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Abstract

In this paper, For dual numbers in dual 3-space ID3, we define the new families of curves which
are called dual similar curves in dual 3-space with variable transformation. Then, we prove some
theorems and characterizations about this family, We show that a family of dual similar curves
with wanishing curvatures in dual 3-space ID3.
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1 Introduction

In the differential geometry, special curves have an important role. Especially the partner curves,
i.e., the curves which are related to each other at the corresponding points, have attracted the
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attention of many mathematicians. Well-known partner curves are Bertrand curves, which are
defined by the property that at the corresponding points of two space curves the principal normal
vectors are common. Bertrand partner curves are studied [1, 2, 3, 4]. Ravani and Ku transported
the notion of Bertrand curves to the ruled surfaces and called them Bertrand offsets. Recently, a
new type of special curves in E3 have introduced similar curves and between the space curves ξ
and η such that, at the correponding points of the curves. The tangent lines of ξ is the same of η ,
then ξ is a called a similar curve, and η similar partner curve of ξ, [5, 6]. The set of dual numbers
ID = {ŵ | ŵ = w + εw∗; w, w∗ ∈ IR } is a commutative ring a unit. W.K.Clifford introduced
dual numbers (1849-1870). With the help of dual numbers, Yaglom descirebed geometrical objects
in 3-dimensional space, [7].

In this study, we gdefine a dual similar curves in ID3 by means of this dual curve then we give
some characterizations of these curves. Using vanishing curvatures forms, we obtain a family of
dual similar curves in ID3.

2 Preliminaries

A dual number is a number of the form ŵ = w+ εw∗, where w, w∗ ∈ IR , and ε = (0, 1) arbitrary
”dual unit” satisfy, the relation ε2 = 0, [8, 9]. Addition and scalar multiplication are the operation
on ID defined by the real number. The system ID is a vector space with respect to addition and
scalar multiplication. The product ŵ ⊗ û is the element in ID obtained by multiplying w + εw∗

and u+ εu∗ as if they were polynomials, then using the relation ε2 = 0 to simplify the result.

ŵ ⊗ û = ŵ û = (w + εw∗). (u+ εu∗) = wu+ ε (wu∗ + w∗u) .

Then the dual number w+ εw∗ divided by the dual number u+ εu∗ provided u ̸= 0 can be defined
as

ŵ

û
=

w + εw∗

u+ εu∗ =
w

u
+ ε

w∗u− wu∗

u2
.

The set of

ID3 = ID × ID × ID

= {ŵ | ŵ = (w1 + εw∗
1) + (w2 + εw∗

2) + (w3 + εw∗
3)}

= {ŵ | ŵ = (w1, w2,w3) + ε (w∗
1 , w

∗
2 , w

∗
3)}

= {ŵ | ŵ = w + εw∗}

is a norm on the ring ID. For any ŵ = w+ εw∗, û = u+ εu∗ ∈ ID3,the scalar or inner produt and
the vector prodıct of ŵ and û are defined by,respectively,

⟨ ŵ, û⟩ = ⟨ w, u ⟩+ ε (⟨ w, u∗⟩+ ⟨ w∗, u ⟩) ,

ŵ ∧ û = (ŵ2 û3 − ŵ3û2, ŵ3û1 − ŵ1û3, ŵ1û2 − ŵ2û1),

where ŵi = wi + εw∗
i , û = ui + εu∗

i ∈ ID, 1 ≤ i ≤ 3. If ŵ ̸= 0, the norm ∥ŵ∥ of ŵ = w + εw∗ is
defined by

∥ŵ∥ =
√

⟨ ŵ, ŵ ⟩ = ∥w∥+ ε
⟨ w,w∗⟩
∥w∥ .

