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Abstract 
 

This paper presents a quantitative analysis on the nonlinear behavior of a forced and self-excited beam 
coupled with a positive position feedback controller PPF. Such that the external excitation is a harmonic 
motion on the support of the cantilever beam. Self-excitation is caused by fluid flow and modelled by a 
nonlinear damping with a negative linear part (Rayleigh’s function). Self-excitation can build up 
oscillations even in the absence of external forces. Also self-excitation can interact with the external 
excitation and lead system to vibrate with a quasi-periodic motion and to be unstable. This problem is 
treated here by using PPF controller. It is assumed that the beam vibrates in the presence of external 
harmonic excitation close to its natural frequency and one to one internal resonance. Multiple scales 
perturbation technique MSPT is used to get a first order approximate solution of this system. The stability 
of the steady state solution is investigated by using the frequency-response equations. The effects of 
different controller parameters on beam vibrations are studied and optimum conditions for system 
operation are deduced. Finally, all analytical results are validated by using numerical solution. 
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NOMENCLATURES 
 

 : Displacement, velocity and acceleration of the beam, respectively. 

 : Displacement, velocity and acceleration of the controller, respectively. 

  : Negative viscous damping coefficient of the beam. 

 : The cubic damping coefficient of the beam. 

 : Ratio of the natural frequency of the composite beam with the lumped mass with respect to 
that of the reference beam without the lumped mass. 

 : Coefficient describes the beam geometrical nonlinearity.   
 : Coefficient describes the beam inertia nonlinearity. 

 : Amplitude of the support motion. 
 : Frequency of the support motion. 
 : Constant. 

 : The control signal gain. 

 : Linear damping coefficient of the controller. 

 : Controller natural frequency. 

 : Cubic nonlinearity coefficient of the controller. 

 : Positive control feedback gain. 
 

1 Introduction 
 
In mechanics, self-excited oscillations come from nonlinearity of the exciting force through absorption of 
energy from a continuous flow of energy. Dry friction and fluid flow are well-known sources of self-excited 
oscillations. An oscillations can be built up even in the absence of external forces due to self-excitations. 
 
The quenching phenomenon of self-excited systems was extensively studied by Abadi [1]. El-Badawy and 
Nasr El-Deen [2] applied a nonlinear controller based on saturation phenomenon to suppress vibrations of a 
self-excited system modeled by the van der Pol oscillator. Analytical solutions illustrated good vibration 
suppression when system is perfectly tuned i.e. the frequency of the controller was half of the fundamental 
plant’s frequency. Jun et al. [3] applied a nonlinear saturation controller NSC with van der Pol oscillator and 
additionally investigated the influence of feedback gains by using perturbation and direct numerical 
integration solutions. In [4], the behavior of a micro beam is improved by using a nonlinear feedback 
controller. Also authors presented a novel control design that regulates the pass band of the considered micro 
beam. Golnaraghi [5] proposed a passive vibration controller for a cantilever beam by using a sliding mass-
spring-dashpot mechanism placed at the free end of a cantilever. Duquette [6,7] presented a similar approach 
which uses a DC motor with a pendulum attached to the motor shaft to play the controller’s role. Their 
results showed that this controller is most effective in controlling large amplitude and low frequency 
oscillations which are typical for large flexible structures. A saturation controller which uses standard 
(piezoelectric) PZT patches was applied to a nonlinear system in [8]. Authors deduced that NSC is globally 
stable. Pai et al. [9] used a NSC to suppress steady state vibrations of a cantilever beam with quadratic 
nonlinearities in presence of 2:1 internal resonances. Also authors used PZT patches as actuators and 
sensors. Systems with self and parametric or external excitations were intensively studied in [10-12]. 
Authors found that interactions between self and periodically excited systems lead to a quasi-periodic 
response, but in selected frequency domains the frequency quenching phenomenon is seen to take place. 
Abadi [1] and Verhulst [13] studied extensively the quenching phenomenon of self-excited systems which 
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have an important practical meanings in fluid-structure interactions. Szabelski and Warminski [14–16] 
studied a self-exited system under parametric and external excitation sources. They found that the frequency 
locking zones may change radically for some combinations of parameters, small external force may change 
the system’s response and internal loop occurs in the amplitude-frequency response curve. Moreover, 
interactions between self and parametric or external excitations may lead to chaotic or hyper chaotic 
dynamics as shown in [17,18]. In [19] authors applied NSC for a forced and self-excited strongly nonlinear 
beam structure to reduce self and externally excited vibrations. They found that the system might lose 
stability when the two type excitations interact near the fundamental resonance zone. Jian Xu and his co-
authors in [20] improved a nonlinear saturation controller and utilized it to reduce high-amplitude vibrations 
of a flexible, geometrically nonlinear beam-like structure. 
 
