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ABSTRACT 
 
The geometry of a divergent nozzle of the gas dynamic laser is optimized to achieve the maximum 
possible gain in an optical cavity. The problem is numerically studied using two-dimensional 
computation of the governing equations beside the conjugate gradient method for the shape 
optimization. The system of governing equations is solved with a finite volume approach using a 
structured grid in which the advection upstream splitting method is used to calculate the convective 
numerical fluxes. The finite difference approximation approach is used to calculate the sensitivity 
matrix coefficient of the optimization procedure. The results show that the optimum geometry of the 
considered problem can improve the maximum small signal gain as much as about 9 percent in 
comparison with the simple linear nozzle. The steady state solution of the equations is considered 
here. 
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NOMENCLATURE 
 
A = the lasing gas symbol 
a = constant in gain equation 
B = the symbol of the gas stores the vibrational energy 
b = constant in gain equation 
C = catalyst gas symbol 
c = mass fraction 
e = specific internal energy 
evib = specific vibrational energy 
h = Plank’s constant 
k = Boltzmann constant 
N = population 
R = gas constant 
T = temperature 
X = mole fraction 
λ = wavelength 
τI, II = characteristic relaxation time of vibrational modes 
τ12 = radiative lifetime 
v1, 2, 3 = vibrational mode’s frequency of gas A 
vc = collision frequency 
 

1. INTRODUCTION 
 
The laser technology is available for different 
situations like research, medical, industrial and 
commercial uses. There are different types of 
lasers that have wide range of wavelengths and 
powers, such as solid state lasers or 
semiconductor lasers. One of the most useful 
types of these technologies is the gas laser 
which can be divided in three different 
categories: Electric discharge, chemical and gas 
dynamic lasers. 
 

The invention of the Gas Dynamic Lasers (GDL) 
dates back about 50 years. The population 
inversions in molecular systems could be created 
by rapid cooling of the system. Therefore, such 
inversion could be obtained in the fast non-
equilibrium expansion of an initially hot gaseous 
mixture through a supersonic nozzle. During this 
expansion, the working gas is turned into a 
supersonic laser medium and passes into the 
optical cavity (acts as a laser resonator) where 
using proper mirrors may extract a beam of laser 
perpendicular to the flow. 
 

The GDLs can be scaled to large sizes without 
major physical complications. So, they can 
produce the highest continuous wave powers up 
to hundreds of kilowatts [1]. Different numerical 
and experimental studies have been performed 
in the past decades to analyze the gas dynamic 
lasers’ operation, performance and design 
procedure [2-9]. There are also some reports on 
the parametric studies and optimization of the 
performance of the GDLs [10,11]. 

The theoretical analysis of the gas dynamic laser 
is based on the consecutive computation of the 
vibrational temperatures, population inversions, 
gain and finally the power extraction. But such 
calculations generally provide results on the raw 
power output available from the optical cavity, 
because the total picture of power extraction is 
more than that. One reason for this difference is 
the inhomogeneities of the flowing gas in the 
cavity that cause the phase distortions in the 
laser beam. Such inhomogeneities are due to the 
pattern of supersonic field due to the flow and 
geometry interactions. The author [12] has 
recently studied the variation of the gas dynamic 
laser’s gain along the optical cavity to analyze 
the effects of the flow field’s diamond pattern.  
 
In the present study, the shape of the divergent 
nozzle is optimized to achieve the maximum 
possible gain in the optical cavity. 
 

2. GOVERNING EQUATIONS AND 
NUMERICAL PROCEDURE 

 
Here, the laser mixture contains the A-B-C gases 
which A is the active lasing molecule, B stores 
the vibrational energy and C has the role of 
catalyst for augmentation of the population 
inversions. The two-dimensional compressible 
equations governing the inviscid flow 
representing the conservation of mass, 
momentum and energy are used as the basic 
equations of the flow field.  
 



The laser media under consideration has two modes of vibrational energy, so:
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The rate equations representing the relaxation of vibrational energies of these modes are: 
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For the mixtures as A-B-C system, the vibrational
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The populations of two energy levels of the lasing molecule are [3]: 
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Finally, these populations are used to compute the small signal gain using the relation [8]: 
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Here, the cell-centered finite-volume method is 
used to discretize the governing equat
equations are coupled and are discretized on the 
structured grids. The flux terms are treated using 
an AUSM

+
 (advection upstream splitting method) 

at cell faces [13]. The local time steps are used 
to speed up the computations and obtain the final 
steady state results. 
 
For the shape optimization, the divergent nozzle 
geometry is defined such that it has five linear 
sections (as Fig. 1). So there are four points’ 
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The laser media under consideration has two modes of vibrational energy, so: 

                                                                                                             The rate equations representing the relaxation of vibrational energies of these modes are: 
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Finally, these populations are used to compute the small signal gain using the relation [8]: 
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and are discretized on the 
structured grids. The flux terms are treated using 

(advection upstream splitting method) 
[13]. The local time steps are used 

to speed up the computations and obtain the final 

For the shape optimization, the divergent nozzle 
geometry is defined such that it has five linear 
sections (as Fig. 1). So there are four points’ 

lateral locations to be computed to achieve the 
maximum gain on the axis of the cavity.
 

 

Fig. 1. Schematic geometry of the GDL for 
shape optimization
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(1) 

The rate equations representing the relaxation of vibrational energies of these modes are:  

                                                  

(2) 

                                                 

(3) 

                                              (4) 

Finally, these populations are used to compute the small signal gain using the relation [8]:  

                                                                                       

(5) 

lateral locations to be computed to achieve the 
gain on the axis of the cavity. 