If every wi(t) and w∗
i (t), 1 ≤ i ≤ 3 real valued functions, are differentiable the dual space curve

ŵ : I ⊂ IR → ID3

t → ŵ (t) = w1 (t) + εw∗
1 (t) + w2 (t) + εw∗

2 (t) + w3 (t) + εw∗
3 (t)

= w (t) + εw∗ (t)
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in ID3 is differentiable. We call the real part w (t) the indicatrix of ŵ (t). The dual arc-length of
the curve ŵ (t) from t1 to t is defined as

ŝ =

∫ t

t1

∥∥ŵ (t)′
∥∥ dt = ∫ t

t1

∥∥w(t)′
∥∥ dt+ ε

∫ t

t1

⟨ t, w∗⟩ = s+ εs∗, (2.1)

where t is a unit tangent vector of ŵ(t). Now we will obtain equations relatively to the derivatives
of dual Frenet vectors throughout in ID3. Let

ŵ : I ⊂ IR → ID3

s → ŵ (s) = w (s) + εw∗ (s)

be a dual curve with the arc-length parameter s of the indicatrix. Then, the dual unit tangent
vector of

ŵ (s)
dŵ

dŝ
=

dŵ

ds

ds

dŝ
= t̂

With the equation of (2.1), we obtain

ŝ = s+ ε

∫ t

t1

⟨ t, w∗⟩dt.

And from this dŝ
ds

= 1 + ε∆, where the prime denotes differentiation with respect to the arc-length

s of indicatrix and ∆ = ⟨ t, w∗⟩. Since t̂ has constant length 1, its differentiation with respect to ŝ

is given vector dt̂
dŝ

is called curvature function of ŵ (s). We impose the restriction that the function

κ̂ : I −→ ID is never pure dual. Then , the dual unit vector n̂ = 1
κ̂

dt̂
dŝ

is called the principal normal

of ŵ (s). The dual vector b̂ is called the binormal of ŵ (s). The dual vectors t̂, n̂, b̂ are called

the dual Frenet frame of ŵ (s). The equalities relative to derivative of dual Frenet vectors t̂, n̂, b̂
throughout the dual space curve are written in the matrix form

d

dŝ

 t̂
n̂

b̂

=

 0 κ̂ 0
−κ̂ 0 τ̂
0 −τ̂ 0

 t̂
n̂

b̂

 (2.2)

where κ̂ = κ+ εκ∗ is pure dual curvature and τ̂ = τ + ετ∗ is pure dual torsion. (2.2) are called the
Frenet formulae of dual curve in ID3, [8].

3 Dual Similar Curves in ID3 with Variable Transforma-
tions

Definition 3.1. Let α̂( ŝ) be the dual curves in ID3 parameterized by its arc-length ŝ and α̂∗(ŝ∗)
the dual similar partner curve of α̂( ŝ) with an arc-length parameter ŝ∗, with non-zero curvatures

κ̂ (ŝ), τ̂ (ŝ), κ̂∗(ŝ∗), τ̂∗(ŝ∗) and the Frenet frame fied
{
t̂(ŝ), n̂(ŝ), b̂(ŝ)

}
and

{
t̂∗(ŝ∗), n̂∗(ŝ∗), b̂∗(ŝ∗)

}
,

respectively. If there exists a variable transformation

ŝ =

∫
λα̂
α̂∗( ŝ)d ŝ∗

and corresponding relationship between the dual space curves α̂ and α̂∗ such that, at the corresponding
points of the dual curves, the tangent vector of α̂( ŝ) is equal to the tangent vector of α̂∗(ŝ∗), In
this case the tangent vectors are the same for two curves i.e.,

t̂(ŝ) = t̂∗(ŝ∗) (3.1)

for all corresponding values of parameters under the transformation λα̂
α̂∗ . Where λα̂

α̂∗ is arbitrary
function of the arc-length. If we integrate the equality (3.1) we have the following important
theorem:
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Theorem 3.1. The position vectors of the family dual similar curves in ID3 with variable transformation
can be written in the following form.∫

t̂(ŝ(ŝ∗))d(ŝ∗) =

∫
t̂∗(ŝ)λ

α̂∗
α̂ d(ŝ∗).

Theorem 3.2. Let α̂( ŝ) be a dual curve parameterized by arc-length ŝ . Provided that α̂(φ̂ ) be
another parametrization of the curve with parameter φ̂ =

∫
κ̂(ŝ)d(ŝ). Then the unit tangent vector

t̂ of α̂( ŝ) satisfies a dual vector differential equation of third order as follows:

[
1

γ

[
t̂
]′′]′

+

[
1 + γ2

γ

]
(t̂)′ +

γ′

γ
t̂ = 0. (3.2)

where

γ(φ̂) =
τ̂(φ̂)

κ̂(φ̂)
, (t̂)′ =

dt̂

dφ̂
, ( t̂)′′ =

d2t̂

dφ̂2
.

