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Abstract

This paper presents a quantitative analysis on the nonliesavior of a forced and self-excited beam
coupled with a positive position feedback controller PPF. $hahthe external excitation is a harmonic
motion on the support of the cantilever beam. Self-excitatiaraused by fluid flow and modelled by a
nonlinear damping with a negative linear part (Rayleighiaction). Self-excitation can build up
oscillations even in the absence of external forces. A¢ffeegcitation can interact with the exterrial
excitation and lead system to vibrate with a quasi-perinodition and to be unstable. This problem is
treated here by using PPF controller. It is assumed lleabéam vibrates in the presence of external
harmonic excitation close to its natural frequency and tonene internal resonance. Multiple scales
perturbation technique MSPT is used to get a first orpleroximate solution of this system. The stability
of the steady state solution is investigated by usliregfrequency-response equations. The effects of
different controller parameters on beam vibrations are studield optimum conditions for system
operation are deduced. Finally, all analytical resuktsvalidated by using numerical solution.
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NOMENCLATURES

Ty, 1,4 Displacement, velocity and acceleration of the be@spectively.

Xo, o, Xy Displacement, velocity and acceleration of the colgrprespectively.

a : Negative viscous damping coefficient of the beam.

G : The cubic damping coefficient of the beam.

wy : Ratio of the natural frequency of the composite beam withuthped mass with respect to
that of the reference beam without the lumped mass.

" : Coefficient describes the beam geometrical nonlinearity.

1) : Coefficient describes the beam inertia nonlinearity.

Ty : Amplitude of the support motion.

Q : Frequency of the support motion.

1z : Constant.

N : The control signal gain.

Qg : Linear damping coefficient of the controller.

wWo : Controller natural frequency.

Yo : Cubic nonlinearity coefficient of the controller.

Ao : Positive control feedback gain.

1 Introduction

In mechanics, self-excited oscillations come from nonlimgarf the exciting force through absorption of
energy from a continuous flow of energy. Dry friction ahdldf flow are well-known sources of self-excited
oscillations. An oscillations can be built up even in theemce of external forces due to self-excitations.

The quenching phenomenon of self-excited systems was meignstudied by Abadi [1]. EI-Badawy and
Nasr El-Deen [2] applied a nonlinear controller based onaé&iorphenomenon to suppress vibrations of a
self-excited system modeled by the van der Pol osmill&&nalytical solutions illustrated good vibration
suppression when system is perfectly tuned i.e. the freguef the controller was half of the fundamental
plant’s frequency. Jun et al. [3] applied a nonlinear saturaontroller NSC with van der Pol oscillator and
additionally investigated the influence of feedback gaigsubing perturbation and direct numerical
integration solutions. In [4], the behavior of a micro beianimproved by using a nonlinear feedback
controller. Also authors presented a novel control design thalates the pass band of the considered micro
beam. Golnaraghi [5] proposed a passive vibration contraltea cantilever beam by using a sliding mass-
spring-dashpot mechanism placed at the free end of dewent Duquette [6,7] presented a similar approach
which uses a DC motor with a pendulum attached to the motétr tehplay the controller’s role. Their
results showed that this controller is most effectivecamtrolling large amplitude and low frequency
oscillations which are typical for large flexible stues. A saturation controller which uses standard
(piezoelectric) PZT patches was applied to a nonlisgstem in [8]. Authors deduced that NSC is globally
stable. Pai et al. [9] used a NSC to suppress steatty \staations of a cantilever beam with quadratic
nonlinearities in presence of 2:1 internal resonances. Algbors used PZT patches as actuators and
sensors. Systems with self and parametric or extereitations were intensively studied in [10-12].
Authors found that interactions between self and perioglicaicited systems lead to a quasi-periodic
response, but in selected frequency domains the frequency quenbkeimgmenon is seen to take place.
Abadi [1] and Verhulst [13] studied extensively the quenclithgnomenon of self-excited systems which
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have an important practical meanings in fluid-structureradtions. Szabelski and Warminski [14-16]
studied a self-exited system under parametric and extexoghtion sources. They found that the frequency
locking zones may change radically for some combinatiopmmeters, small external force may change
the system’s response and internal loop occurs in the amplitegieehcy response curve. Moreover,
interactions between self and parametric or external excigatmay lead to chaotic or hyper chaotic
dynamics as shown in [17,18]. In [19] authors applied NS flmrced and self-excited strongly nonlinear
beam structure to reduce self and externally excited tidnsa They found that the system might lose
stability when the two type excitations interact nearfthrelamental resonance zone. Jian Xu and his co-
authors in [20] improved a nonlinear saturation controller ditidad it to reduce high-amplitude vibrations
of a flexible, geometrically nonlinear beam-like sture.

