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Abstract

We show that the equation8 2 3' + 1 = 0, wherav andn are positive integers, have no other solutipns
than v.n) = (1,0), (1,1), (2,1) and (3,2)

Keywords: Number theory; Catalan conjecture, harmonical numbessacuse-collatz conjecture;
unsolved arithmetic problems; Jeffrey C. Lagarias.

1 Introduction

The Belgian mathematician Eugéne C. Catalan conjectnr&é44 that 3— 2 = 1 was the only non-trivial
solution to the Diophantine equati®f —y" = +1 (m, n> 1) [1,2]. The proof of this conjecture, due to Preda
Mihailescu, was published in 2004 [3].

Long before Catalan’s conjecture, in 1343, Levi ben Gershas interested in studying the pairs of
harmonical numbers (in form"2") differing by +1 [4]. He solved the equation$ 2 3' = +1 and gave the
four solutions in,n): (1,0), (1,1), (2,1) and (3,2) [5].

This result and most of the relationships givethis paper have been suggested by computer calofatised as an
investigation tool.
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We have studied the equation$ 2 3' + 1 = 0 which appear in a treatmenf the so-called Syracuse
problent“, more specifically regarding the possibility of cyclaith w > n > 0 [6-14]. Solving these

equations in a more general way, i.e. even ferv@< n, our aim is to give an original alternative to Levi’s
proof.

To tackle this problem, we shall focus on the divisibiliy2 of 3 + 1.

2 Discussion

2.1 Casew<n

Two solutions to equation

2"-3F+1=0 (1)
appear up tw = 1:

wn)=1,0):2--1=2-1-1=0 2)

(wn)=11):2-3+1=2-3+1=0 3)
Beyond, for 2<w<n, both 3 — 1 and 3+ 1 outrun 2, precluding any solution in this range.

2.2 Case 2w>n

Direct inspection reveals two solutions oK 3, namely
wn)=21):2-3-1=4-3-1=0 (4)

wn)=@32):2-F+1=8-9+1=0 (5)

2Unpublished work by the authors of the presenthati

3The so-called Syracuse conjecture has been intetliny Lothar Collatz (1910-1990) in 1937 in Germamg has
since then been examined by numerous distinguistegematicians, including the celebrated Polish heatatician
and physicist Stanislaws Ulam (1909-1984), the dapa Shizuo Kakutani (1911-1004)), the AmericafrejefC.
Lagarias ((1949- ) and the British born John H. @@y (1937-) now at the Princeton University, US&ftee successor
at the chair of John von Neumann.

The Syracuse conjecture is defined as follows:xhbe a positive and odd integer, and define=x3x, + 1 which is
even, and divide it as many times as necessarytbyoBtain a new odd integeg;xapply to % the same procedure to
obtain a new odd integer and so on. Collatz conjectured that whatever theting point x%, after a varying number of
this transformation (or steps), the “flight” alwaynds in the “trap” 1-4-2-1, with no possibility gscape from.

Since the advent of powerful calculators in theosechalf of the 20 century, this conjecture has constantly been
verified, and therefore it is better today to sde tSyracuse-Collatz problem rather than conjectudewever,
theoretical proof or at least explanation for tHiehaviour is not to date available, despite theré&ff of so many
mathematicians.

“The Syracuse problem in ref. 1 has been generatizetegative odd numbers. xComputer calculations show that
down to —2.1%1C° there are here three such “traps”, instead of dioe positives x These are (we don't show the
intermediate even numbers): -1, -2, —-1; -5, -7 adft -17, -25, -37, -55, -41, -61, -91, -17.

Whatever the case, though some progress has bedm byalifferent workers and also, it is hoped,dah &, the problem
remains to date theoretically unsolved.
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One may surmise the existence of solutions with 3, such thatv ~ n log3/log2~ 1.58n for not smallw

andn. We prove in the following that there is no such solution.
2.3 Casew > 3 andw >n

Defining exp(n) = max{k O IN | p“is a divisor ofn}, we will establish two lemmas.

Lemma 1l
lifnis even
exp, (3 + 1)=
P@E+1) {2 if n is odd
Lemma 2
1lifnis odd
exp, (3 -1)= nniso I
exp, )+ 2 ifn is even and>

Proof of Lemma 1
An inductive proof is as follows.
Assume that, for a given positive integeone has
3 + 1 =2, with odda
and
31+ 1 = &, with oddb
We must prove that this also holds far 1. One has indeed
32D 1+ 1 = 2, with odd &’ = 9a — 4
and
41 = 4y, with oddb’ = 9b — 2
Since relations (8) and (9) hold fior 0 (witha = b = 1), they hold for any integée 0, Q.E.D.
Proof of Lemma 2
Any positive integen can be cast in the form
n = 2"k, with oddk

(k will represent an odd number in all this proof of lemmar®) therefore we can write

3" —1=a(k,m) 2*™, with odda

(6)

(7)

®)

)

(10)

(11)

12)

13)

Let us consider at first the case= 0. Using (11), we have¥3 1 = 4’ — 2 with oddb, thus ¥ -1 =2,

with oddc = 20’ — 1. Inserting this in (13) yields
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exp, (3 -1)=1 (14)
This is the first part of lemma 2.

Let us now suppose = 1. Using (11) once again, we hav& 31 = (Bk)2 -1=(b-1¥-1=& with
oddb and oddy’ = b(2b — 1). Inserting this in (13) yields

exg(:?mk - ]) = ex9( Zb )’+ Zm+ ;, withm=1 (15)
Now, assume that equation (13) holds for a givenkoaladd a giverm> 1 with b(k,m) =m + 2.

- |2 _ _
Then 3" :(32 k) :(a 2'"*2+:I)2 =a2™3 + 1, wherea is odd, and so i® = a + a%22™?, therefore

expz(§mk - ]) = exg( 2%a )'+ 2 m+ . From equation (15), one has

exp2(§mk—]):m+ 2form> 1, Q.E.D. (16)

Equation 2"— (3'+ 1) =0 (17)
Solutions withw > 2 are forbidden by Lemma 1 which establishes3ha 1 cannot be divised by 8.
Equation 2"—(3'-1)=0 (18)
Consider first the case whearis odd. Then, from Lemma 2, we have=23" — 1 = X, with oddk, therefore

w=k=1 (19)
contradicting our hypothesig > 3.

Consider now the case wharis even, and lat = 2"k with oddk andm > 0. If n andw are to be solutions to
equation (18), we have, applying Lemma 2 to equatl®),

2¥ =F" ~1=ak,m) 2*?, with odda (20)
which implies

a=landwv=m+2 (21)
consistent with the hypothesis> 3 made at the beginning of this section.
On the other hand, from >n = 2"k with k> 1 and using equation (18), one gets

logow > m+ logk>m=w - 2. (22)
The resulting condition

1<w<3 (23)

contradicts the hypothesis> 3.
There is thus no solution td'2 (3" — 1) = 0 withw > 3.
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3 Conclusion

Determining the divisibility by 2 of 3+ 1 and of 3— 1 enabled us to prove that the algebraic equstio
2" —(3' £ 1) = 0 have only four non-negative integer solw, namelyw,n) = (1,0), (1,1), (2,1) and (3,2).
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