Proof. If we write derivatives given in (2.2) according to φ̂,

dt̂

dφ̂
= κ̂

1

κ̂
n̂ = n̂ (3.3)

dn̂

dφ̂
= −κ̂

1

κ̂
t̂+ τ̂

1

κ̂
b̂ = −t̂+ γ b̂

db̂

dφ̂
= −τ̂

1

κ̂
b̂ = −γn̂

respectively, where γ(φ̂) = τ̂(φ̂)
κ̂(φ̂)

. Then, corresponding matrix form of (3.3) can be obtained t̂′

n̂′

b̂′

 =

 0 1 0
−1 0 γ
0 −γ 0

 t̂
n̂

b̂

 . (3.4)

From the first and second equation of new Frenet derivatives (3.4) we obtain

b̂ =
1

γ(φ̂)

(
t̂′′ + t̂

)
. (3.5)

Substituting the above equation in the last equation (3.4), we obtain a dual vector differential
equation of third order (3.2) as desired. Where the representation of the position vector of an
arbitrary space can be determined as follows

α̂( ŝ) =

∫
1

κ̂(φ̂)
t̂(φ̂)d φ̂ + C and φ̂ =

∫
κ̂(φ̂)

is a constant vector.

Theorem 3.3. Let α̂( ŝ) and α̂∗( ŝ∗) be dual curves in ID3. Then α̂( ŝ) and α̂∗( ŝ∗) are dual
similar curves in ID3 with variable transformation if and only if the principal normal vectors are
the same for all curves

n̂( ŝ) = n̂∗( ŝ∗) (3.6)

under the particular variable transformation

λα̂∗
α̂ =

d ŝ

dŝ∗
=

κ̂ (ŝ)

κ̂∗(ŝ∗)
(3.7)

of arc-lenths.
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Proof. Let α̂( ŝ) and α̂∗( ŝ∗) be dual similar curves in ID3 with variable transformation . Then
differentiating the equation (3.6) with respect to ( ŝ∗) we obtain

d ŝ

dŝ∗
κ̂(ŝ)n̂( ŝ) = κ̂∗( ŝ∗)n̂∗(ŝ∗).

From the above equation leads to the two equation (3.6) and (3.7). Conversly, Let α̂( ŝ) and
α̂∗( ŝ∗) be dual similar curves in ID3 with variable transformation satisfaying (3.6) and (3.7).. By
multipling (3.6) with κ̂∗(ŝ∗) and integrate the result equality with respect to ŝ∗ , we obtain∫

κ̂∗( ŝ∗)n̂∗(ŝ∗)dŝ∗ =

∫
κ̂∗( ŝ∗)n̂∗(ŝ∗)

dŝ∗
d ŝ

d ŝ. (3.8)

From the equations (3.6), (3.7) and (3.8) take the form∫
κ̂∗( ŝ∗)n̂∗(ŝ∗)dŝ∗ =

∫
κ̂( ŝ)n̂(ŝ)dŝ

which means that α̂( ŝ) and α̂∗( ŝ∗) are dual similar curves in ID3 with variable transformation
and proof is completed.

Theorem 3.4. Let α̂( ŝ) and α̂∗( ŝ∗) be dual curves in ID3. Then α̂( ŝ) and α̂∗( ŝ∗) dual similar
curves in ID3 with variable transformation if and only if the binormal vectors are the same for all
curves

b̂(ŝ) = b̂∗(ŝ∗) (3.9)

under arbitrary variable transformation ŝ∗ = ŝ∗( ŝ) of the arc-lengths.

Proof. α̂( ŝ) and α̂∗( ŝ∗) are dual similar curves in ID3 with variable transformation. Then there
are a variable transformation of arc-length such that the dual tangent vectors and the dual principal
normal vectors are the same. From equation (3.1) and (3.6) we obtain

b̂∗(ŝ∗) = t̂∗(ŝ∗)× n̂∗(ŝ∗) = t̂(ŝ)× n̂(ŝ) = b̂(ŝ).