In this work, Positive position feedback PPF controlleapplied to reduce the vibrations of a forced and
self-excited nonlinear beam. Systems with self-excitatire common in applications of solid or fluid

mechanics [1]. Self-excitation can build up oscillations ewethe absence of external forces. Also self-
excitation can interact with the external excitation and egtem to vibrate with a quasi-periodic motion
and to be unstable. External excitation is a harmonic éxeitan the support of the cantilever beam. Self-
excitation is caused by fluid flow and modelled by a n@dmdamping with a negative linear part. MSPT is
applied to obtain a first-order approximate solution in the k&meous resonance case. The equilibrium
solution curves are plotted for various values of contrgdrameters. The stability of the steady state
solution is investigated by using frequency-response emsatiThe approximate analytical solution is

verified numerically.

2 Model of the Structure

The model of the beam is presented in Fig. 1 as given in [19r&W is a lumped mass attached at the end
of the beamL, hare the length and the height of the beam respectivedyb & the width of the beam.

Fluid flow

Zo
<--"=-=- >

Fig. 1. Model of the nonlinear beam with self and externaxcitations

The cantilever beam is mounted on an armature of an@lkgiamic shaker which is a source of excitation
along theX axis. In practice, for example, this model can be useatkscribe the wing of a plane such that,
the wing of plane is suspended to external excitation franepbody and self-excitation from the wind
flow. The external excitation is written as,

T = xysin(Qt). @)
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The differential equation of the beam (the plant) is gindd 9] in the dimensionless form as follows:

B+ (—audy + Bia}) + wim + it + 6o & + 2 ) = xo p QP sin(Qt) + U @

Self-excitation is represented by a nonlinear damping witkegative linear part (Rayleigh’s function). A
control forceU is added to right hand side of differential equation (8)this work positive position
feedback controller (PPF) is investigated so the cortroelU is given by

U= X,. (3)
The equation which governs the dynamics of this contrdiBiF] is suggested as,
By + gy +ws 1 + Y215 =X fi(t). )

Where f;(t) = z, is the feedback signal from the beam. So the closedslygipm equations are:

B+ (—oudy + Bit) + wim + maf + 8y af + af 81) = 2o p QP sin(Qt) + A 2, ®)
flf'g-l-azii'g-l—wgilfg -|—72.’L'S:)\21L'1. (6)

3 Perturbation Analysis

Using multiple scales perturbation technique (MSPT) [R8kume that the system is weakly nonlinear. We
can obtain a first-order approximate solution of equatfBhand (6) by seeking the solution in the forms

(1o, T1,e) = 210(To, Th) + € 201(To, ) (7)
‘TQ(T%]leag) = .T)Q(,(E),ﬂ)+€$21(T0,ﬂ)- (8)

Such thate is small dimensionless parametex<<1, Ty =1, Ty = ¢t are fast and slow time scales

respectively. Time derivatives in terms &f, 7] are:

4 py+eD, d—2—D2+25DD p =2 j=01 9)
dt 0 15 dt2 0 01, 5 87_,]7 9t

To obtain a uniformly valid approximate solution of this problera,order the dimensionless parameters of
the system by the formal small parameteas follows:

7] :5dlv 1‘81 :EBD gl :8’?1, 62857 [L:Sﬂ, A1 :5AA17 Q9 :5d27 Y2 :E’?% /\2 :EXQ' (10)

Substitute equations (7-10) into (5) and (6) and equate coatfici¢ like powers ot. So we can obtain the
following set of ordinary differential equations

(D§ + wi)ag =0, (11)

(D§ + wh)agy = 0, (12)
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(D5 + wi )z =ap 17 sin(QTy) — 5 a5y + N 220 + &y Dy 219 — 6 19 (Dp 210)°
- Bl(DO 3710)3 —2DgDy 1y — 5$120D3 T10,

13)
(D5 + w3 )z21 = R T19 — A2 230 — A Dy Tag — 2De Dy, (14
The general solution of (11) and (12) can be expressed forthe
n9(To, ) = A(Ty) €0 + A(Ty) e, (15)
220(Ty, i) = B(T}) €"2™ + B(T}) e ">,

(16)
The coefficientsA(T}), B(T;) are unknown functions of}. They can be determined later by eliminating
the secular and small devisor terms. By Substituting (16),in to (13), (14) we can get,

(Dg + wf)mn = (Zdl w1 A + 25&112.42Z - 3Z61 W3A2Z - 3’7’11422
— 24wy DiA) e 4 (26w A3 40 B Wi AP (17)
5y ANl 4 5 BeienTh —lifl?oﬂ Q2 4,
(Dg + wgz).’lim = (—iBwQ @2 — 3’?2 BQB -2 wQDlB)eWQ To (18)
_,?2 B3e3iuJ2T0 +)"\2Aeiw1Tg + cc.
Where cc stands for the complex conjugate of the precedingstand the over bar denotes the complex
conjugate functions. The particular solution of (17) and (18) are

- 8_—12<28w% A B b AP Ay A
Wy

A o (19)
‘)\13 iy _ %0 [ Q‘ ¢ 4 e
(wf —wd) 2Awf — %)
99 B 3 WA
— / iy ;\2 . gty | e 20)
8 Wo (WQ — Wi )
From (19), (20) we can deduce that the resonance conditidiis approximation order are:
(I) Primary resonanc€ = w;,
(ii) Internal resonances, =

= Wi,
(i) Simultaneous resonance€l = w; and wy, = wy.

In this paper we study the case of simultaneous resonaftte- {; and w, = w; ). Closeness of
simultaneous resonance can be described by using detuningepenrss; and o, as follows
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Q:wl+0'1:wl‘|‘€d'1,w2:wl‘|‘0'2:wl‘|‘5(3'2. (21)

By inserting (21) into the secular and small devisor tenmg$17) and (18), one finds the solvability
conditions

(iAw &4 +28wf A2A—3i B wi A2A — 34, A%A — 2w, DA)e’ 170

_éll‘oﬂ Q2 eiﬂ](wl+sé'1) + XlBein(aq{»sﬁ'g) _ 0’ (22)
_iA g 2B o, iwo Tp N iT()(wQ—Eé'Q) _
1G9 wo B—3%9 B°B—2iwy DiBle + X Ae =0. (23)
By dividing (22) and (23) by« 0 and ¢'“2™ respectively, we can get
iAw &y +28wi A%A — 343 wi A2A — 34, A%A — 2w, DA
. L (24)
_%Zxoﬂ Q2€LE(71T0 _l_)\lBetEaQTo — O,
_ “ . 25
iy wy B+3499 B2 B+ 2iwy DB — S Ae 15210 — . (25)
To analyze the solution of (24) and (25), express A aid@®lar form as follows
. r 3 .
A=Seth pa=Beiny 0B (26)
2 2 2
B= %ew?, DB= a—éew'z + i—aQBé e, (27)

Where prime denotes derivative w.fi}, a; and a, are the steady-state displacement amplitudes of the

beam and controller, respectively afid 3, are the phases of the motion. By inserting (26) and (27) into
(24) and (25) and returning each scaled parameter backraaltvalue we can get

_ — Az QP cos(pr)+4ogwya; — 30, wlad + 4N a sin(ps)