In this work, Positive position feedback PPF controller is applied to reduce the vibrations of a forced and 
self-excited nonlinear beam. Systems with self-excitation are common in applications of solid or fluid 
mechanics [1]. Self-excitation can build up oscillations even in the absence of external forces. Also self-
excitation can interact with the external excitation and lead system to vibrate with a quasi-periodic motion 
and to be unstable. External excitation is a harmonic excitation on the support of the cantilever beam. Self-
excitation is caused by fluid flow and modelled by a nonlinear damping with a negative linear part. MSPT is 
applied to obtain a first-order approximate solution in the simultaneous resonance case. The equilibrium 
solution curves are plotted for various values of controller parameters. The stability of the steady state 
solution is investigated by using frequency-response equations. The approximate analytical solution is 
verified numerically. 
 

2 Model of the Structure 
 
The model of the beam is presented in Fig. 1 as given in [19]. Where M is a lumped mass attached at the end 
of the beam, L, h are the length and the height of the beam respectively, and b is the width of the beam.  
 

 
 

Fig. 1. Model of the nonlinear beam with self and external excitations 
 
The cantilever beam is mounted on an armature of an electro dynamic shaker which is a source of excitation 
along the X axis. In practice, for example, this model can be used to describe the wing of a plane such that, 
the wing of plane is suspended to external excitation from plane body and self-excitation from the wind 
flow. The external excitation is written as, 
 
  (1) 
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The differential equation of the beam (the plant) is given in [19] in the dimensionless form as follows: 
 
  (2) 

 
Self-excitation is represented by a nonlinear damping with a negative linear part (Rayleigh’s function). A 
control force U is added to right hand side of differential equation (2). In this work positive position 
feedback controller (PPF) is investigated so the control force U is given by 
 
  (3) 

 
The equation which governs the dynamics of this controller (PPF) is suggested as,  
 
 

 (4) 

 

Where  is the feedback signal from the beam. So the closed loop system equations are: 

 
  (5) 

   
  (6) 

 
3 Perturbation Analysis 
 
Using multiple scales perturbation technique (MSPT) [21]. Assume that the system is weakly nonlinear. We 
can obtain a first-order approximate solution of equations (5) and (6) by seeking the solution in the forms 
 
  (7) 

   
  (8) 

 

Such that is small dimensionless parameter  are fast and slow time scales 

respectively. Time derivatives in terms of  are: 
 

 (9) 

 
To obtain a uniformly valid approximate solution of this problem, we order the dimensionless parameters of 
the system by the formal small parameter  as follows: 
 

 (10) 

  
Substitute equations (7-10) into (5) and (6) and equate coefficients of like powers of . So we can obtain the 
following set of ordinary differential equations 
 
  (11) 

 
  (12) 
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 (13) 

 
  

   (14) 

 
The general solution of (11) and (12) can be expressed in the forms 
 
  (15) 

   
  (16) 

   

The coefficients  are unknown functions of . They can be determined later by eliminating 
the secular and small devisor terms. By Substituting (15), (16) in to (13), (14) we can get, 
 
 

 (17) 
 

 
 

 (18) 