Conversly, let α̂( ŝ) and α̂∗( ŝ∗) are dual curvesin ID3 which the same dual binormal vector under
the arbitrary variable transformation ŝ∗ = ŝ∗( ŝ) of the arc-lengths. Differentiating the equation
(3.9) with respect to ŝ∗ we obtain{

−τ̂∗(ŝ∗)n̂∗(ŝ∗) = −τ̂(ŝ)n̂(ŝ) d ŝ
d ŝ∗

n̂∗(ŝ∗) = n̂(ŝ)

}
(3.10)

from equation (3.10) we obtain

t̂∗(ŝ∗) = n̂∗(ŝ∗)× b̂∗(ŝ∗) = n̂(ŝ)× b̂(ŝ) = t̂(ŝ).

Theorem 3.5. Let α̂( ŝ) and α̂∗( ŝ∗) are dual curves in ID3. Then α̂( ŝ) and α̂∗( ŝ∗) are dual
similar curves with variable transformation if and only if ratios of torsion and curvature are the
same for all curves

κ̂∗( ŝ∗)

κ̂( ŝ)
=

τ̂∗( ŝ∗)

τ̂( ŝ)
, (3.11)

under the particular variable transformations
(
λα̂∗
α̂ = d ŝ

dŝ∗
= κ̂ (ŝ)

κ̂∗(ŝ∗)

)
keeping equal total curvatures,

i.e.,

φ̂∗(ŝ∗) =

∫
κ̂∗( ŝ∗)dŝ∗ =

∫
κ̂( ŝ)dŝ = φ̂(ŝ) of the arc-lengths. (3.12)

5
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Proof. Let α̂( ŝ) and α̂∗( ŝ∗) are dual curves in ID3. Then there exists a variable transformation
of the arc-lengths such that the tangent and the binormal vectors are the same (definition 3.1. and
theorem 3.4.). Differentiating the equations (3.1) and (3.9), we have

κ̂∗( ŝ∗)n̂∗(ŝ∗) = κ̂( ŝ)n̂(ŝ)
dŝ

dŝ∗
(3.13)

− τ̂∗( ŝ∗)n̂∗(ŝ∗) = −τ̂( ŝ)n̂(ŝ)
dŝ

dŝ∗
(3.14)

which leads to the following two equations

κ̂∗( ŝ∗) = κ̂( ŝ)
dŝ

dŝ∗
(3.15)

τ̂∗( ŝ∗) = τ̂( ŝ)
dŝ

dŝ∗
(3.16)

The variable transformation (3.11) is the equation (3.13) after integration. Dividing the above
equations (3.13) and (3.16), we obtain the equation (3.11) under the variable transformations (3.12).
Conversly, Let α̂( ŝ) and α̂∗( ŝ∗) are dual curves in ID3 such that the equation (3.11) is satisfied
under the variable transformation (3.12) of the arclengths. Let now consider Theorem 3.2, the dual
tangent vectors t̂∗(ŝ∗) and t̂(ŝ) of the curves satisfy the following vector differential equations of
third order as follows:[

1

γ(φ̂( ŝ))

[
t̂(φ̂( ŝ))

]′′]′

+

[
1 + (γ(φ̂( ŝ)))2

γ(φ̂( ŝ))

]
(t̂(φ̂( ŝ)))′ +

(γ(φ̂( ŝ)))′

γ(φ̂( ŝ))
t̂(φ̂( ŝ)) = 0. (3.17)[

1

γ∗(φ̂( ŝ∗))

[
t̂∗(φ̂( ŝ∗))

]′′]′

+

[
1 + (γ∗(φ̂( ŝ∗)))

2

γ∗(φ̂( ŝ∗))

]
(t̂∗(φ̂( ŝ∗)))

′ +
(γ∗(φ̂( ŝ∗)))

′

γ∗(φ̂( ŝ∗))
t̂∗(φ̂( ŝ∗)) = 0.

(3.18)
where

γ(φ̂( ŝ)) =
τ̂(φ̂( ŝ))

κ̂(φ̂( ŝ))
, γ∗(φ̂( ŝ)) =

τ̂(φ̂( ŝ∗))

κ̂(φ̂( ŝ∗))
, φ̂ =

∫
κ̂( ŝ) and φ̂∗ =

∫
κ̂( ŝ∗) .

The equation (3.13) causes
γ∗(φ̂( ŝ)) = γ(φ̂( ŝ))

under the variable transformations φ̂( ŝ) = φ̂( ŝ∗). So that the equations (3.17) and (3.18) under
the equation (3.11) and the transformation (3.12) are the same. Hence the solution is the same,
i.e., the tangent vectors are the same which completes the proof of the theorem.

