by numerous distinguished mathematicians, including the celebrated Polish mathematician 
and physicist Stanislaws Ulam (1909-1984), the Japanese Shizuo Kakutani (1911-1004)), the American Jeffrey C. 
Lagarias ((1949- ) and the British born John H. Conway (1937-) now at the Princeton University, USA, as the successor 
at the chair of John von Neumann.  
 
The Syracuse conjecture is defined as follows: Let x0 be a positive and odd integer, and define x’1 = 3x0 + 1 which is 
even, and divide it as many times as necessary by 2 to obtain a new odd integer x1; apply to x1 the same procedure to 
obtain a new odd integer x2 and so on. Collatz conjectured that whatever the starting point x0, after a varying number of 
this transformation (or steps), the “flight” always ends in the “trap” 1-4-2-1, with no possibility to escape from. 
 
Since the advent of powerful calculators in the second half of the 20th century, this conjecture has constantly been 
verified, and therefore it is better today to say the Syracuse-Collatz problem rather than conjecture. However, 
theoretical proof or at least explanation for this behaviour is not to date available, despite the efforts of so many 
mathematicians. 
 
4The Syracuse problem in ref. 1 has been generalized to negative odd numbers x0. Computer calculations show that 
down to –2.15×109, there are here three such “traps”, instead of one for positives x0. These are (we don’t show the 
intermediate even numbers): –1, –2, –1; –5, –7, –5; and –17, –25, –37, –55, –41, –61, –91, –17. 
 
Whatever the case, though some progress has been made by different workers and also, it is hoped, in ref. 1, the problem 
remains to date theoretically unsolved. 
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One may surmise the existence of solutions with w > 3, such that w ≈ n log3/log2 ≈ 1.58 n for not small w 
and n. We prove in the following that there is no such solution. 
 
2.3 Case w > 3 and w > n 
 
Defining expp(n) = max{k ∈ IN | pk is a divisor of n}, we will establish two lemmas. 
 
Lemma 1 
 

2

1 if  is even
exp (3 1)

2 if  is odd
n n

n

+ = 


                                                                                                       (6) 

 
Lemma 2 
 

2
2

1 if  is odd
exp (3 1)

exp ( ) 2 if  is even and 0
n n

n n n


− =  + >

                                                                      (7) 

 
Proof of Lemma 1 
 
An inductive proof is as follows. 
 
Assume that, for a given positive integer i, one has 
 

32i + 1 = 2a, with odd a                                                                                                                      (8) 
 
and 
 

32i+1 + 1 = 4b, with odd b                                                                                                                   (9) 
 
We must prove that this also holds for i + 1. One has indeed 
 

32(i+1) + 1 = 2a’, with odd a’ = 9a – 4                                                                                              (10) 
 
and 
 

32(i+1)+1 + 1 = 4b’, with odd b’ = 9b – 2                                                                                           (11) 
 
Since relations (8) and (9) hold for i = 0 (with a = b = 1), they hold for any integer i ≥ 0, Q.E.D. 
 
Proof of Lemma 2 
 
Any positive integer n can be cast in the form 
 

n = 2mk, with odd k                                                                                                                          (12) 
 
(k will represent an odd number in all this proof of lemma 2) and therefore we can write 
 

( , )23 1 ( , ) 2
m b k mk a k m− = , with odd a                                                                                                 (13) 

 
Let us consider at first the case m = 0. Using (11), we have: 3k – 1 = 4b’ – 2 with odd b’, thus 3k – 1 = 2c, 
with odd c = 2b’  – 1. Inserting this in (13) yields 
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2exp (3 1) 1k − =                                                                                                                                (14) 
 
This is the first part of lemma 2. 
 

Let us now suppose m = 1. Using (11) once again, we have: 32k – 1 = ( )2
3k  – 1 = (4b – 1)2 – 1 = 8b’, with 

odd b and odd b’ = b(2b – 1). Inserting this in (13) yields 
 

( ) ( )2
2 2exp 3 1 exp 2 ' 2 2

m k mb m− = + = + , with m = 1                                                                          (15) 

 
Now, assume that equation (13) holds for a given odd k and a given m ≥ 1 with b(k,m) = m + 2. 
 

Then ( ) ( )1 2 22 2 23 3 2 1
m mk k ma

+ += = + = a’2m+3 + 1, where a is odd, and so is a’ = a + a22m+1, therefore 

( ) ( )12 3
2 2exp 3 1 exp 2 ' 2 3

m k m a m
+ +− = + = + . From equation (15), one has 

 

( )2
2exp 3 1 2

m k m− = +  for m ≥ 1, Q.E.D.                                                                                       (16) 

 
Equation 2w – (3n + 1) = 0                                                                                                                             (17) 
 
Solutions with w > 2 are forbidden by Lemma 1 which establishes that 3n + 1 cannot be divised by 8. 
 
Equation 2w – (3n – 1) = 0                                                                                                                             (18) 
 
Consider first the case when n is odd. Then, from Lemma 2, we have 2w = 3n – 1 = 2k, with odd k, therefore 
 

w = k = 1                                                                                                                                          (19) 
 
contradicting our hypothesis w > 3. 
 
Consider now the case when n is even, and let n = 2mk with odd k and m > 0. If n and w are to be solutions to 
equation (18), we have, applying Lemma 2 to equation (18), 
 

2 22 3 1 ( , ) 2w km ma k m += − = , with odd a                                                                                              (20) 
 
which implies 
 

a = 1 and w = m + 2                                                                                                                         (21) 
 
consistent with the hypothesis w > 3 made at the beginning of this section. 
 
On the other hand, from w > n = 2mk with k ≥ 1 and using equation (18), one gets 
 

log2w > m + log2k ≥ m = w – 2.                                                                                                        (22) 
 
The resulting condition 
 

1 ≤ w ≤ 3                                                                                                                                          (23) 
 
contradicts the hypothesis w > 3. 
There is thus no solution to 2w – (3n – 1) = 0 with w > 3. 
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3 Conclusion 
 
Determining the divisibility by 2 of 3n + 1 and of 3n – 1 enabled us to prove that the algebraic equations       
2w – (3n ± 1) = 0 have only four non-negative integer solutions, namely (w,n) = (1,0), (1,1), (2,1) and (3,2). 
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