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ABSTRACT 
 

Methods of physical labelling have been proved to be a powerful tool for solving a number of 
problems in chemistry, physics and biology at a molecular level. This review concisely describes all 
the principle aspects of the application methods of nitroxide spin and luminescence labelling for the 
investigation of cotton fibres and cellulose: Chemical modification by the labels, with the use of 
Electron Spin Resonance (ESR) and fluorescence and phosphorescence techniques for the 
measurement of molecular dynamic parameters of the labelled samples’ molecular dynamics, their 
distribution, and the label location in objects of interest. Experimental data on dependencies of the 
fibres’ molecular dynamics on origin, temperature, water and other plasticising agents, nutrition, 
period of maturing and radiation have been presented. ESR experiments have revealed a strong 
dependence of fibres’ resistance to stress on microscopic structural defects. The developed 
combined spin and luminescence labelling approach, the efficiency of which is demonstrated in this 
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review, can be used in the investigation of molecular dynamics, microstructure polymers and other 
complex molecular objects. 
 

 
Keywords: Cotton fibres; cellulose; nitroxide spin labels; luminescence labels; molecular mobility; 

structural defects; stress resistance. 
 
1. INTRODUCTION 
 
The role of cotton fibres and cellulose in industry, 
medicine and human beings’ everyday lives is 
impossible to overestimate. Cotton is used to 
make a number of textile products, gunpowder 
(nitrocellulose), cotton paper and other plant 
fibres. Cellulose is the structural component of 
the primary cell wall of green plants, many forms 
of algae and oomycetes [1-9]. 
 

The molecular dynamic properties of a vast 
number of objects, including liquids, polymers, 
organic and inorganic materials, and biological 
systems in particular, are a base for their 
functional activity, technological characteristics, 
stability, compatibility, and so forth. Physical 
labelling methods have been proved to be a 
powerful tool for the investigation of the 
molecular mobility and structure of various 
objects [10-23]. 
 

The basic idea underlying this approach is the 
modification of the chosen sites of the object in 
question with specific compounds, commonly 
nitroxide (NRO), fluorophores, Mössbauer atoms 
and electron density compounds which are 
bound covalently (labels) and/or non-covalently 
(probes), whose properties make it possible to 
trace the state of the surrounding biological 
matrix via appropriate physical methods. The 
principle advantage of the physical labelling 
method is possibility to take direct information 
about local structure, mobility, micropolarity, 
acidity, redox status and electrostatic potential of 
certain parts of the molecular object of any 
molecular mass and optical density. 
Developments in synthetic chemistry have 
provided researchers with a wide assortment of 
labels and probes, and have paved the way for 
the specific modification of molecular objects. 
 

According to the theory and large body of 
experimental data, the rotation and 
intramolecular motion of a molecule including a 
label in a condensed phase are modulated to a 
great extent by the molecular dynamics of the 
surrounding molecules. This phenomenon is 
caused by the relatively tight packing of 
molecules of liquids and solids on the one hand 

and the existence of static and dynamic defects 
in these systems of the other. Essential 
knowledge about the microstructure and 
molecular dynamic state of the system under 
investigation can be derived from the 
measurement of static and dynamic spin-spin 
interactions between nitroxides and other 
paramagnetic compounds at its encounters. 
Similar independent information can be obtained 
from data on quenching exited singlet and triplet 
states of fluorescent and phosphorescent labels. 
 
This review is intended to provide the physical 
principles of methods based on the use of the 
above mentioned nitroxide spin, fluorescence, 
phosphorescence, Mössbauer and mercury 
electron density labels and its applications in the 
investigation of cotton fibres and cellulose. 
 

2. NITROXIDE SPIN LABELLING 
 

2.1 Chemical Modification of Cotton 
Fibres and Cellulose with Nitroxide 
Spin Labels 

 
The covalent modification of an OH group of 
cotton and cellulose fibres performed with 
correspondent nucleophilic reactions using 
nitroxide spin labels was described in detail in 
[24-26]. 
 
Formula 1 
 

In a typical experiment, 25 mg of a cotton or 
cellulose fibre in 0.8 ml dimethylformamide in the 
presence of pyridine was treated with 0.1 ml of 
radical I or II solutions in acetone at a 
concentration of 10

–2
 M. The mixture was 

incubated for 48 hours at a temperature of 300 K 
and then two hours at 340 K. After rinsing with 
water, acetone and ethanol and incubation at a 
certain relative humidity, the continuous wave 
electron spin resonance (CW ESR) spectra were 
taken using РE-1301 and РE-1306 radio 
spectrometers. 
 