   
Where cc stands for the complex conjugate of the preceding terms and the over bar denotes the complex 
conjugate functions. The particular solution of (17) and (18) are: 
 
 

 (19) 

 
  

 
 (20) 

 
From (19), (20) we can deduce that the resonance conditions in this approximation order are: 
 

(I)  Primary resonance:    

(ii)  Internal resonance:   

(iii)  Simultaneous resonance:  and    
 

In this paper we study the case of simultaneous resonance (  and ). Closeness of 

simultaneous resonance can be described by using detuning parameters  and  as follows 
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  (21) 

   
By inserting (21) into the secular and small devisor terms in (17) and (18), one finds the solvability 
conditions 
 

 (22) 

 
 

 

  (23) 

 

By dividing (22) and (23) by  and  respectively, we can get 
 
 

 (24) 

  

 
(25) 

 
To analyze the solution of (24) and (25), express A and B in polar form as follows 
 
 

 (26) 

  

 
(27) 

 

Where prime denotes derivative w.r.t.,  and  are the steady-state displacement amplitudes of the 

beam and controller, respectively and  are the phases of the motion. By inserting (26) and (27) into 
(24) and (25) and returning each scaled parameter back to its real value we can get 
 
 

 (28) 

 
 

 
(29) 

 
  

 
 
 
 

 
(30) 

 
 (31) 
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Where dot represents derivative w.r.t.  and 
 
  (32) 

  

To eliminate  and  from equations (29) and (31), differentiate (32) w.r.t. t. So we can get 
 
  (33) 

 
By inserting (33) in to (29) and (31) respectively, we can get  
 
 

 (34) 

  

 (35) 

 
The autonomous Amplitude-phase modulating equations can be obtained from (28), (30), (34) and (35) as 
follows  
 
 

 (36) 

4 Equilibrium Solution 
 
To obtain the steady state response of both the beam and the controller we must set the values 
 
  (37) 

 
By Substituting (37) into (33) we can get 
 
  (38) 

 
By substituting (37) and (38) in to (28) to (31) we can get 
 
  (39) 
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  (40) 

   
  (41) 

   
  (42) 

   

From (41) and (42) we can get values of  and  as follows 
 
 

 (43) 

 
  

 
 (44) 

 
By substituting (43) and (44) into (39) and (40) respectively, we can obtain 
 
 

 (45) 

 
  

 

 (46) 

 
By squaring and adding (43) and (44) we can deduce the first closed form equation as follows 
 
 

 (47) 

 

 (48) 

 
Equations (47) and (48) are the frequency response equations. They describe the system steady state 

solutions behavior for the practical case i.e. ( ). 

 

5 Stability Analysis 
 
Jacobian matrix J of the right-hand side of equations (36) can be used to study the stability of the equilibrium 
solution. To derive the stability criteria, we need to examine the behavior of small deviations from the 
equilibrium solutions. Thus we assume that 
 

 
 (49) 
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Such that  denotes the equilibrium solution which satisfy closed form equation (47) and 

(48) and  are perturbations which are assumed to be small compared to . 

By substituting (49) into (36) and keeping linear terms in  we can get, 
 

  (50) 

   
  (51) 

   
  (52) 

   
  (53) 

 
The characteristic determinant of equations (50) to (53) can be expressed as follows, 
 
 

 (54) 

 
Thus, the stability of the steady-state solution depends on the eigenvalues  of the Jacobian matrix , 

which can be obtained from (54). Such that  where  and  are given in the 

appendix. 
 

6 Results and Discussion  
 
In this section the steady-state response of the system is discussed extensively. The dimensionless 

parameters of the system take the values , , , , 
, . The amplitude and frequency of excitation vary respectively, in these ranges 

 and  approximately. The PPF controller parameters are chosen as , 

, ,  and  unless specifying otherwise. In the obtained figures solid 
lines correspond to stable solutions while dashed lines correspond to unstable. 
 