G , 28
1 Swr (28)

b= —4p g QP sin(p) — 26 wi af + 371 ai — 4\ ag cos(p,) (29)
! 8(4}] ay ’

by = —Ao ay Sin(py) — ap wo ay

26(}2 ' (30)

; 379 a3 — 4 X a1 cos

By = Y2 G2 2 (802)' (31)

8&)2 a9
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Where dot represents derivative w.¢.tand
p=c61Ty—P=o1t—P0, pp=ecb6Ty— P+ =09t p1+ o (32)
To eliminate 3, and 3, from equations (29) and (31), differentiate (32) wtr.8o we can get
Bi=o01—¢1, bh =Py — 1 +01-03). (33)
By inserting (33) in to (29) and (31) respectively, we can get

5 = 4wy Q2sin(g01)—|—801w1 a4+ 26wi af =3~ ai + 4 ascos(py)

; (34)

8(./.]1 ap

, 1 .
P2 = 7(—4 Ao wy 012 cos(2) + 4 pu g wy Q° aysin(py) + 8wy wy 0 a1 ay (35)
8wy wo 4y Gy

+ 26 wi W a} ay =37 wo G ay + 4N wy a3 cos(pr) 4+ 372 wi @y ag).

The autonomous Amplitude-phase modulating equations can be oblanme28), (30), (34) and (35) as
follows

_ A Q% cos(pr) + 4ag wyay — 36, wi ai + 4N aysin(es)

iy
8 wq

b

o = 4 g P sin(py) + 801 wy ap 4+ 28 wi af — 371 af + 4\ ag cos(p,)
L=
80.11 ap

’

. —Nasin(py) —awyay
a9 =

; (36)

2&)2
1

= 7(—4/\2 wi af cos(py) + 4 1wy wo Q2 ay sin () + 8wy wy 02 4y as
8wy wy ay ay

2

+ 28 wi wyai ay — 3w a as + 4N wy a cos(ps) + 372 wi o ag’).

4 Equilibrium Solution
To obtain the steady state response of both the bearhedritroller we must set the values

G =dy =P =P =0. (37)
By Substituting (37) into (33) we can get

Bi=o01, b =01-05. (38)
By substituting (37) and (38) in to (28) to (31) we can get

doqwiar —36 wdal —4pz O cos(py) + 4 XN azsin(py) = 0, (39)
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8oy wia +20whal — 3 af + 42y O sin(p) + 4\ as cos(pn) = 0, (40)
Qg wy Gy + Ny ag sin(py) = 0, (41)
372@%-8(0’1-0’2)&12 0/2—4)\2(11 COS(QOQ):O. (42)

From (41) and (42) we can get valuessof(¢,) and cos(p,) as follows

. Qg Wy @
sin(pp) = ——=—-=2, (43)
)\2 ay
ay|—8 01wy + 809 wo +3’y2a§
cos(pg) = ( ) (44)
4)\2 ay
By substituting (43) and (44) into (39) and (40) respectiwetycan obtain
dog Xowad =3B dowi aft —4ag N wy al
cos(py) = 1A W1 G 512211 2 Wa 3 (45)
419" 15 Ao ay

. 1 ,

sin(py) = 2—(—8)\2 orwial + 37 hal — 28\ wiat
4 12 Q Ty /\2 ay (46)

+8N oy weas —8N oywa a3 —370 N aé).
By squaring and adding (43) and (44) we can deduce the firstdcdlosm equation as follows
2 .
ag[(372a§—801w2+802w2) +160¢§w§ =16)\22a%, 47)
2
(—4@1)\2w1a12 + 4a2/\1w2a§ + 3[31/\2wf’a14)

(48)

+ ()\2 (af (26w12 — 371) + 801w1a12) + Na3 (372(1% — 801wy + 802w2>)2 =16\ p 220 a}.

Equations (47) and (48) are the frequency response equalibay. describe the system steady state
solutions behavior for the practical case i®.# 0, ay = 0).