Samples of cellulose labelled with stable nitroxyl 
radicals were prepared through 
mechanochemical synthesis [27]. 
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Formula 2 
 
The samples were studied by IR and EPR 
spectroscopy, X-ray phase analysis and electron 
microscopy. The EPR spectral patterns indicate 
a uniform distribution of paramagnetic centres 
over the cellulose macromolecule chains. 
Methods of modification of cellulose were 
recently described in [28]. 
 

2.2 Nitroxide Molecular Dynamics 
 
Any motion of a nitroxide radical is greatly 
influenced by the molecular dynamics of 
surrounding molecules. A widely-employed 
parameter which characterises the molecular 
motion of nitroxide is the rotational diffusion 
correlation time (c), the time of rotation by one 
radian. Nitroxide radicals in different solvents and 
at different pressures display a functional 
correlation between c and the viscosity of the 
solution () that follows from the Stokes-Einstein 
equation. The values of effective energy 
activation of nitroxide rotational diffusion (Eeff) in 
pure liquids and water-glycerol mixtures are 
approximately equal to the values of activation 
energy for viscosity in these systems. These data 
provide a way in which to investigate the 
properties of the molecular dynamics of cotton 
and cellulose fibres in the vicinity of attached 
nitroxide labels. 
 
A widely-employed parameter which 
characterises the molecular motion of nitroxide is 
the rotational diffusion correlation time (c), the 
time it takes for a molecule to rotate by one 
radian.  
 
Modern ESR techniques allows ones to access 
dynamic processes that are characterized by a 
wide range of correlation time, c = 10

2
–10

-10
 s. 

Fig. 1 shows the effect of a nitroxide rotation on 
its first harmonic ESR spectra (V1), theoretically 
calculated in the frame of 3 mm X-band ESR 
spectroscopy. Analysis of experimental spectra 
allows the calculation of the correlation time 
value. 
 
For example, in the region of motion with c 10

–7
 

– 10–8 s the following equation can be used [19]: 
 

b

zz

zz
c

A

A
ax 










0
1                                   (1) 

 

 
 

Fig. 1. Theoretically calculated the first 
harmonic ESR spectra in the 3-cm band (V1) 
at different values of the nitroxide rotation 

correlation time. [16 and references therein] 
 

where 
0
zzA  an and Azz are the z-components of 

A-tensor for immobilised (determined from the 
rigid limit spectrum) and mobile nitroxide, 
respectively. The coefficient a was found to be 
5.4×10

–10
 and 2.6×10

–10
 s for systems modelling 

isotropic and anisotropic Brownian diffusion, 
respectively, and b was found to be –1.36 and –
1.39 for the aforementioned models. Spectra of 
the ESR spectra second harmonic (V2) are 
sensitive to nitroxide motion in the temporal 
range c = 10

–4
–10

–5
 s. According to theory the 

line form of nitroxide ESR spectrum is affected 
by the low-amplitude high-frequency vibration of 
radical and surrounding molecules. 
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Figs. 2 and 3 showed the effect of temperature 
on V1 and V2 for different kinds of cotton        
fibres. The component h' in the spectra at 373 K 
is caused by the appearance of a small fraction 

of structural defects in which fast rotation           
(c ≈ 10–9 s) occurs (Fig. 2). 

 

 
 

Fig. 2. The first harmonic ESR spectra (V1) for spin labeled cotton fibers a - «5595-В»,  
b- "Tashkent 1" Temperature 1) 123 K, 2) 213 K, 3) 323 K, 4) 373 K. Relative humidity  

P/P0 = 0.96 [26] 
 

 
 

Fig. 3. The second harmonic spectra (V2) for spin labeled cotton fibers a - «5595-В»,  
b- "Tashkent 1"Temperature 1) 123 K, 2) 213 K, 3) 323 K, 4) 373 K. Relative humidity  

P/P0 = 0.96 [26]
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Change of the V2 spectra starting from 213 K 
(Fig. 3) can be explained by the label motion with 
correlation time in submillisecond region [16, 
pages 24-29]. 
 