6.1 Nonlinear composite beam without control 
 
Self-excitation in the uncontrolled system can build up oscillations even in the absence of external forces 

 as shown in Fig. 2. If we compare between Figs. 2(a) and 2(b) we can see that, When Self-
excitation increases, the transient region in the resulted oscillations decreases and the steady state 
displacement amplitude increases. 
 

When there is an external excitation to the system  as in Fig. 3. Self-excitation can interact with the 
external excitation and may lead system to vibrate with a quasi-periodic motion and to be unstable. When 
the effect of external excitation is greater than the effect self-excitation, the beam vibrates periodically. 
However, the beam vibrates with a quasi-periodic motion if the effect of self-excitation is greater than the 
effect of external excitation. It can be seen from Figs. 3(a) and 3(b) that, when self-excitation increases in 
Fig. 3(b) than that in Fig. 3(a), the beam’s motion becomes a quasi-periodic motion.  



Fig. 4 presents the frequency response curve (FRC) of the beam without control under different values of 

amplitude of the support motion . It can be seen that there are unstable regi
corresponds to a quasi-periodic motion. In these unstable regions, roots of the characteristic equation are 
conjugate complex numbers with positive real parts. In stable regions the beam vibrates periodically. It can 
be seen that the steady state displacement amplitude of the beam increases as the Amplitude of the support 

motion  increases. Also the curve is bent to the left denoting a softening effect and the jump phenomena 
appear clearly due to the domination of the nonlinearity. We try to treat these problems by using PPF 
controller.  
 

 

Fig. 2. (a) Time history of the uncontrolled system at 

system at  and (c) Comparison between two cases (a) and (b) all at 

 

Fig. 3. (a) Time history of the uncontrolled system at 

system at 
 

Fig. 4. FRC of the uncontrolled beam control under different values of amplitude of the support 
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. It can be seen that there are unstable regions in the FRC curve which 
periodic motion. In these unstable regions, roots of the characteristic equation are 

conjugate complex numbers with positive real parts. In stable regions the beam vibrates periodically. It can 
the steady state displacement amplitude of the beam increases as the Amplitude of the support 

increases. Also the curve is bent to the left denoting a softening effect and the jump phenomena 
nation of the nonlinearity. We try to treat these problems by using PPF 

  

. (a) Time history of the uncontrolled system at , (b) Time history of the uncontrolled 

and (c) Comparison between two cases (a) and (b) all at 
 
 

  

. (a) Time history of the uncontrolled system at , (b) Time history of the uncontrolled 

 and (c) Poincare map all at  

 
 

. FRC of the uncontrolled beam control under different values of amplitude of the support 
motion  

 
 
 

; Article no.BJMCS.26871 
 
 
 

10 
 
 

4 presents the frequency response curve (FRC) of the beam without control under different values of 

ons in the FRC curve which 
periodic motion. In these unstable regions, roots of the characteristic equation are 

conjugate complex numbers with positive real parts. In stable regions the beam vibrates periodically. It can 
the steady state displacement amplitude of the beam increases as the Amplitude of the support 

increases. Also the curve is bent to the left denoting a softening effect and the jump phenomena 
nation of the nonlinearity. We try to treat these problems by using PPF 

  

, (b) Time history of the uncontrolled 

 

             

, (b) Time history of the uncontrolled 

. FRC of the uncontrolled beam control under different values of amplitude of the support 



6.2 Nonlinear composite beam with 
 
The effectiveness of PPF controller on a forced and self

minimize the beam response close to its natural frequency 

parameters such that its natural fre
chosen properly. 
 
Fig. 5 presents the time history and the Poincare map for the controlled beam under different values of self

excitation ( ) at 
self-excitation of the primary system increases to the extent that a quasi

the controller damping coefficient 
is larger than that in Fig. 5(a), the system vibrations remain stable and periodic. If we compare 
Fig. 3, we can see that the PPF controller successes in elimination of effects of the self
 
Fig. 6 presents a comparison between FRC of an uncontrolled beam and a controlled beam. We get a good 
vibration suppression bandwidth as indicated by the dashed rectangle in the
stable for a larger range of excitation frequency. 
 