5 Stability Analysis

Jacobian matrix J of the right-hand side of equations (36) caredgaistudy the stability of the equilibrium
solution. To derive the stability criteria, we need torexee the behavior of small deviations from the
equilibrium solutions. Thus we assume that

ay = a1 + ayg, G2 = Qg1 + A0, Y1 = P11+ P10, P2 = P21 + ©20

Gy = d11, dg = do1, Y1 = P11, P2 = Po1-

(49)
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Such thata, ¢y, asg, Yoo denotes the equilibrium solution which satisfy closed form equd#@) and
(48) andayy, @11, a1, o1 are perturbations which are assumed to be small comtmarggl ¢y, asg, Yoq -

By substituting (49) into (36) and keeping linear terms;in ¢y 1, asq, Y91 We can get,

11 = T1@11 TN 21+ 73091 + TP, (50)
11 = 71011 +9P11 F P31 + R2apor, (51)
Go1 = T31011 732011 + 733091 + 134021, (52)
a1 = TGP F TasGor + TP (53)

The characteristic determinant of equations (50) to ¢&B)be expressed as follows,

ni—A Uip) 73 T4
™1 Tog — A 73 Ty -0 (54)
731 Ty m3— A Ty
11 T12 713 Ty — A

Thus, the stability of the steady-state solution dep@mdshe eigenvalues of the Jacobian matrik/ |,

which can be obtained from (54).  Such thgtwhere ¢ = 1,2,3,4 and j = 1,2,3,4 are given in the
appendix.

6 Results and Discussion

In this section the steady-state response of the systedisésissed extensively. The dimensionless
parameters of the system take the valugs=0.01, 8 =0.05, w; =3.06309, v =14.4108 ,
§=3.2746, p=0.89663. The amplitude and frequency of excitation vary respdgtive these ranges

2 €(0,0.1) and © € (1.5,4.5) approximately. The PPF controller parameters are chosen @s0.05,

wy =w; + 09, 09 =0, 79 =0 and ), = )y = 5 unless specifying otherwise. In the obtained figures solid
lines correspond to stable solutions while dashed linesgmond to unstable.

6.1 Nonlinear composite beam without control

Self-excitation in the uncontrolled system can build up osicitiateven in the absence of external forces

2o =107% as shown in Fig. 2. If we compare between Figs. 2(a)2ébyiwe can see that, When Self-

excitation increases, the transient region in the resubedllations decreases and the steady state
displacement amplitude increases.

When there is an external excitation to the sysigm= 0.01 as in Fig. 3Self-excitation can interact with the
external excitation and may lead system to vibrate witjuasi-periodic motion and to be unstable. When
the effect of external excitation is greater than thectfelf-excitation, the beam vibrates periodically.
However, the beam vibrates with a quasi-periodic motidhefeffect of self-excitation is greater than the
effect of external excitation. It can be seen from Figa) a6d 3(b) that, when self-excitation increases in
Fig. 3(b) than that in Fig. 3(a), the beam’s motion becanguasi-periodic motion.
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Fig. 4 presents the frequency response curve (FRC) of the bé@haoutvcontrol under dififferent values
amplitude of the support motiog,. It can be seen that there are unstableons in the FRC curve whic
corresponds to a quageriodic motion. In these unstable regions, roots of the cteaisttic equation ¢
conjugate complex numbers with positive real parts.dblstregions the beam vibrates periodicéilgan
be seen thahe steady state displacement amplitude of the beamaseses the Amplituide of the sup
motion z;, increases. Also the curve is bent to the left denotingtarsog effect and the jjump phenom
appear clearly due to the damtion of the nonlinearity. We try to treat these probl by using PP

controller.