Temperature dependencies of parameter 
'2
z
A

for the nitroxide spin label I incorporated in 
different cotton fibres are presented in Fig. 4a. 

The 
'2
z
A dependencies at temperatures above ≈ 

210 K are caused by high amplitude motion with 
correlation time tc < 10–7s. Narrowing of l at 
temperatures from 253 K to 263 K (Fig. 4b) can 
be explained by the effect of low-amplitude 
vibrations, while further the line broadening is 

most probably affected by the animation of the 
wobbling of the label nitroxide fragment at 
temperatures above 273 K. 
 

A decrease of parameter 
'2
z
A  (Fig. 4a) starting 

from T = 210 K indicates an animation of the 
nanosecond wobbling of nitroxide radicals 
incorporated in cotton fibre. A temperature 
increase up to 393 K leads to the motion 
intensification in the nanosecond region of 
correlation time. All investigated samples of 
cotton fibres demonstrated a similar tendency in 
their dynamic behaviour. Nevertheless they are 
distinguished by some details. 

 

 

 
 

Fig. 4. Temperature dependences of parameters of ESR spectra,
 

'2
z
A  (a) and l (b) at relative 

humidity Р/Рs = 0,96 for various samples of cotton fibres [29] 
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High resolution, high-frequency 2-mm ESR 
spectroscopy provides a unique possibility to 
derive the values of g- and hyperfine structure 
(hfs, Ax,y,z) tensors directly from ESR spectra  
(Fig. 5) [30]. Detection of the hpf tensor allows 
detailed information to be obtained about the 
mechanism and intensity of nitroxide anisotropic 
motion. 
 
The dynamic behaviour of spin-labels with 
nitroxides located in dry samples of cotton fibre 
from “5595-В” was investigated with the use of 
high resolution, high-frequency (2-mm) ESR 
spectroscopy [31]. 
 
ESR spectra of microcrystal cellulose derived 
from thinfiber cotton at temperatures 293 (1), 333 
(2) и 373 К (3) and relative humidity Р/Рs= 0,96 
are shown in Fig 6. On the basis of the 
examination of the spin probes’ temperature 
dependence over the range150 –320 K it was 
concluded that within the temperature range 
280–300 K only a slight change in the nitroxide 
ESR parameters occurred while above about 300 
K nitroxide rotation is essentially anisotropic with 
correlation time c = 10–7 – 10–8 s. The 
temperature dependencies of dynamic parameter 
2 Azz for different samples of microcrystal 
cellulose (MCC) are similar to that for cottons. 
MCC from thin fibre cotton is characterised by 
higher stability at T > 273 K than other samples. 

Nevertheless, ESR spectra of the labelled MCC 
from thin fibre cotton show a significant 
contribution of the h' component caused by a 
high concentration of structural defects. 
 
2.3 Labels Location  
 
2.3.1 Depth of immersion of nitroxide 
 
In the investigation of the molecular dynamics of 
a polymer using a physical label, it is necessary 
to know the depth of the label’s immersion. 
Under certain circumstances the ESR 
paramagnetic centres will respond suitably to the 
approach of other centres. Two types of spin-
spin interaction can be distinguished: 
 
Two types of spin-spin interaction can be 
distinguished: (1) Dipole dipole interaction 
associated with the fact that the magnetic dipole 
of one paramagnetic group induced a local 
magnetic field at the site of another 
paramagnetic group; (2) Exchange interaction 
caused by overlap of orbital of unpaired electrons 
as paramagnetic particles approach to each 
other [33-38]. 
 
These phenomena were the basis of the method 
for the measurement of distance between 
compounds bearing spin. 