 

Fig. 5. (a) The time history of the controlled system at 

controlled system at 
 

Fig. 6. Comparison between FRC of an uncontrolled beam and a controlled beam
 
Fig. 7 presents a numerical simulation of the FRC of the beam and controller, respectively by using 
numerical integration of original equations (5) and (6). The numerical results for steady sate solutions are 
plotted as small circles. If we compare 
and the effect of self-excitation is eliminated.
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Nonlinear composite beam with positive position feedback (PPF) controller

The effectiveness of PPF controller on a forced and self-excited nonlinear beam is studied in this section. To 

minimize the beam response close to its natural frequency , we take PPF controller 

parameters such that its natural frequency  and . Other controller parameters are 

5 presents the time history and the Poincare map for the controlled beam under different values of self

. It can be seen that system vibrates with a stable periodic motion. If 
excitation of the primary system increases to the extent that a quasi-periodic motion occurs, we can tune 

 to avoid this type of motion. However self-excitation 
5(a), the system vibrations remain stable and periodic. If we compare 

he PPF controller successes in elimination of effects of the self-excitation.

6 presents a comparison between FRC of an uncontrolled beam and a controlled beam. We get a good 
vibration suppression bandwidth as indicated by the dashed rectangle in the figure. In addition, system is 
stable for a larger range of excitation frequency.  

. (a) The time history of the controlled system at , (b) The time history of the 

 and (c) Poincaré map, all at 

 
 

. Comparison between FRC of an uncontrolled beam and a controlled beam

7 presents a numerical simulation of the FRC of the beam and controller, respectively by using 
numerical integration of original equations (5) and (6). The numerical results for steady sate solutions are 
plotted as small circles. If we compare Figs. 5 and 6 with Figs. 2 to 4, we can see a good vibration reduction 

excitation is eliminated. 
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position feedback (PPF) controller 

excited nonlinear beam is studied in this section. To 

, we take PPF controller 

. Other controller parameters are 

5 presents the time history and the Poincare map for the controlled beam under different values of self-

. It can be seen that system vibrates with a stable periodic motion. If 
periodic motion occurs, we can tune 

 in Fig. 5(b) 
5(a), the system vibrations remain stable and periodic. If we compare Fig. 5 with 

excitation. 

6 presents a comparison between FRC of an uncontrolled beam and a controlled beam. We get a good 
figure. In addition, system is 

 

, (b) The time history of the 

 

. Comparison between FRC of an uncontrolled beam and a controlled beam 

7 presents a numerical simulation of the FRC of the beam and controller, respectively by using 
numerical integration of original equations (5) and (6). The numerical results for steady sate solutions are 

2 to 4, we can see a good vibration reduction 



The effect of varying the amplitude of the support motion 
illustrated in Fig. 8. This figure shows that the minimum steady state displacement amplitude of the beam 

occurs at . So PPF controller successes in vibration suppression for a suitable bandwidth of excitation 

frequency . When  increases the peak displacement amplitudes increase also FRC bends away from the 
linear curves resulting in multivalued regions by jump phenomenon
 

 

Fig. 7. Numerical simulation of FRC of (a) beam and (b) controller at 

 

 
Fig. 8. FRC of (a) Beam and (b) Controller under different values of amplitude of the support motion 

 

Fig. 9 shows the effect of the controller’s Linear damping coefficient 

controller, respectively. The figure shows that, for large values of 
exhibit linear responses in addition, the jumping phenomenon, multivalued solution regions and bifurcation 

points disappear. Also beam and controller peak displacement amplitudes decrease when 
reduces the controller overload risk. So existence of multivalued solution region, jump phenomenon and 

bifurcation point depends on value of 
risk. 
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The effect of varying the amplitude of the support motion  on the FRC of the beam and the controller is 
8. This figure shows that the minimum steady state displacement amplitude of the beam 

. So PPF controller successes in vibration suppression for a suitable bandwidth of excitation 

increases the peak displacement amplitudes increase also FRC bends away from the 
linear curves resulting in multivalued regions by jump phenomenon. 