0.15|®

0.10
0.05

z; 0.00
-0.05

Ty

-0.10
-0.15

0 1000 2000 3000 4000 5000 6000

t

04

0.2

0.0

0.2

04

m

0

1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

t t

Fig. 2. (a) Time history of the uncontrolled system aq; = 0.01, (b) Time history of the uncontrolled

system atq; = 0.1 and (c) Comparison between two cases (a) and (b) all z, =10~°
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0 200 400 600 800 1000

t

0.6
04
0.2
0.0
-02
-04
-06
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m E
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0 200 400 600 800 1000 _06 -04 —02 00 02 04

t k5

Fig. 3. (a) Time history of the uncontrolled system aa; = 0.01, (b) Time history of the uncontrolled
system ata; = 0.1 and (c) Poincare map all atz; = 0.01
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Fig. 4. FRC of the uncontrolled beam control under differen values of amplitude of the suppor

0.7

motion

10



Abdelhafez and Nassar; BJMCS, 17(4): 1-19, 2@k€icle no.BIMC.26871

6.2Nonlinear composite beam witkpositive position feedback (PPF) controlle

The effectiveness of PPF controller on a forced aneexcited nonlinear beam is studied in this sectiam
minimize the beam response close to its natural frequw; =3.06309, we take PPF controlle

parameters such that its naturalquency w,; = w; + 05 and o, = 0. Other controller parameters
chosen properly.

Fig. 5 presents the time history and the Poincare map fardheolled beam under different values of-
excitation (o ) at zy = 0.01, as = 0.2. It can be seen that system vibrates with a stabl@dic motion. I
self-excitation of the primary system increases to thtergxhat a qua-periodic motion occurs, we can tu

the controller damping coefficient, to avoid this type of motion. However self-excitatiop in Fig. 5(b)

is larger than that in Figh(a), the system vibrations remain stable and periodice [E@mpareFig. 5 with
Fig. 3, we can see thdta PPF controller successes in elimination of effectiBeofel-excitation

Fig. 6 presents a comparison between FRC of an uncontrolled brehan ontrolled beanrm. We get a ¢
vibration suppression bandwidth as indicated by the dashed rectartte figure. In addition, system
stable for a larger range of excitation frequer

0OBEGy T 0.015f; Ty g
0.010 0.010
0.005 0.005 0.005
0.000 0.000

Ty —-0.005 n —0.005 1 x; 0000
~0.010 ] ~0.010
0015 ~0015 ~0.005
~0.020 |, ) ) ) ) ] —-0.020 ]

0 200 400 600 800 1000 0 200 400 600 800 1000 0010

—0.004 -0.002 0.000 0.002

T t T

Fig. 5. (a) The time history of the controlled system a«; = 0.01, (b) The time history of the
controlled system ata; = 0.1 and (c) Poincaré map, all atzy = 0.01, ap = 0.2

0.5

0.4} beam ‘*.L | H

|

0.3} Controlled I
beam Y | H

|

ay o
02

0.1

0.0
-15-1.0 -05 00 05 10 15

o1
Fig. 6. Comparison between FRC of an uncontrolled beam and antrolled bean

Fig. 7 presents a numerical simulation of the FRC of the baath controller, respezctively by us
numerical integration of original equations (5) and {®)e numerical results for steady sate sahstiare
plotted as small circles. If we compéFigs. 5 and 6 with Fig® to 4, we can see a good vibration reduc
and the effect of sekxcitation is eliminate:

11
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The effect of varying the amplitude of the support oz, on the FRC of the beam and the controlle
illustrated in Fig.8. This figure shows that the minimum steady state displaneamplituude of the be:i

occurs ato; = 0. So PPF controller successes in vibration suppressi@ndoitable bandwidth of excitati
frequency(2. When z, increases the peak displacement amplitudes increaseRbéndis away from t

linear curves resulting in multivalued regions by jump phemar.