 

 
 

Fig. 5. High resolution (2 mm) ESR spectrum of spin labeled cotton fiber «5595-В at 
relative humidity Р/Рs = 0.04 and temperature 150 K (a); Dependence of  parameters of g 

and A tensors on temperature (b) [31] 
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Fig. 6. ESR spectra of microcrystal cellulose 
derived from thinfiber cotton at temperatures 

293 (1), 333 (2) и 373 К (3) and relative 
humidity Р/Рs= 0,96. Arrows I and II indicate 
positions of components related to fast and 
slow rotating radicals, correspondingly [32] 

 
A method was developed for determining the 
nearest distance (rmin) between a stable radical 
(R∙) and an ion of paramagnetic metal, an ion-
relaxator (IR), which has effects on the spin-
lattice relaxation time of R∙ and is randomly 
distributed in the bulk of the vitrified sample    
[39-43]. In the case of R∙ penetration into an 
impermeable matrix (macromolecule, membrane, 
so forth), the rmin value is equal to the radical 
immersion depth. If the centre resides at a 
sufficient depth, rmin> rav, where the latter value is 
the average distance of radicals, the contribution 
of the dipole interaction of IR to the R∙ spin 
relaxation rate is expressed by the equation: 
 

 
3
min

1
22

1/1
r

CA
T ed
e


                          (2) 

 
where 1/T1e is the nitroxide spin-lattice relaxation 
rate, C is the IR concentration,  and 1e are 
magnetic moment and the spin relaxation rate of 
the IR, respectively, and Ad is a factor that 
depends on the geometry of the surface. For 
example, if the surface is flat, Ad = 0.2. Equation 

2 predicts the linear dependencies of the 
enhancement of the spin relaxation rate upon C 
in the case of NR immersion at different depths. 
The value (1/T1e) can be derived by analysis of 
ESR spectra saturation curves (ESRSC), which 
are a dependence of the intensity of ESR spectra 
on the intensity of a microwave field, in the 
presence of ion-relaxator. The immersion death 
rim values can be derived plotting (1/T1e) versus 
the IR concentration. 
 
The sensitivity of the ESR spectra correlation 
curves for spin-labelled cotton and cellulose 
fibres to the nature of the object and presence of 
ion-relaxator ferricyanide are shown in Fig. 7. 
 
Table 1 shows values of the spin label I depth 
immersion of spin label one in fibers (rmin). Thus 
the nitroxide fragment of spin label I is immersed 
in the structure cotton fibre and a-cellulose at a 
distance of roughly 0.1 nm. Thus the nitroxide 
fragment of spin label I is immersed in the 
structure cotton fibre and a-cellulose at a 
distance of roughly 0.1 nm. This fact has to be 
taken in consideration in a discussion of 
experimental data on molecular dynamics and 
mechanical properties of fibers under 
investigation using spin label I. 
 

2.4 Microstructure of Cotton Fibres and 
Its Durability 

 
The role of the microstructure of organic and 
nonorganic materials in its stability under tensile 
stress is a basic challenge and applied problem. 
According to the widely accepted kinetic theory 
by S.N. Zhurkov [45-47], a sample durability (r) 
can be described with the following equation: 
 

r = ���
�����

��                                               (3) 
 

where U0 is the energy activation of mechanic 
destruction, �� is the frequency of atomic 
vibration, 	�  is the applied tention and �  is the 
activation volume sensitive to the sample 
structure. 
 
The effect of the defects in the microstructure of 
cotton samples detected by spin labelling 
methods was investigated using a Zhurkov 
device. The samples were prepared as 0.5 mg, 
10 mm long strips and were put under gradually 
increased stress. The obtained parameters of 
Equation 3 are presented in Table 2. 
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Table 1. Values of the spin label I depth immersion of spin label one in fibers (rmin) [44] 
 

Fiber  Paramagnetic complex Solvent rmin, нм 

-cellulose K3Fe(CN)6 
Co(AA)2

.
2H2O 

water glycerol (1:1) 
ethanol 

0,1 

Cotton fiber K3Fe(CN)6 water glycerol (1:1) 1,05 
 

 
 

Fig. 7. ESR spectra saturation curves of spin labeled fibers in water-glicerol mixture at 77 K: 
1 a-cellulose (without ferricyanide); 2   a-cellulose (3,9.10-2M ferrycyanide); 3—cotton fiber 
(without ferricyanide} A is intensity of center component of ESR spectra, H1 is intensity of 

microwave field [44] 
 

Table 2. Parameters of the Zhurkov Eq. 3. Loose phase (defects) fracture of cotton fibers  (n) 
derived by the spin labeling and Zhurkov parameters for the samples at T = 300 К;   

  dThhd ' is  the rate of increase of parameter 'h/h; which characterizes a loosing of 

the polymer structure at temperature increase above 333 К;[48'] 
 

Fiber  n –defects 
fracture 

, K-1
 р, мн/м

2
 U0, kJ/моle .

10
-4

, м
3
/мole 

«5595-В» 20,5% 0,009 28012 1427 2,6 
«Taskent-1A»  62% 0,030 18012 1417 4,9 
(      
«Tashkent-1B» 282% 0,070 15012 1417 6,0 

 
As is seen in Table 2, the energy activation of 
mechanic destruction is practically the same for 
all samples, which indicates that the process 
occurs as a break in chemical bonds. The 
difference in the samples’ duration is caused by 
differences in fracture structural defects (n). The 
larger n is, the smaller  and р are, and the 
higher .

 is – this equates to lower sample 
durability. 