          

. Numerical simulation of FRC of (a) beam and (b) controller at 

 

             

. FRC of (a) Beam and (b) Controller under different values of amplitude of the support motion 
 

9 shows the effect of the controller’s Linear damping coefficient  on FRC of the beam and the 

controller, respectively. The figure shows that, for large values of  both the beam and the controller 
exhibit linear responses in addition, the jumping phenomenon, multivalued solution regions and bifurcation 

points disappear. Also beam and controller peak displacement amplitudes decrease when  in
reduces the controller overload risk. So existence of multivalued solution region, jump phenomenon and 

bifurcation point depends on value of  and  is an important parameter in reducing controller’s overload 
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on the FRC of the beam and the controller is 
8. This figure shows that the minimum steady state displacement amplitude of the beam 

. So PPF controller successes in vibration suppression for a suitable bandwidth of excitation 

increases the peak displacement amplitudes increase also FRC bends away from the 

 

 and 

 

. FRC of (a) Beam and (b) Controller under different values of amplitude of the support motion 

on FRC of the beam and the 

both the beam and the controller 
exhibit linear responses in addition, the jumping phenomenon, multivalued solution regions and bifurcation 

increases which 
reduces the controller overload risk. So existence of multivalued solution region, jump phenomenon and 

oller’s overload 



 
Fig. 9. FRC of (a) Beam and (b) Controller at different values of linear damping coefficient of the 

 

Fig. 10 presents the effects of the control signal gain 

Fig. 10(a) shows that vibration suppression bandwidth increases as control signal gain 

controller peak displacement amplitudes decrease as control signal gain 
 

 

Fig. 10. FRC of (a) Beam and (b) Controller under different values of the control signal gain 
 

The effects of positive control feedback gain 

respectively. In Fig. 11(a), it can be seen that vibration suppression bandwidth increases as feedback gain 

increases so increasing  is good for vibration suppression process. Feedback gain 

control signal gain  on FRC of beam. But 

increase as feedback gain  increases which also increases th

widen the vibration suppression bandwidth by increasing 
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. FRC of (a) Beam and (b) Controller at different values of linear damping coefficient of the 
controller  

10 presents the effects of the control signal gain  on FRC of the beam and the controller, respectively. 

10(a) shows that vibration suppression bandwidth increases as control signal gain  increases. Also 

controller peak displacement amplitudes decrease as control signal gain  increases. 

           

. FRC of (a) Beam and (b) Controller under different values of the control signal gain 

The effects of positive control feedback gain  on FRC of beam and controller are shown in 

11(a), it can be seen that vibration suppression bandwidth increases as feedback gain 

is good for vibration suppression process. Feedback gain  has similar effect to 

on FRC of beam. But Fig. 11(b) shows that, controller peak displacement amplitudes 

increases which also increases the risk of controller overload. So it is better to 

widen the vibration suppression bandwidth by increasing . 

 
 
 

; Article no.BJMCS.26871 
 
 
 

13 
 
 

 

. FRC of (a) Beam and (b) Controller at different values of linear damping coefficient of the 

on FRC of the beam and the controller, respectively. 

increases. Also 

 

. FRC of (a) Beam and (b) Controller under different values of the control signal gain   

on FRC of beam and controller are shown in Fig. 11, 

11(a), it can be seen that vibration suppression bandwidth increases as feedback gain  

has similar effect to 

11(b) shows that, controller peak displacement amplitudes 

e risk of controller overload. So it is better to 



 
Fig. 11. FRC of (a) Beam and (b) Controller under different values of positive control feedback gain 

 

In Figs. 6-12, it is clear that there is good vibration suppression around 

 apart from 0 there are two peak displacement amplitudes of beam. To overcome this problem we can 

tune the controller natural frequency as studied in 

changing the internal detuning parameter 

beam steady state displacement amplitude occurs when 
recommend to tune the controller natural frequency to be equal to excitation frequency for dynamical 
systems which are subjected to variable excitation frequency out illustrated vibration suppression bandwidth 
in Fig. 6. 
 