Example 3.6. Euler Spirals were discovered indepently by three researchers. In 1694, Bernoulli
wrote the equations for the Euler spiral for the first time, but did not draw the spirals or compute
them numerically. In 1774, Euler re-described their properties, and derived a series expansion to
the curve’s integrals. Later, In 1871, he also computed the spiral’s end points. The curves were
re-discovered 1891 for the third time by Talbot, who used them to design railway tracks [10]. An
Euler spiral is curve whose curvature changes linearly with its curve length (the curvature of a
cicular curve is equal to the reciprocal of the radius). Euler spirals are also commonly referred to
as spiros, clothoids or Cornu spirals. Moreover, Euler spiral in railroad/highway engineering for
connecting and transiting the geometry between a tangent and a circular curve. Let us consider the

Euler Spiral
−→
γ̂ (s) = (γ1(s), γ2(s), γ3(s)) of E3

γ1(ŝ) =
3
5

∫
sin(ŝ2 + 1)dŝ

γ2(ŝ) =
3
5

∫
cos(ŝ2 + 1)dŝ

γ3(ŝ) =
4
5
ŝ



6
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Then the dual unit tangent vector t̂ of γ(s) satisfies a vector differential equation of third order
given by [

1

γ(θ̂)

[
t̂(θ̂)

]′′]′

+

[
1 + γ2(θ̂)

γ(θ̂)

]
(t̂(θ̂))′ +

γ′(θ̂)

γ(θ̂)
t̂(θ̂) = 0.

Proof. We are calculated this curve’s curvature function with help of Mathematica Programme
κ̂ = 6ŝ

5
and τ̂ = − 8ŝ

5
. The Frenet -Serret frame of the curve γ = γ(s) may be written by the aid

Mathematica Programme as fallows:


t̂(ŝ) = ( 3

5
sin(ŝ2 + 1), 3

5
cos(ŝ2 + 1), 4

5
),

n̂(ŝ) = ( cos(ŝ2 + 1), − sin(ŝ2 + 1), 0),

b̂(ŝ) = ( 4
5
sin(ŝ2 + 1), cos(ŝ2 + 1),− 3

5
).


Lemma 3.7. The family of Euler Spiral Forms a family of dual similar curves with variable
transformations. We can deduce the position vector of Euler Spiral curve using the definition of
dual similar curves with variable transformation as follows:

γ (v̂) = (γ1(v̂), γ2(v̂), γ3(v̂))

= (
3

5

∫
sin(v̂2 + 1)dv̂,

3

5

∫
cos(v̂2 + 1)dv̂,

4

5
v̂)

where ŝ = v̂ is the arc-length of Euler Spiral and the curvature is κ̂x(v̂) =
6v̂
5
. The dual unit tangent

vectors of Euler Spiral takes the form:

t̂(v̂) = (
3

5
sin(v̂2 + 1),

3

5
cos(v̂2 + 1),

4

5
),

from theorem 3.1., we can write as the following,

γ∗ (ŝ∗) =

∫ [
3

5
sin

[
(v̂(ŝ∗))

2 + 1
]
,
3

5
cos

[
(v̂(ŝ∗))

2 + 1
]
,
4

5

]
dŝ∗

where ŝ∗ = ŝ. From the equation (3.15), we obtain

dŝ =
κ̂∗

κ̂
dŝ∗

or

ŝ(ŝ∗) =

∫
κ̂∗

κ̂
dŝ∗.

If we put the curvature κ̂∗ = κ̂(ŝ), ŝ∗ = ŝ, we have v̂(ŝ∗) =
∫
κ̂(ŝ)dŝ. Then the position vector of

Euler Spiral with arbitrary curvature κ̂(ŝ) takes the following form:

γ (v̂) =

∫
(
3

5
sin(

∫
κ̂(ŝ)dŝ+ 1),

3

5
cos(

∫
κ̂(ŝ)dŝ+ 1),

4

5
)dŝ.

4 Conclusion

In dual 3-space ID, the dual similar curves are defined and some properties of these curves are
obtained. It is shown that dual curves with vanishing curvatures form the families of dual similar
curves.
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