3. FLUORESCENCE AND PHOSPHO-
RESCENCE LABELLING 

 
3.1 Molecular Dynamics of Cotton Fibres 
 
Because of their high sensitivity, fluorescence 
and phosphorescence techniques are especially 
suited to solving many problems of structure and 
dynamics of the molecular system [16,22]. The 
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excitation of a chromophore group is 
accompanied by a change in the electron dipole 
moment of the molecule. This involves a change 
in the interaction energy with the surrounding 
molecules, which manifests itself by a shift of the 
time-dependent frequency maximum of the 
fluorescence spectra, (relaxation shift). 
 
The value of characteristic (relaxation) time of 
the polar environment relaxation in the vicinity of 
excited chromophore (r) can be derived from an 
analysis of the temperature (T) dependencies of 
the relaxation shift using the following equation 
[16,49,50]: 
 

    
  TT
rf

f











maxmax
max

0
)(

   

                 (4) 

 
Where max (T) is the relaxation shift in the 
steady-state fluorescence (phosphorescence) 
spectra, f is the fluorescence 
(phosphorescence) life time and indexes 0 and ∞ 
are related to maximal relaxation shift. A gradual 
increase in temperature results in the gradual 
decrease of the r. The experimental max (T) – 
T dependence can be used for the estimation of 
r(T) at each temperature if �f is known. 
 
In real systems (viscose liquids, polymers, 
proteins, membranes, etc.) there is, as a rule, a 
set of r values, relaxation energy and entropy 
activation, and other parameters. This is because 
the analysis of the experimental data on 
relaxation shifts in such systems requires special 
approaches [16]. For instance, if one assumes a 
Gaussian distribution over the free activation 
energies of the reorientation of surrounding 
particles (F

#
), it is possible to find an expression 

to relate the energy activation of relaxation in the 
distribution maximum (Emax) to the second 
moment of the distribution curve (F0

2
). 

 

 
RT

F
ETEapp

2
0

max




   
         (5) 

 

where Eapp (T) is the experimental value of 
apparent energy activation derived from the 
Arrhenius plot, log max (T) – 1/T. Eq. 5 allows 
the estimation of Emax and (F0

2) plotting Eapp(T) 
versus 1/T. 
 

To investigate the molecular dynamics of cotton 
fibres, samples of interest were covalently 
modified with erythrosine thiocynate, which in an 

excited state can emit fluorescence and 
phosphorescence [51]. 

 

As one can see from Fig. 8, starting from T = 100 
K a decrease in intensity of erythrosine 
phosphorescence Jph (1.1') and fluorescence Jfl 
and a parallel increase in the position of the 
maximum of phosphorescence ���

���  (2.2') and 

fluorescence ���
���  (4.4') take place. Taking into 

consideration that the phosphorescence 
parameters are sensitive to processes of 
molecular dynamics in the submillisecond range, 
while fluorescence parameters are sensitive in 
the nanosecond range, we can come to a 
conclusion about the distribution of polar 
relaxation times, rin the samples under 
investigation. This conclusion is confirmed by 
analysis of the experimental dependencies of the 
time of polar environment relaxation in the 
vicinity of excited chromophore (r), derived from 
Eq. 4. Plotting values of apparent energy 

activation ���� = 2.3 R[
�����

�(
�

�
)
] versus 1/T (Fig. 9) 

allowed the calculation of the energy activation of 
relaxation in the distribution maximum (Emax) to 
the second moment of the distribution curve for 
the free activation energies of the reorientation of 
the surrounding particles F0 using Eq.5. The 
obtained values of Emax, taken from data on 
relaxation shift of fluorescence and 
phosphorescence, were found as 42 kJ/mole and 
67 kJ/ mole, correspondingly. The analysis gave 
the F0 value equal 10.5 kJ/mole and 6.7 kJ/mole 
for data on the relaxation shift in the fluorescent 
and phosphorescent spectra, respectively. 