 

Fig. 12. FRC of (a) Beam and (b) Controller under different values of internal detuning parameter 
 
Force-amplitude response curve for the beam and the controller before and after control is presented in 

Fig. 13 under the condition 
and support motion displacement amplitude (excitation force amplitude) before using controller is a 
nonlinear relation which may produce large beam displacement amplitudes for a slight increase in support 
motion displacement amplitude and may contain jump phenomenon and unsta

control under the condition 

Abdelhafez and Nassar; BJMCS, 17(4): 1-19, 2016; Article no.BJMCS

             

. FRC of (a) Beam and (b) Controller under different values of positive control feedback gain 
  at   

12, it is clear that there is good vibration suppression around  however, for large values of 

apart from 0 there are two peak displacement amplitudes of beam. To overcome this problem we can 

tune the controller natural frequency as studied in Fig. 12. The controller natural frequency can be t

changing the internal detuning parameter  depending on . Fig. 12(a) clears that minimum 

beam steady state displacement amplitude occurs when  i.e. ( ). From this result we can 
recommend to tune the controller natural frequency to be equal to excitation frequency for dynamical 
systems which are subjected to variable excitation frequency out illustrated vibration suppression bandwidth 

         

. FRC of (a) Beam and (b) Controller under different values of internal detuning parameter 

amplitude response curve for the beam and the controller before and after control is presented in 

 for controlled beam. Relation between beam displacement amplitudes 
isplacement amplitude (excitation force amplitude) before using controller is a 

nonlinear relation which may produce large beam displacement amplitudes for a slight increase in support 
motion displacement amplitude and may contain jump phenomenon and unstable solution regions. After 

, the relation became linear and the beam displacement amplitude 
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. FRC of (a) Beam and (b) Controller under different values of positive control feedback gain 

however, for large values of 

apart from 0 there are two peak displacement amplitudes of beam. To overcome this problem we can 

12. The controller natural frequency can be tuned by 

12(a) clears that minimum 

). From this result we can 
recommend to tune the controller natural frequency to be equal to excitation frequency for dynamical 
systems which are subjected to variable excitation frequency out illustrated vibration suppression bandwidth 

 

. FRC of (a) Beam and (b) Controller under different values of internal detuning parameter  

amplitude response curve for the beam and the controller before and after control is presented in           

for controlled beam. Relation between beam displacement amplitudes 
isplacement amplitude (excitation force amplitude) before using controller is a 

nonlinear relation which may produce large beam displacement amplitudes for a slight increase in support 
ble solution regions. After 

, the relation became linear and the beam displacement amplitude 
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that controller efficiency in vibration suppression decreases but the controlled beam displacement 

amplitudes still smaller than that of uncontrolled beam. Fig. 14 verifies the result in Fig. 13 at
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tuning controller natural frequency i.e. 
 
If PPF controller is properly tuned, the vibration suppression process is well and peak displacement 

amplitudes won’t occur practically. In case of mistuning (

or ( ) to be sure that the system is stable, see 
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In this paper, positive position feedback PPF controller is applied to a nonlinear beam with self and external 
excitations in primary resonance case and presence of 1:1 internal resonance. Analytical and numerical 
results which have been obtained show that: there is a good vibration suppression bandwidth especially at 

3. There is a good vibration suppression in spite of increasing of support motion 

4. When linear damping coefficient of controller  increase, the peak displacement 
amplitudes of the beam and controller decrease and controller overload risk decreases. Vibration suppression 
bandwidth can be increased by increasing controller or/and feedback gains. So it is better to widen the 

vibration suppression bandwidth by increasing  as increasing  increases the controller overload risk. 
PPF controller successes in elimination of self-excitation effects, see Fig. 5. 
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