041y )

0.3 0.3 .
@; 0.2 a, 0.2

0.1 0.1

0.0 0.0

-06-04-02 00 02 04 06

a1

-06-04-0200 02 04 06

a1

Fig. 7. Numerical simulation of FRC of (a) beam and (b) contrliter at a, = 0.05, \y = A =1 and

08} @ 1.0 (b)
03 X = 0_05---»:
0.6 I
0.8 % =003~
@104 Gz
04 X(]:0.0l""
1
0.2/ 0.2 J
0.0 0.0

-15-10-05 00 05 10 15 -15-10-05 00 05 10 15

a1 a1

Fig. 8. FRC of (a) Beam and (b) Controller under differen values of amplitude of the support motior

Ty

Fig. 9 shows the effect of the controller's Linear dampingfiicient o, on FRC of the beam and t
controller, respectively. The figure shows that, for lavgdues ofa, both the beam and the control
exhibit linear responses in addition, the jumping phenomeanatijvalued solution regionns and biftioce

points disappear. Also beam and controller peak displaceangpiitudes decrease wha, increases which
reduces the controller overload risk. So existence of walligd solution region, jump phenomenon

bifurcation point depends on value o, and o, is an important parameter in reducing colir’s overload
risk.

12
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Fig. 9. FRC of (a) Beam and (b) Controller at different valies of linear damping coefficient of the
controller

Fig. 10 presents the effects of the control signal 1\, on FRC of the beam and the controller, respecti
Fig. 10(a) shows that vibration suppression bandwidth increasesral signal gail)\; increases. Alsi
controller peak displacement amplitudes decrease atsiginal gair ), increases.

@ (b)
0.4
0.8
[
I
0.3 0.6
a a
102 "04
0.1 0.2
0.0 |—= B o 0.0
15 -10 05 00 05 10 15 15 -10 05 00 05 10 15
ay a1

Fig. 10 FRC of (a) Beam and (b) Controller under different vales of the control signal gair )\

The effects of positive control feedback g\, on FRC of beam and controller are shownFig. 11,
respectively. In Figl1(a), it can be seen that vibration suppression bandwicltbaises as ffeedback g\,
increases so increasing is good for vibration suppression process. Feedback )\, has similar effect t
control signal gainy; on FRC of beam. BLFig. 11(b) shows that, controller peak displacement aoggs
increase as feedback gala increases which also increasee risk of controller overload. So it is better
widen the vibration suppression bandwidth by increa ), .

13
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0.0

-06-04-02 00 02 04 06 -06-04-02 0.0 02 04 06
o a1

Fig. 11 FRC of (a) Beam and (b) Controller under differentvalues of positive control feedback gail
)\2 at )\1 = ].

In Figs. 642, it is clear that there is good vibration suppressioorat o; = 0 however, for large values

|01| apart from O there are two peak displacement amplitofiegam. To overcome thiss problem we
tune the controller natural frequency as studieFig. 12. The controller natural frequency can uned by
changing the internal detuning param¢o, depending onuv, = w;, + 0. Fig. 12(a) clears that minimu

beam steady state displacement amplitude occurs o, = o5 i.e. (2 = w,). From this result we ce

recommend to tune the controller natural frequency to bel équexcitation frequenccy for dynam
systems which are subjected to variable excitation frezyueut illustrated vibration supprressiondvaidth
in Fig. 6.

0.5 0.5 )
04 04
0.3 0.3
ay 2
0.2 0.2
0.1 0.1
0.0 0.0t
-15-1.0 -05 00 05 1.0 15 -1.5 -1.0 -0.5 0.0 05 1.0 1.5
(on] a1

Fig. 12 FRC of (a) Beam and (b) Controller under differentvalues of internal detuning parameter o.

Forceamplitude response curve for the beam and the controllerebafal after controll is presentec
Fig. 13 under the conditios; = o, for controlled beam. Relation between beam displare amplitude:
and support motion igplacement amplitude (excitation force amplitude) befasagu controller is

nonlinear relation which may produce large beam displaceamaplitudes for a slight inacrease in stiy
motion displacement amplitude and may contain jump phenomenon atable solution regions. Afte

control under the conditiom; = o5, the relation became linear and the beam displaneramplitude

14
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increases with extremely small values when support moigplatdement amplitude increzases. In addi
the controller displacement amplitude increases linearly with support motion displacement amplitu

When conditionr; = o, isn’t satisfied such that difference betwe¢os; and o, isn't smalland we found
that controller efficiency in vibration suppression decreaBes the controlled beszzam displace

amplitudes still smaller than that of uncontrolled bearg. 14 verifies the result in Fig. 13@at= 0, = 0.