 

3.2 Depth of immersion of 
Phosphorescence Label in Cotton 
Fibre 

 

To elucidate the location of a phosphorescent 
label (erythrosine) covalently incorporated in 
cotton fibre, which was also a source of 
information about the fibre’s local dynamics, a 
method for determining the depth of the 
immersion of a luminescence chromophore (rim) 
was employed [52]. The method is based on 
experimental measurements of rate constants of 
quenching luminescence in conditions of free 
access between chromophore and quencher 
(���) and between immersed chromophore and 

free quencher (���) [21,40,53]. 
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Fig. 8. Temperature dependence of intensity of phosphorescence Jph(1,1') and fluorescence Jfl 
(3,3'), position of  maximum of phosphorescence ���

��� (2,2') and fluorescence ���
���(4,4') 

spectra of erythrosine thiocyanide covalently bound to cotton fibers of  Tashkent 1 (bold line) 
and Tashkent 1a (dotted line) [52]  

 

 
Fig. 9. Dependence of apparent energy activation ���� = 2.3 R[

�����

�(
�

�
)
] on 1/T.  on 1/T. The 

relaxation time values �r(T) were derived from temperature dependence of  ���
��� and ���

���, 

respectively [52] 
 

For the measurement of rim, the following 
equation can be used 
 

���

���
 = ��

�10�exp2(–�(�� −	��)                 (6) 

 

where  = 2 and 1.3Å–1 and а = 28 and 26 for the 
intersystem crossing (ISC) and electron transfer 

(ET) quenching mechanisms, respectively, and с 
≈ 10

–10
 s is the encounter complex’s life time. 

This equation was used to determine a 
phosphorescent label immersion depth ��� =
	(�� − ��) , where R0 is the Van der Waals 
distance between chromophore and quencher 
and rv is the distance between immersed 
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chromophore and quencher in the encounter 
complex. 
 
Fig. 10 shows the effect of various 
concentrations of a quencher on the initial decay 
of phosphorescence of erythrosine covalently 
attached to cotton fibre “Tashkent 1A”, which 
allows the value of phosphorescence life time, 
tph, to be obtained for each concentration of the 
quencher followed by the calculation of the 
quenching constant���  and (��� ) using Stern-

Volmer dependencies. The ratio ( ��� )/( ��� ) 

(Table 3) was employed for the determination of 
the label depth immersion in the cotton fibre 
(Table 4). 
 
Table 3. Rate constants of phosphorescence 
quenching of free eosin and erythrosine after 

attachment to cotton fibers by radical 3 in 
water solution and T =293 K [53] 

 
№№ Fiber kq 
1. Eosin in solution 5,9

.
10

9
 

2. "Tashkent A" 2,2.106 
3. "Tashkent B"*  5,3

.
10

6
 

 -------------------------------"  
 
According to the data presented in Tables 3 and 
4, the depth of the immersion rim of nitroxide 
spin label 1 and triplet label 4 into cotton fibres 
was found to be 10 Å and 8 Å, respectively. 
Therefore the labels’ mobility reflects the 
molecular dynamics of the polymers chains in the 
vicinity of the label location. 
 

The spin labelling method, owing to its ability to 
investigate molecular dynamics, was used to 
solve problems related to cotton fibre properties 
and technology. ESR investigation of spin-
labelled flax shive cellulose undergoing nitration 
revealed that the packing density of 
macromolecules in the less ordered nitrated 
regions was higher than that of virgin flax [54]. 
The following consequence of structural change 
during nutrition was found: The total amount of 
the less ordered regions in cellulose nitrate, 
approximately constant in the intermediate 
nitration stages, which depended on the degree 
of structural disorder in the sample at the 
beginning of nitration, was approximately 
constant in the intermediate nitration stages and 
sharply decreased during the final nitration 
stages because of conformational ordering of the 
side-chain substituents. 
 