 

Schematic geometry of the GDL for 
shape optimization 
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If P is assigned as an unknown parameters 
vector (here is lateral position of nodes) with N 
components, the objective of the chosen 
algorithm is to minimize the ordinary least 
squares norm which is defined below:  
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Where Y is the vector of line variation of required 
small signal gain on an axis and T(P) is the 
calculated gain variation. The iterative procedure 
of the conjugate gradient method for the 
minimization of the above norm S (P) is given by:  
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Where �� is the search step size, dk is the 
direction of descent and the superscript k is the 
number of iterations in the optimization loop. The 
direction of descent is a conjugation of the 

gradient direction: ∇�(��) and the direction of 
descent of the previous iteration, dk-1. It is given 
as:  
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The Polak-Ribiere [14] expression is used for 

determination of conjugation coefficient	��:  
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Here,   jkPS  is the jth component of the 

gradient direction evaluated at iteration k. The 
expression for the gradient direction is obtained 
by differentiating equation (6) with respect to the 
unknown parameter vector P, the result is:  
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Where the sensitivity matrix Jk is defined by the 
following equation:  
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With N is the total number of unknown 
parameters and I is the total number of axis 

nodes. The step size, k  is obtained by 

minimizing the function S(Pk+1) with respect to 

��. The final expression after some 
mathematical operations is:  
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Here, each component of the sensitivity matrix is 
defined by implementation of following forward 
difference:  
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The iterative procedure is stopped when the 
following criterion is satisfied:  
 

   1kPS

                                                  

(14) 

 
Here,   is set 0.15 for convergence criteria. This 
value is just selected from the numerical process 
where the variation of maximum gain apparently 
vanishes. 
 

3. RESULTS AND DISCUSSION 
 
At first, to show the validity of this code for the 
considered problem, two different GDLs are 
considered. At first, the CO2-N2-H2O flow of Ref. 
[3] is solved in convergent-divergent nozzle 
geometry to compare the distribution of the 
vibrational temperature as shown in Fig. 2. Then, 
the N2O-N2-He gas dynamic laser of Ref. [8] is 
calculated to compare the small signal gain 
distribution as illustrated in Fig. 3. The results 
show the accuracy of the present numerical 
simulation program.  
 
After this validation, the optimization is 
considered. The considered gas dynamic laser is 
the converging-diverging nozzle which is 
continued by the constant area chamber as an 
optical cavity. The GDL which is studied here is 
N2O-N2-He laser with geometry and flow 
properties as shown schematically in Fig. 4. The 
required small signal gain is defined equal to 
unity in the optimization procedure and the 



iterative algorithm is continued to minimize 
(14). 
 

 
Fig. 2. Vibrational and translational 

temperature distribution
 

 
Fig. 3. Small signal gain distribution

 

 
Fig. 4. Geometry and flow properties of the 

considered GDL 
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iterative algorithm is continued to minimize S, Eq. 

 

Vibrational and translational 
temperature distribution 

 

Small signal gain distribution 

 

Geometry and flow properties of the 

At first, the flow field is simulated for the two 
different divergent geometries, 1: linear
quarter of cosine-function. Then, the optimization 
process is utilized to find the optimum divergent 
geometry for the maximum small signal gain in 
the resonator.  
 
Variation of the S during the optimization process 
is shown in Fig. 5. The optimum geometry and 
the gain contours are shown in Fig. 6. The 
distribution of the small signal gain on the 
cavity’s axis is illustrated in Fig. 7. The results 
show that the maximum gain is increase
9 and 15 percent in comparison with the linear 
and cosine geometry, respectively. It should be 
noticed that the population inversion is a 
nonlinear function of all flow parameters and it is 
not possible to maximize the laser gain just using 
the optimum nozzle from the pure gas dynamic 
viewpoint and the full governing equations should 
be used in the optimization procedure, which has 
been done here. 

 

 
Fig. 5. Optimization process

 

 
Fig. 6. The gain contours in the optimum 

geometry 
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At first, the flow field is simulated for the two 
divergent geometries, 1: linear and 2: 

function. Then, the optimization 
process is utilized to find the optimum divergent 
geometry for the maximum small signal gain in 

during the optimization process 
is shown in Fig. 5. The optimum geometry and 
the gain contours are shown in Fig. 6. The 
distribution of the small signal gain on the 
cavity’s axis is illustrated in Fig. 7. The results 
show that the maximum gain is increased about 
9 and 15 percent in comparison with the linear 
and cosine geometry, respectively. It should be 
noticed that the population inversion is a 
nonlinear function of all flow parameters and it is 
not possible to maximize the laser gain just using 

the pure gas dynamic 
and the full governing equations should 

be used in the optimization procedure, which has 

 

Optimization process 

 

The gain contours in the optimum 



 

 

Fig. 7. Gain distribution on the axis
 

4. CONCLUSION 
 
The shape optimization of a divergent nozzle of 
the gas dynamic laser is performed here using 
two-dimensional simulation of the flow field 
beside the conjugate gradient method in which 
the finite difference approximation approach is 
used to calculate the coefficient of the sensitivity 
matrix of the optimization procedure. The 
maximum small signal gain occurs in the cavity’s 
centerline and it depends on the supersonic flow 
patterns as well as the flow field pr
Therefore, for the fixed inlet flow properties and 
the throat and exit dimensions, the laser gain can 
be varied by changing the divergent nozzle’s 
geometry. The results show that the maximum 
gain may be increased about 9 percent using the 
optimum nozzle geometry in comparison with the 
simple linear-geometry divergent nozzle.
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