1.2
Lo (a) (b)
-<[| === Uncontrolled beam
______ 10|
op e
TN 0.8
5] “"“"\\ /"-“\ a 0.6
0.6 R o'=-05
R AT 0.4
04} . e oi=0
' P

02t o F =05 0.2}

e m e

0.0
00 01 02 03 04 05

0.0

(]
o
(]
[
o
(8]
o
o
[
e
(]
o

0 0
Fig. 13. Forceamplitude response curve of (a) Beam and (b) Controlleat different values of o, under
the condition oy = o5 in case of controlled beam

The effect of varying controller natural frequerw, on FRC of the beam and the controller is studie
Fig. 15 at different values of,. We vary controller natural frequenw, by varying value of intern:
detuning parametes, asw, = w; + 0,. The minimum steadgtate displacement amplitude of the be
occurs ato, = o; which insures result oFig. 13. This is the optimatase for controller operatic
(o9 = ;). When value ofr, tends more to value (o, vibration suppression is better as shown in
targeted region in the figure. THigure also illustrates that, in case of mistuni o, = o), it is preferred tc
adjustw, l.e. gy <oy Or (wy < Q) to be sure that the system is ste

06T e (b)
0.5 0.15
0.4
0.10}
a; 0.3 Qs
*Uncontrolled beam
0.2
’Comm]led beam 0.05
0.1
0.0 0.00
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 006 0.08 0.10
0 20

Fig. 14 Numerical simulation of force- amplitude response curve of (a) Beam and (b) ContHer at
0y = 09 = 0

15



Abdelhafez and Nassar; BJMCS, 17(4): 1-19, 2@k€icle no.BIMC.26871

047)

O-l = *0.5 [\
| |
I

\
o1=0.5 0.3 U

‘,0'1 =-05
G-%=O s 0.2 '¢"'

’ e ,G'1=0
/ I ,”’
| | 1
0.1 \ =05
=—===—==c: .

0.0} : ] "-===.__‘__..__

4 6 -2 0 2 4 6
J9 ()

Fig. 15 Effect of varying controller natural frequency on FRC of (a) Beam and (b) Controller at
different values of o;

7 Conclusion

In this paper, positive position feedback PPF controllepdied to a nonlinear beam with self axternal
excitations in primary resonance case and presence of 1:1 intesaaance. Analyticeal and numer
results which have been obtained show: there is a good vibration suppression bandwidipeeially ai

—0.5<0; <0.5, see Fig3. There is a good vibration suppression in spite of increas$is support motic
amplitude z;, see Fig4. When linear damping cfficient of controller o, increase, the peak displacem

amplitudes of the beam and controller decrease and conweddoad risk decreases. Vibiration seppion
bandwidth can be increased by increasing controller orfeedbick gains. So it is better to widen t

vibration suppression bandwidth by increas); as increasing\, increases the controller overload ri
PPF controller successes in elimination of-excitation effects, see Fig. 5.

For large values o|i71‘ apart from O there are two peak displacement amplitudbsash. TThis problem c

be solved by tuning the controller natural frequency suchQ = w, where the minimum beam stea

state displacement amplitude occur.c, = o,, see Figl2. From this result we can recommend to tune
controller natural frequency to be equal to excitation feegy for dynamical systems wthich arbjected

to variable excitation frequency out the original vibrat&uppression bandwidth aroue, = 0. This
tuning process can be applied practically if the rate afighaf excitation frequency can boe acconepsby

tuning controlle natural frequency i.¢Q) = w,.

If PPF controller is properly tuned, the vibration supgi@s process is well and poeak displace
amplitudes won’t occur practically. In case of mistunio, = o7), it is preferred to adjusi, i.e. 0y < 0}
or (wy, <) to be sure that the system is stable,Fig. 15.
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