The conformational mobility of macromolecule 
chains of various cotton fibres which have 

different moisture contents was studied in the 
temperature range 77-363 K using a spin 
labelling technique [55]. The frequency of 
rotational motion of macromolecular segments 
increased with the increase in temperature and 
moisture content and correlated with the 
deterioration of fibre durability. Cotton grown 
from γ-irradiated seeds showed changes in the 
ESR spectrum which indicated mutational 
changes in the structure of the cellulose [56]. 
Nitroxide sin label I was used with ESR to study 
of the effect of H2O, CH3Cl, and EtOH solvents 
on temperature transitions of plasticised cellulose 
of cottonfibres [57]. It was found that the high-
amplitude motion of the spin label in the 
nanosecond temporarily region appeared at 0°, –
20°, and –30° for H2O, CHCl3, and EtOH, 
respectively. The plasticising capacity of the 
solvents at 0° decreases through the EtOH, H2O, 
CHCl3 series. It was found that the tensile 
strength and parameters of the Zhurkov equation 
for origin and wilt-damaged spin-labelled cotton 
fibres correlate with the concentration of loose 
structure defects and chain mobility measured by 
ESR at –150° to +100° [47]. 

 

Table 4. Values of immersion depth of 

phosphorescence rim =  
vrR 0 for label EIC 

in cotton fibers calculated by Eq. 6 using data 
of Table 3 [53] 

 
№ Label/fiber Quenching 

mechanism 

ICHA ЕТ Average 

1 Eosin in solution 6,6 8,3 7,4 

2 Label x – "Tashkent A" 6,9 8,8 7,8 

3 Label x – "Tashkent B"*    
* Fibers derived from cotton infected with virus Vilton 

 

High resolution spin-labelling EPR at 95 GHz 
was used to characterise hydrogen bonding, 
viscosity and local polarity effects [58]. It was 
shown that loading of the two types of cotton 
fibres with hydrophobic probe Tempo and more 
hydrophilic probe Tempol indicate the presence 
of multiple compartments with different probe 
solubility, dynamics, and polarity. Loading cotton 
with a specific solvent followed by introduction of 
a small nitroxide through a gaseous phase 
resulted in different distributions of the probe in 
cellulose domains/compartments. 

 

Miscellaneous applications of nitroxide radicals in 
the area of cotton fibres and cellulose which are 
not related directly to its molecular dynamics can 
be found in [59-62]. 
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Fig. 10. Time dependence of logarithm of  
phosphorescence of covalently erythrosine 

Jph incorporated in the cotton fiber "Tashkent 
1" in the presence of quencher R III at 

different concentration (in M) 1 – 0; 2 – 2.10-

3M; 3 – 4.10-3 M; 4 – 6.10-3 M; 5 – 8.10-3M; 6 – 
10

-2
 M. Water solution, T = 293 K [53] 

 

4. CONCLUSION 
 
It was shown that physical labels, nitroxide 
radical and chromophore, which exposed 
fluorescence and phosphorescence, immerse to 
cotton fibers and cellulose on 8-10 Å. 
 
Therefore the labels’ mobility reflects local 
molecular dynamics of the fibre chains in the 
vicinity of the labels’ location. Starting from the 
temperature of liquid nitrogen, the ESR and 
luminescence experiments have revealed an 
animation of various molecular dynamic effects, 
such as low-amplitude high-frequency vibration 
and wobbling in the submillisecond temporal 
region, while at an ambient temperature the 
molecular dynamics occur in the nanosecond 
scale. 
 
The free activation energy distribution of mobility 
of the chromophore label were found to be 10,5 
kJ/mole (data on fluorescence) and 6,7kJ/mole 
(data on phosphorescence).  
 

The fibres and cellulose of various origin showed 
similar properties of molecular dynamics, while 
they were different in details. Water and other 
plasticising agents caused the intensification of 
the nanosecond mobility of the samples. ESR 
experiments indicate a change of the parameters 
of molecular dynamics in the steps of in the steps 
of plants maturation and at gamma-radiation. 
The energy activation of mechanic destruction 
was found to be practically the same for all 
samples that indicate that the process occurs as 
a break of chemical bonds. The differences in the 
samples’ duration were caused by differences in 
the fraction of structural defects (n) detected by 
the ESR technique. 
 
The developed combined spin and luminescence 
labelling approach, the efficiency of which is 
demonstrated in this review, can be used in the 
investigation of molecular dynamics and 
microstructure polymers and other complex 
molecular objects. 
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